Composition of planets and properties of protoplanetary disks

Katharina Lodders, Washington University Saint Louis

Tuebingen, March 2009

Planetary Compositions depend on:

Elemental composition and stability of their phases in the accretion disk silicates, metal, sulfides, ices...

At a given location, condensation/evaporation chemistry depends on P-T structure of accretion disk

Are there any compositional gradients from the disk preserved in planets?

Rocky (terrestrial) planets

Gas giant planets

All That is in the Planets was in the Disk,

But Not All That was in the Disk is in the Planets

objects shown have diameters >100 km

Inputs to Planetary Compositions

Solar system elemental abundances

→ see Lodders, Palme, & Gail 2009, Landolt Boernstein; on astroph.

Chemical fractionations of the elements *in* the accretion disk formation location in disk, chemistry depends on T, P, ρ \rightarrow chemistry feed-back into disk structure

Chemical & physical fractionations of planet-building blocks Thermal stabilities of solids (and liquids) Iron oxidation/reduction reactions (metal content) Extent of gas-solid equilibria at low temperatures (e.g., sulfide content, hydrated silicate formation)

for gas giant planets also:

H₂ & He gas accretion efficiencies

Chemical fractionations *after* dissipation of the gaseous disk impact processing; Moon

Major components

Rock (Metal, Silicate, Sulfide)

Ices (H₂O; CO, CH₄, CO₂, NH₃, N₂, and/or clathrates or hydrates thereof)

Gas (H_2, He)

Overall planet densities depend on relative amounts and individual densities of accreted components

Zero-pressure Densities g/cm³ 8.1 – 8.9 FeNi metal alloys: refractory FeNi alloy + 10% S: 5.7 volatiles Eutectic Fe-FeS: 5.15 Troilite (FeS): 4.7 Silicate phases Mg-rich silicates (forsterite, enstatite): 3.2 - 3.6refractory Fe-rich silicates (fayalite, ferrosilite): 4.4 - 4.0Organics: 1.2 – 1.5 Water ice: 1.0 Methane clathrate: 0.9 highly volatiles Ammonia ice: 0.82 NH₃ hydrate: 0.96

Terrestrial Planets

Available high-temperature (> 600 K) phases in a solar composition system (~0.5% of total mass in solar composition)

> << Assuming all Fe distributed between metal and sulfide; no FeO in silicates.

Oxidation of metallic Fe to FeO increases mass fraction of silicates and reduces metal + sulfide fractions

Influences metal content in chondritic meteorites, planetary cores

Incorporation of FeO into silicates below ~ 600 K in solar gas Fe (metal) + H_2O (gas) + Mg-silicates = "FeO" (in silicates) + H_2 (gas) SLOW! Reaction of

Fe (gas) + H₂O (gas) + Mg-silicates = "FeO" (in silicates) + H₂ (gas)

faster at higher temperature, needs higher H₂O/H₂ ratio or at higher dust: gas ratios

Very, very broadly, the rocky planets are similar in composition to chondrites for the more <u>refractory</u> elements

(e.g., Ca, Al, Ti, Mg, Si, Fe)

Oxidation state varies: Silicate FeO content up, Metal content down

Sulfur content varies in chondrites and planets S is <u>moderately volatile</u> (FeS stable below 700K)

Size of metallic core (FeNi metal+sulfide)

Elemental abundances limit plausible terrestrial planet compositions that can be obtained without additional metal-silicate fractionations (as needed for Mercury, Moon)

End members FeO-free silic. + metal+sulfide FeO-free silic. + metal FeO-rich silic. + FeS; no metal FeO-rich silic. no metal, no sulfide

Cores of Venus, Earth, Mars, (& Vesta) within range of plausible cosmochemical models

Mercury: additional metal – silicate fractionation is needed.

Suggestions:

preferred metal retention or preferred condensation over Mg-silicates in solar nebula at higher total pressure (> 10⁻⁵ bar)

Loss of silicate mantle by boil-off after a massive impact (*i*)

Magnetic metal-silicate separation in disk and selective accretion?

Core masses decrease with increasing radial distance from the Sun (excluding special cases of Mercury, Moon)

Change in Fe oxidation state: metal to "FeO" in silicate at lower T; higher H_2O/H_2 in disk?

Amount of volatile S for sulfide higher from Mercury < Earth < Mars; Vesta?

No systematic variation in O-isotopic composition with radial distance M - E - V E - M - V

Planets made of high and low temperature phases

Rock & Ocean and Rock & Ice Planets

Sasselov 2008

The Snowline

Water ice condensation/evaporation front

as close to the Sun as:

- 2.8 AU if ice-bearing objects in the outer asteroid belt formed there from disk material Caveat: ice evaporation during the past ~4.5 Ga?
- 5.2 AU if Jupiter and the ice-bearing Galilean Satellites formed there Caveat: Did Jupiter & Co. accrete at 5.2 AU?

