Ab Initio EOS for Planetary Matter and Implications for Giant Planets

<u>Winfried Lorenzen</u>, Bastian Holst, Nadine Nettelmann, Ronald Redmer

Planet Formation and Evolution: The Solar System and Extrasolar Planets 5.3.2009

INSTITUT FÜR PHYSIK

Introd	uction
00	

H-He phase separation 0000000

Outline

2 Ab initio EOS and its implications

3 H-He phase separation and its implications

4 Conclusion

Introd	uction
00	

Outline

2 Ab initio EOS and its implications

3 H-He phase separation and its implications

4 Conclusion

Ab initio EOS

H-He phase separation

Conclusion O

Model of Jupiter

Constraints:

- mass, radius
- "surface" temperature
- "surface" helium fraction $(x_{
 m mol} \approx 7.2\%)$
- mean helium fraction $(x_{
 m mean} \approx 8.6\%)$
- gravitational moments J_2 , J_4

LM-REOS [1]

Linear mixing of H, He and H₂O ab initio EOS data

[1] N. Nettelmann et al. Astrophys. J. 683, 1217 (2008)

IntroductionAb initio EOSH-He phase separationConclusicoo000000000Finite Temperature Density Functional Theory MolecularDynamics (FT-DFT-MD)

- input: volume, temperature (thermostat)
- output: energy U, pressure P
- also: electrical conductivity, optical reflectivity

Ab initio EOS

H-He phase separation

Conclusion O

Outline

2 Ab initio EOS and its implications

3 H-He phase separation and its implications

4 Conclusion

Ab initio EOS

H-He phase separation

Conclusion O

Example: EOS of hydrogen Also available: helium, water

Ab initio EOS

H-He phase separation

Conclusion O

Hugoniot of hydrogen Benchmark of the method

B. Holst et al.

Phys. Rev. B 77, 184201 (2008)

Ab initio EOS

H-He phase separation

Conclusion O

Implications for Jupiter

Results

- continuous dissociation
- feasible metal distribution
- colder core
- larger P_T

Ab initio EOS

H-He phase separation

Conclusion O

Outline

2 Ab initio EOS and its implications

3 H-He phase separation and its implications

4 Conclusion

Ab initio EOS

H-He phase separation

Conclusion O

Excess Gibbs free energy of mixing

Definition

$$\Delta G(\mathbf{x}) = G(\mathbf{x}) - \mathbf{x}G(\mathbf{1}) - (1 - \mathbf{x})G(0)$$

Helium fraction
$$x = \frac{N_{\rm He}}{N_{\rm He} + N_{\rm H}}$$
 $x = \begin{cases} 0 : H \\ 1 : He \end{cases}$

Contributions to $\Delta G(x)$

$$\Delta G(\mathbf{x}) = \Delta U(\mathbf{x}) + p \Delta V(\mathbf{x}) - T \Delta S(\mathbf{x})$$

Ideal entropy of mixing

$$\Delta S(\mathbf{x}) = -k_B \left[\mathbf{x} \ln \mathbf{x} + (1-\mathbf{x}) \ln (1-\mathbf{x}) \right]$$

Introduction	Ab initio EOS	H-He phase separation	Conclusion
00	00		O
Excess Gib	bs free energy of	mixing	

Introd	uction
00	

H-He phase separation

Conclusion O

Miscibility gap

Intro	du	cti	on
00			

H-He phase separation

Conclusion O

Miscibility gap

N. F. Mott

Metal-Nonmetal Transitions (Second Edition) Taylor and Francis, London, 1990

In	tr	oc	lu	ct	i	0	n	
0	~							

H-He phase separation

Conclusion O

Miscibility gap

Intro	du	cti	on
00			

H-He phase separation

Conclusion

Consequences for Jupiter and Saturn

Ab initio EOS

H-He phase separation ○○○○○● Conclusion O

Consequences for Jupiter and Saturn

[1] Fortney and Hubbard Astrophys. J. 608, 1039 (2004)

Consequences

- three-layer models for Jupiter can be justified by miscibility gap
- transition pressure *P*_T can be determined
- saturns whole interior is in the demixing region
- this is necessary to reproduce the correct age of Saturn [1]
- miscibility gap might also indicate four layers

Outline

- 2 Ab initio EOS and its implications
- 3 H-He phase separation and its implications

Introduction	Ab initio EOS	H-He phase separation	Conclusion	
00	00		•	
Summary				

- FT-DFT-MD gives reliable EOS data for warm dense matter
- simulations for mixtures go beyond linear mixing
- miscibility gap is deeply connected to metallization in hydrogen
- EOS of real mixture should be used as input for planetary models
- phase separation of H and He is relevant for Jovian conditions
- complete phase separation in Saturn yield the correct age for Saturn
- basis for new, advanced planetary models

Simulation details

DFT

- finite temperature DFT [1]
- GGA (PBE) [2]
- plane wave basis sets
- Baldereschi mean value point [3]

N. David Mermin
 Phys. Rev. 137, 1441 (1965)

[2] John P. Perdew, Kieron Burke, and Matthias Ernzerhof

Phys. Rev. Lett. 77, 3865 (1996)

[3] A. Baldereschi

Phys. Rev. B 7, 5212 (1973)

Molecular dynamics

- 64 electrons in a box
- periodic boundary conditions
- ullet pprox 0.5 fs time steps
- $\bullet~\approx 1-3$ ps simulation time

Dynamic conductivity $\sigma(\omega)$

Kubo-Greenwood formula [1, 2]

$$\sigma(\omega) = \frac{2\pi e^2 \hbar^2}{m^2 \omega \Omega} \sum_{\mathbf{k}} W(\mathbf{k}) \sum_{i,j} F_{ij} |\mathbf{D}_{ij}|^2 \,\delta(\epsilon_{j,\mathbf{k}} - \epsilon_{i,\mathbf{k}} - \hbar\omega)$$
$$\mathbf{D}_{ij} = \langle \Psi_{j,\mathbf{k}} | \nabla_{\alpha} | \Psi_{i,\mathbf{k}} \rangle$$

$$F_{ij} = F(\epsilon_{i,\mathbf{k}}) - F(\epsilon_{j,\mathbf{k}})$$

Optical properties

Kramers-Kronig relation

$$\sigma_2(\omega) = -\frac{2}{\pi} \operatorname{P} \int \frac{\sigma_1(\nu)\omega}{\nu^2 - \omega^2} d\nu$$

Dielectric function

$$\begin{aligned} \epsilon_1(\omega) &= 1 - \frac{1}{\epsilon_0 \omega} \sigma_2(w) \\ \epsilon_2(\omega) &= \frac{1}{\epsilon_0 \omega} \sigma_1(w) \end{aligned}$$

Index of refraction

$$n(\omega) = \sqrt{\frac{1}{2}[|\epsilon(\omega)| + \epsilon_1(\omega)]}$$
$$k(\omega) = \sqrt{\frac{1}{2}[|\epsilon(\omega)| - \epsilon_1(\omega)]}$$

Reflectivity

$$r(\omega) = \frac{[1-n(\omega)]^2 + k(\omega)^2}{[1+n(\omega)]^2 + k(\omega)^2}$$

Explanation for the plateaus Helium phase diagram

Explanation for the critical He-fractions The Mott criterion [1]

$$x_c \Leftrightarrow a_B n_H^{1/3} \approx 0.25$$

Planetary modelling

