Minimum Mass Solar Nebulae,

Nice model,

& Planetary Migration.

Aurélien CRIDA

Department of Applied Mathematics and Theoretical Physics (DAMTP)

1) MMSN : definition, recipe

Minimum Mass Solar Nebula

Little reminder :

It is *not* a nebula, but a <u>protoplanetary disc</u>.

Solar : from which the Solar System is born.

<u>Minimum Mass :</u> just enough solid material to build the 8 planets.

Importance :

Density used in basically **all** processes of planet formation.

1) MMSN : definition, recipe

Recipe of the Minimum Mass Solar Nebula

Ingredients for 8 planets :

- \sim 60 Earth masses of solids (chondritic composition).
- ~ 0.01 solar mass of the famous mixture H (75%), He (25%).

Preparation :

Spread the appropriate mass of solids around the orbit of each planet.

Multiply the obtained density by 100 (add gas).

Cover with a power law profile.

Dispose around the Sun for 10 million years.

You get the Solar System. Enjoy !

1) MMSN : definition, recipe

Weidenschilling (1977), Hayashi (1981) :

$$\Sigma(r) = 1700 \left(\frac{r}{1AU}\right)^{-1.5} g.cm^{-2}$$

Main assumptions :

The planets accreted **all** the solids (therefore «minimum»).

They formed where they presently orbit.

... did they ?

2) The Nice model

After the protoplanetary disc dispersal, the giant planets were on circular orbits, in a compact configuration, surrounded by a disc of planetesimals.

(Gomes et al. 2005; Tsiganis et al, 2005)

Planetesimal scattering perturbs the orbits of the planets.

When Jupiter and Saturn reach their 2:1 resonance, the system is destabilized :

- \rightarrow Late Heavy Bombardement.
- → The planets reach their present orbits.

2) The Nice model

UNIVERSITY OF CAMBRIDGE

A. Crida

2) The Nice model

The Nice model explains : The **eccentricities** of the giants the **Late Heavy Bombardement**.

CAMBRIDGE

And also :

The capture of Jupiter's
 Trojans on inclined orbits
 (Morbidelli et al, 2005).

 The Hildas and D-type asteroids (Bottke et al, 08).

 The capture of the irregular
 satellites by the giants (Nesvorny et al, 2007).

 The Kuiper Belt architecture (Levison et al, 2007).

If the Nice model holds, the giant planets didn't form where they now orbit.

After the gas disc phase, they were located at :

Then, the Hayashi density profile is out of date.

Desch applied the recipe with these positions (and improved the cooking).

3) Return of the MMSN

Desch (2007) : a MMSN based on the Nice model

A. Crida

Migration, did you say migration ?

The orbital radius may change through 3 different processes :

- <u>Small size bodies (<km) :</u> radial drift (or type 0) through gas drag.
- <u>Planets in a gaseous disc :</u> **migration** (type I, II, III) through tidal interaction (this session).

• <u>Planets after the gas disc :</u> discontinuous change through scattering (ex: in the Nice model).

None is taken into account in the Hayashi (1981) MMSN. Only the 3rd one is considered in the Desch (2007) MMSN. How about migration inside the MMSN ?

A. Crida

Jupiter, Saturn, Neptune & Uranus in Desch (2007) disc. 100 Jupiter orbits on a fixed orbit, then released.

Jupiter: runaway, type III migration, lost.

Saturn : type I, then type III migration, lost.

Neptune : type I, lost.

Uranus : type I, lost.

CAMBRIDGE

Jupiter, Saturn, Neptune & Uranus in Desch (2007) disc. Non localy isothermal EOS: viscous heating, radiative cooling.

UNIVERSITY OF CAMBRIDGE

A. Crida

Jupiter & Saturn in Hayashi (1981) density profile, with same H/r, α as in Desch (2007), localy isothermal EOS.

A. Crida

Jupiter, Saturn, Neptune & Uranus in Hayashi (1981) disc. On longer term, with other disc parameters :

Jupiter-Saturn: in resonance, stop.

Neptune, Uranus, also caught in resonance, after type I migration.

(Crida, 2009, ApJ, submitted)

UNIVERSITY OF CAMBRIDGE

5) A new hope

CONCLUSION

Neither the standard MMSN (Hayashi, 1981), nor the newer one (Desch, 2007), are consistent with planetary migration.

In a very dense disc, the giants can't survive (runaway migration of Jupiter and Saturn, no resonance).

Formation of the giant planets over a **wide radial range**, in a **low density** disc, then, **migration**, approach, and resonances, then, **Nice model II**.

Radial drift and migration make the recipe of the MMSN irrelevant.

