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Multi-Planetary Systems

Orbital elements from exoplanet.eu

Multi-planetary 
systems are more 
interesting than 
single planetary 
systems. 

The complete 
History is encoded 
in the architecture.
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Turbulent disc

• Angular momentum 
transport

• Magnetorotational 
instability

• Density perturbations 
interact gravitationally 
with planets

• Random forces

Full MHD simulations by Nelson & Papaloizou (2004)
See also Laughlin et al. (2004) and Adams et al. (2008) 

MHD simulations 
are short 
(hundreds of 
orbits).

They have low 
resolution and the 
issue of 
convergence is not 
completely 
resolved. 
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Scaling of MRI-forces

• Natural force scale 

• Natural time scale (Correlation time)

• Reduction factors are crucial

Density perturbation     

Gap opening

... ...

Ω−1

√
2LL

F0(r) = MpertG/L2 = πGΣ(r)/2

Estimates from MHD simulations by Oishi et al. (2007), 
Val-Borro et al. (2006), Nelson and Papaloizou (2004)

0.1
0.1

Force scale doesn’t 
contain a preferred 
size scale.

Other factors which 
reduce the force 
scale are for 
example dead zones.
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Stochastic forces

• Forces are stochastic and correlated 

• Auto correlation function

〈Fi(t)Fi(t + ∆t)〉t = 〈F 2
i 〉g(|∆t|)

g(|∆t|) = exp
(
− |∆t|

τc

)

Autocorrelation function is similar to that of Oishi et al. (2007)
Implemented as a Markov process described by Kasdin (1995)
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Stochastic forces on a single planet

L̇F = m

(
∂

∂λ
+

∂

∂#

)
(r · F)

ĖF = mv · F

#̇F =
√

(1− e2)
na e

[
Fθ

(
1 +

1
1− e2

r

a

)
sin f − Fr cos f

]

λ̇F =
(
1−

√
1− e2

)
#̇F +

2an

GM
r · F,

Details described in Rein & Papaloizou (2008)

We add an additional term to the full 
Keplerian Hamiltonian and obtain the 
equations of motions.

This gives us the correct pre-factors.
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Growth of orbital parameters

(∆a)2 = 4
Dt

n2

(∆e)2 = 2.5
γDt

n2a2

(∆")2 =
2.5
e2

γDt

n2a2

(∆A)2 =
∫ t

0

∫ t

0
Fi(t′)Fi(t′′)dt′dt′′

=
∫ t

0

∫ t

0

〈
F 2

i

〉
g(|t′ − t′′|)dt′dt′′

= 2〈F 2
i 〉τc︸ ︷︷ ︸
D

t
We can now do the usual 
trick to obtain the growth 
rate of all orbital parameters.

All parameters are 
undergoing a random walk. 

Note the different factors, 
especially the 1/e term.
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Growth of orbital parameters - single planet
6 Hanno Rein and John C. B. Papaloizou: Turbulence and Resonances I

= 25 C
cm2

s3

( r

1 AU

)−3/2
(

M∗
1M#

)−1/2

, (50)

where C is a dimensionless constant.
There are several factors which determine an appropriate

value of the dimensionless constant C: The density fluctuations
found in MRI simulations are typically δρ/ρ = δΣ/Σ ≈ 0.1
(eg. Nelson 2005). A dead zone in the middle of the disc, where
the MRI is not active, can reduce F0 by one order of magnitude
as compared to active cases (Oishi et al. 2007). The planet opens
a gap and thus the magnitude of turbulent density fluctuations is
reduced on account of a lower ambient surface density. A fac-
tor of 1

10 seems reasonable although it might be even smaller
(de Val-Borro et al. 2006). Oishi et al. (2007) found that most
of the contribution to the stochastic force comes from density
fluctuations within a distance of one scaleheight from the planet.
When a gap forms, this region is cleared leading to an expecta-
tion of a substantial decrease. The correlation time τc is actually
found to be approximately 0.4Ω−1 (Oishi et al. 2007; Nelson &
Papaloizou 2004). Including reduction factors to account for all
of the above effects, we find C = 4 × 10−7 and so in this limit
we expect a natural scale for D to be

D(r) ≈ 4 · 10−7 · D0(r). (51)

Of course we emphasize that the value of this quantity is very
uncertain, a situation that is exacerbated by its proportionality to
the square of the magnitude of the stochastic force per unit mass.
For this reason we perform simulations for a large range of D.

