

Alexander Krivov, Sebastian Müller, Torsten Löhne, Harald Mutschke

Astrophysical Institute and University Observatory Friedrich Schiller University Jena Germany

A planetary system and its debris disk

> Application to unresolved disks

> Application to resolved disks

> Summary

> Application to unresolved disks

> Application to resolved disks

> Summary

Idea of this work

Traditional approach

Collisional model: ACE

Initial planetesimal belt

 Debris disk
 at subsequent time instants

Features:

- statistical code in an (m,a,e)-mesh
- accurate photogravitational dynamics
- collisions (mergers, cratering, disruption)
- diffusion by P-R and stellar wind
- distributed parallel computing

Authors: Krivov & Sremčević (2003-2004), Löhne (2005-2009)

Results: dust distributions

Distance-dependent size distribution

Size-dependent radial distribution

cf. Krivov, Löhne, & Sremčević, AAp **455** (2006) Thébault & Augereau, AAp **472** (2007) Löhne, PhD thesis (2008)

Thermal emission model: SEDUCE & SUBITO

Size and spatial distribution of dust, its optical properties

Features:

- NextGen stellar photosphere models
- Mie calculations for arbitrary (n,k)
- Thermal emission (no scattered light)

Author: Müller (2007-2009)

Results: dust temperatures

Krivov, Müller, Löhne, & Mutschke, ApJ 687 (2008)

> Application to unresolved disks

> Application to resolved disks

> Summary

Input and output

Model parameters

Star:	stellar mass	M*
	stellar luminosity	L*
	stellar age	t.
Planetesimal belt:	initial mass	M ₀
	location	
	width	dr
	excitation	<e>,<i></i></e>
All solids:	bulk density mechanical properties optical properties	
Collisions:	critical fragmentation energy fragments' size distribution cratering efficiency	

known (fixed) poorly known (fixed) unknown (free)

<i>
<i>
</i>

(51)

Reference disks

Tük

Scaling rules

 $F(M_o, r, t)$

$F(\mathbf{x}M_o, \mathbf{r}, t) = \mathbf{x} F(M_o, \mathbf{r}, \mathbf{x}t)$

Löhne, Krivov, & Rodmann, ApJ 673 (2008)

Results: SEDs for reference disks

Krivov, Müller, Löhne, & Mutschke, ApJ 687 (2008)

Application to selected debris disks

• Stars : G2V

Star	$T_{\rm eff}$ [K]	$\log L_*/L_{\odot}$	D [pc]	age $[Myr]$
HD 377	$5852^{\ a)}$	$0.09^{(a)}$	$40^{(a)}$	$32^{(a)}$
HD 70573	$5841 \ ^{a)}$	$-0.23^{\ a}$	$46^{(a)}$	$100^{\ a)}$
HD 72905^{1}	$5831^{\ a)}$	$-0.04^{\ a)}$	$13.85 \ ^{d})$	$420^{(d)}$
HD 107146	5859 a)	$0.04^{(a)}$	29 a)	100^{+100}_{-20} ^{c)}
HD 141943	$5805^{\ a)}$	$0.43^{\ a)}$	$67^{(a)}$	$32^{\bar{a}}$

 Dust data: from various surveys with IRAS, ISO, Spitzer, Keck II, JCMT

Krivov, Müller, Löhne, & Mutschke, ApJ 687 (2008)

Comparison of observed SEDs to modeled SEDs

Krivov, Müller, Löhne, & Mutschke, ApJ 687 (2008)

Derived masses and locations of (outer) planetesimal belts

Krivov, Müller, Löhne, & Mutschke, ApJ 687 (2008)

> Application to unresolved disks

> Application to resolved disks

> Summary

Input and output

Model parameters

Star:	
Planetesimal belt:	

All solids:

Collisions:

stellar mass M* stellar luminosity L* stellar age t*

initial mass location width excitation M₀ r dr

oulk density mechanical properties optical properties

critical fragmentation energy fragments' size distribution cratering efficiency known (fixed) poorly known (fixed) unknown (free)

Observables

SED

Brightness profiles in different colors

Application to the Vega disk

Su et al., ApJ (2005); Marsh et al., ApJ (2006)

The first-guess model

Star: L_{*}=37L_{sun} Belt: 70-100AU, <e>=0.1 Material: astrosil Collisonal outcome model: nominal

Müller, Löhne, & Krivov, in prep.

The best model

Star: L_{*}=25L_{sun} Belt: 70-100AU, <e>=0.1 Material: astrosil Collisonal outcome model: flat size distribution of fragments

Müller, Löhne, & Krivov, in prep.

> Application to unresolved disks

> Application to resolved disks

Summary

Summary

- We suggest a constructive way of using debris disk observations to constrain planetesimal properties
- Unresolved cases: application to five G2V excess stars revealed large (100-200AU) and massive (0.2-50 earth masses) Kuiper belt analogs
- Resolved cases: application to the Vega disk showed it to be compatible to a steady-state collisional evolution scenario, contrary to previous claims

Herschel Open Time Key Program "DUNES" (DUst around NEarby Stars)