Exoplanet compositions: Ideas from densities

Some planets have larger radii than other planets of the same mass

→Lower density

Different compositions?

Extra heat sources for volume increase?

Measurement uncertain?

More on condensation chemistry

equilibrium condensate mass distribution But: not all low-T phases can form within the solar nebula lifetime

No hydration of silicates in "vacuum"; only little methane gas, little ammonia gas

 $CO + 3 H_2 = CH_4 + H_2O$

CO to CH₄ conversion kinetically inhibited at low T and low P

CO abundances become "frozen in"

below ~ 1470 K in solar nebula CO remains the major C gas

below ~840 K in Jovian sub-nebula CH_4 is the major C gas

Contours: log CO/CH₄ ratios

Minimum quench temperatures assuming maximum mixing times (1x gas turn-over over nebular life time)

From Prinn & Fegley 1989

$$N_2 + 3 H_2 = 2 NH_3$$

 N_2 to NH_3 conversion kinetically inhibited at low T and low P

N₂ abundances become "frozen in"

below ~ 1600 K in solar nebula N_2 remains the major N gas

below ~1370 K in Jovian sub-nebula NH_3 and N_2 about equal

Minimum quench temperatures assuming maximum mixing times (1x gas turn-over over nebular life time)

Non-equilibrium condensate mass distribution all C as CO

No hydrous silicates, no methane and ammonia bearing ices

Half of all C in condensed organics

ISM-organics require 350-450 K for complete evaporation, Nakano et al. 2003

Solid organics could be important for core accretion model

No hydrous silicates, no methane and ammonia bearing ices

Core – accretion model

Fast build-up of protocore facilitated if surface mass density is increased

Mass density of solids is higher at the snowline and beyond from stability of water ice:

solar abundances 2009: rock ~ 0.5% and *water* ice ~ 0.6% of all mass solar abundances AG89: rock ~ 0.5% and *water* ice ~ 0.9% of all mass abundances allow for factor 2-3 mass increase

an increase of up to 5-10 times the rock surface density is required (Lissauer, 1987, Pollack et I 1996, Hueso & Guillot 2003)

Diffusive redistribution of water from the inner solar system and ice coldtrapping at the snow line and beyond can increase mass density (Stevenson & Lunine 1988, Cyr et al. 1998)

Galileo probe measurements relative to H: 2x solar: Ar, Kr, Xe, S 3-4x solar: C, N < solar: O Essential all measurements for H₂O yield solar to subsolar O values

If Jupiter formed with a lot of water ice: Where is the water now?

Also limits on H₂O abundance from CO, SiH₄; Visscher et al. 2006, ApJ

The Tar-line Carbonaceous condensation/evaporation front

Stability of organic solids during condensation and against evaporation

Carbonaceous matter more refractory than water Gooey sticky properties

Jupiter's observed envelope composition high carbon abundance: C/H ~ 3-4x solar low-solar oxygen O/H 0.5 – 1 x solar

Plentiful Evidence for Solid Organics

CH₄/H₂ Jupiter 0.0021(±0.0004) Saturn 0.0051(±0.0010) Uranus 0.016±0.007 Neptune 0.022±0.006

Carbonaceous matter abundant in outer solar system CH₄/H₂ (e.g., Pollack et al. 1986) Outer planet satellites, KBOs (rock, ices, & organics) "Kerogen" observed in carbonaceous chondrites, cometary organics

On Jupiter, C/S ratio is *larger* than solar ratio; C is enriched over more refractory S

Sources of Carbonaceous Material

Non-vaporized organics

up to 50% of all C in the ISM is tied to organic solids (Ehrenfreund et al. 1991) Organics produced in the (outer) solar system

Non-equilibrium carbonaceous dust production (at <530K at 10⁻⁶ bar)

Fischer-Tropsch type catalyzed reactions,

ion-molecule & photochemical reactions

(e.g, Prinn & Fegley 1989, Aikawa et al. 1999)

Non-uniform C and O abundance variation relative to solar:

Jupiter & Saturn more enriched in C than O

Uranus & Neptune more enriched in O than C, very high H₂O enrichments *"Neptune, the God of the Seas..."*

If the abundance variations are inherited from the solar nebula, there should be Regions dominated by silicates, (water) ice and solid *organics* in accretion disks

See Lodders & Fegley 1994, Lodders 2004, Visscher et al. 2005 (CO,PH₃, SiH₄)

Conclusions

The terrestrial planet compositions *may* record trends in oxidation state

The C and O abundances in gas giant planets likely preserve a memory of the position of major low-temperature condensation/evaporation fronts: a snow-line and a tar-line

If present, a tar-line of refractory organics is positioned closer to the star than the snow-line

Likely positions in the solar nebula: tarline ~ 5.2 AU, snow-line Compared to methane, water abundances increase more strongly from Jupiter to Uranus suggesting water ice pile-up in the outer solar system