3.2. Numerical Implementation

The procedure we implemented, uses a discrete first order
Markov process to generate a correlated noise that is added as
an additional force. The Markov process is a statistical process
which is defined by two parameters, the root mean square of the
amplitude and the correlation time τc (Kasdin 1995). It has a
zero mean value and as no memory. This has the advantage that
previous values do not need to be stored. The autocorrelation
function decays exponentially and thus mimics the autocorre-
lation function measured in simulations very well (Oishi et al.
2007).

3.3. Stochastic Forces Acting on a Single Planet

We first investigate the long term effect of turbulent forces on
a single planet. The initial conditions for the planet are the ob-
served parameters of GJ876 b (see table 1). Note that we have a
low mass star (0.38M#). The diffusion coefficient scale D0 is

DO = D0,GJ876b = 3400
cm2

s3
. (52)

In this simulation, we use the reduced values

D = 8.2 · 10−5 cm
2

s3
and (53)

D = 8.2 · 10−3 cm
2

s3
(54)

which can be represented by a correlation time of half the orbital
angular frequency and a specific force with root mean square

values
√
〈F 2〉 = 4.05 · 10−6 cm/s2 and

√
〈F 2〉 = 4.05 ·

10−5 cm/s2, respectively.
The resulting random walks undergone by e, a and ω̄ are

plotted in figure 1 for six different realisations for each of the

Fig. 1. Time evolution of the longitude of periastron, the eccentricity
and the semi major axis in the system with one planet only. The ini-
tial orbital parameters of the planet are those of GJ876 b as given
by table 1 (setting the mass of GJ876 c to 0). Six different realisa-
tions starting from the same initial conditions are plotted. The diffu-
sion coefficients are D = 8.2 · 10−5cm2/s3 in the upper figure and
D = 8.2 · 10−3cm2/s3 in the lower figure respectively. The solid lines
are the analytic predictions for the amou nt of spreading (see text).

two diffusion parameters. The spreading rates can be estimated
from equations (38) - (40). These analytic predictions are plotted
as solid lines. Clearly the numerical model is in broad agreement
with the random walk description with a spreading that scales
withD as expected. We have performed simulations for a variety
ofD and get results that are fully consistent with this view in all
cases.

3.4. Modes of Libration in a Two Planet System

We now incorporate the second planet (GJ876 c) into the sys-
tem. Initially we remove stochastic forcing in order to illustrate
the form of the fast and slow modes contributing to the librations
of the resonant angles. Thus we initially study the properties of
the resonance unaffected by stochastic forcing. The time evolu-
tion of the resonant angles and the eccentricities is plotted in fig-
ure (2). We use the same definitions of resonant angles as given
above. Clearly visible are the slow and fast oscillation modes as
described in the analytic discussion. The fast mode is dominant
in the librations of e2, φ1 while also being seen in those of φ2.
On the other hand the slow mode is dominant in the librations

!

e

a

6 realizations of the 
same initial 
conditions. 

The mean growth is 
well characterized by 
the sqrt(t) laws from 
the previous slide.
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Growth of orbital parameters - two planet case

• Same form as in single planet case

• Amplitude of harmonic oscillator 

• Dependence on e

(∆φ1)2

(p + 1)2
=

9γf

a2
1ω

2
lf

D t

(∆(∆$))2 =
5γs

4a2
1n

2
1e

2
1

D t

Details in Rein & Papaloizou (2008)

Don’t get confused by the 
two \Deltas.  

One is the name of the 
parameter, the difference 
in apsidal lines. 

The other one describes 
the growth.

The 1/e dependence 
shows a coordinate 
singularity, not a physical 
instability. 
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Breaking a mean motion resonance
8 Hanno Rein and John C. B. Papaloizou: Turbulence and Resonances I

Fig. 4. Time evolution of the resonant angles, the period ratio P2/P1

and the eccentricity in the system GJ876 with both planet and turbulent
forcing.D = 0.42cm2/s3. The stages 1, 2 and 3 are seperated by verti-
cal lines. The bottom realisation scatters immediately after φ1 goes into
circulisation.

tion. Shortly afterward commensurability is lost and P1/P2 start
to undergo a random walk with a centre that drifts away from
2. Note that it is possible for some realizations to re-enter the
commensurability. For systems with the masses of the observed
GJ876 system, the most likely outcome is a scattering event that
causes complete disruption.

The evolutionary sequence described above is clearly visi-
ble for the two realisations illustrated in figure 4. The times at
which the transition from libration to circulation occurs for both
the slow and fast angle are indicated by vertical lines. Note that
the diffusion parameter D is now much larger than in previous
runs in order to reduce computational demands. In this context
we note that reducing D increases the evolutioary time which
is ∝ 1/D (see below).

