Gas Drag-Induced Capture of Planetesimals in the Proto-Atmosphere of a Growing Giant Planet

Nader Haghighipour (IFA/Hawaii) Morris Podolak (University of Tel Aviv)

> Planet Formation and Evolution Tübingen, March 2009

Heavy element abundances in Jupiter from Galileo Probe mass spectrometer (Modified from Owen et al. 1999)

Motivation

 Gravitational perturbation of (growing) Jupiter scatters out planetesimals in it vicinity

If Jupiter was originally of solar composition, it would stay with the same composition

 Abundance of high Z material in Jupiter is several times larger than solar (consistent with atmospheric measurements with Galileo)

??

Giant Planet Formation

Disk Instability

Core accretion

-Two-body system

- Uniform distribution of planetesimals

 $-V_{\infty} = 1 \text{ km/s}$

-No planetesimal is ejected.

Helled, Podolak, Kovetz (2006)

- Jupiter-mass envelope/clump
- Initial radius = 0.5 AU
- Duration of contraction = 2.71×10^5 years

Dcrit

Gas Drag

$$F_{Drag} = C_{\rm D} \frac{1}{2} \pi a^2 \rho v^2$$

 $C_{\rm D}$ is the drag coefficient which depends on the Knudsen number, the Reynolds number, and the Mach number.

Aerodynamic Heating

$$E_D = \frac{1}{2}\Im\rho v^3$$

 $\Im = C_D/2$ in the limit of large Knudsen number, and in the limit of supersonic flow (for a cap of shockheated gas). We assume this is approximately true everywhere.

Dynamical Breakup

$$P_{dyn} = \frac{1}{2}\rho v^2$$

(Ram Pressure)

If this pressure exceeds the compressional strength of the material it will fracture unless held together by self-gravity.

$$a_{dyn} = \sqrt{\frac{5v^2\rho}{8\pi\rho_b^2G}}$$

Heating

- Aerodynamic heating
- Radiation from ambient atmosphere

$$E_D = \frac{1}{2}\Im\rho v^3$$
$$E_{atm} = \sigma T_{atm}^4$$

Cooling

- Radiative cooling
- Evaporative cooling

$$E_{rad} = \sigma T_{surf}^{4}$$
$$E_{vap} = q P_{vap} (T_{surf}) \sqrt{\frac{\mu}{2\pi N_A k T_{surf}}}$$

100km Planetesimal

1= 3.7	3 - 3.98
2= 3.9	8 - 4.23
3= 4.2	23 - 4.48
4= 4.4	8 - 4.73

5= 4.73 - 4.98 6= 4.98 - 5.23 7= 5.23 - 5.48

- 7 5.23 5.46 8 = 5.48 - 5.73
- 9= 5.73 5.98 10= 5.98 - 6.23 11= 6.23 - 6.48 12= 6.48 - 6.66

Drag force of the gas is larger on objects with higher densities and larger velocities relative to the gas.

Self-Gravitating Disks

-Pressure gradient changes sign across spiral structures.

-Dust grains/small planetesimals can drift both inwards and outwards (Haghighipour & Boss 2003)

-Net effect: Solid object approach the center of the structures.

Conclusions

- Smaller planetesimals are captured in shorter times
- Multiple passages of larger planetesimals through the envelope results in more capture and more mass deposit
- Accumulation of high density planetesimals around gas-pressure structures in the envelope enhances the rate of the capture of these objects.