4.2. Dependence on the Diffusion Parameter

We now consider the stability of the system as a function of D.
As mentioned above, the value of the diffusion parameter D is
very uncertain. We have therefore varied D over a large range.
However, the correlation time τc is kept fixed at τc = 0.5Ω−1.
To measure the ”lifetime” of a resonance, we monitor whether a
particular resonant angles librates or circulates. Here, the reso-

Fig. 5. Average time until circulation of the resonant angles φ1 and φ2

in the GJ876 system as a function of the stochastic forcing diffusion
coefficientD.

nance is defined to be broken the first time the angle circulates.
in this context we consider the fast angle φ1 and the slow angle
ζ, though the latter can be replaced by φ2 which behaves in the
same way.

Equations (45) and (46) estimate the spreading of the reso-
nant angles as a function of time. We determine the times to at-
tain circulation as the times to attain (∆φi)2 = 4, (i = 1, 2).
These values are expected to be slightly larger than what we
measure as the ”first time of circulation” (**** REMOVE THIS
??? ****). We plot both the numerical and analytical results in
figure 5. The numerical values for a particular value of D were
obtained by averaging over 60 realizations.

From figure 5 it is apparent that the evolutionary times scale
is ∝ 1/D for D varying by four orders of magnitude. Also the
analytic estimate for the libration survival time of φ1, dominated
by the fast mode, based on equation (45) is in good agreement
with the numerical results. However, the estimate for φ2 based
on equation (46) using the initial value of e1 overestimates the
lifetime by a factor of ∼ 40. This, as discussed above is due to
the temporary attainment of small eccentricities. This causes the
disruption of the libration of ζ earlier than would be predicted
assuming e1 is constant. In fact this disruption occurs at times
that can be up to a factor of 10 times shorter than those required
to disrupt φ1.

Initial Conditions from Rivera et al. (2005)

The first thing to notice is that the 
difference in the apsidal lines will go out of 
libration first. 

This is not due to the random walk in this 
parameter but note that the eccentricity 
obtains small values at exactly the same 
time. 

The resonant angle phi1 is still in 
resonance. Nothing dramatic happens.  

The amplitude of phi1 keeps on growing 
until it finally goes out of resonance. 

At that point, the planets are basically 
undergoing two independent random 
walks. 
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Lifetime

≈ 1central force
turbulent force

(∆φ1)2

(p + 1)2
=

9γf

a2
1ω

2
lf

D t

τ ≈ 2.4 · 10−4

(
a1 n2

1√
〈F 2

i 〉

)2 (
1

2n1τc

) (
17 ωlf

√
qGJ

2n1
√

q

)2 q

qGJ
P1

τ ≈
a2
1ω

2
lf

9D

We can now make use of the analytic description to get an estimate 
for the average lifetime of such a resonance.

All we have to do is solving this equation for t. We can also express this 
in terms of physical parameters of the system.
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Lifetime as a function of D
This plot shows a 
comparison between the 
lifetimes estimated from the 
analytic prescription and the 
numerical tests. 

The lines correspond to the 
analytic lifetimes of different 
planet masses, ranging from 
Jupiter masses to terrestrial 
masses. 

Two points are slightly off. 

The one on the top is more 
a lower limit because I stop 
the simulations after a finite 
time. 

The two points on the 
bottom appear to have a 
slightly longer lifetime then 
expected. This is due to the 
fact that the forces are so 
strong that the resonance is 
broken within one libration 
period. 

 100

 1000

 10000

 100000

 1e+06

 1  10  100  1000  10000

!
1
 L

if
e

ti
m

e
 (

y
rs

)

D (in units of 8.2e-5 cm
2
/s

3
)

Friday, 6 March 2009



Formation of HD128311

Observed orbital elements from Vogt et al. (2005)
 Formation without stochastic forces by Sandor & Kley (2006)

The most interesting 
thing to look at is the 
formation of the systems. 

The right plot shows the 
observed system, the left 
one it’s formation.

The HD128311 system 
has been studied before. 
It turns out that the 
system cannot reach it’s 
current state with 
smooth migration only. 

Turbulence might be the 
best explanation.

Friday, 6 March 2009



Random forces
An analytic description
Stability of resonant systems
Conclusions 

Friday, 6 March 2009



Conclusions

• Analytic description of stochastic forces from first 
principles

• Physical scaling laws allow us to cover large uncertainties

• The result is an analytic formula for the lifetime of 
resonances

• Turbulence naturally produces system with broken apsidal 
corotation and provides plausible formation scenarios for 
many system

• Future observations will allow us to constrain     and lead 
to a better understanding of turbulence 

τ ≈
a2
1ω

2
lf

9D

D
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Thank you for your attention.

All details are described in 
    Rein & Papaloizou 2008
    arXiv:0811.1813
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