Erosion of Dust Agglomerates Rainer Schräpler & Jürgen Blum

Abstract

Introduction

Experimental Setup Experimental Results Theoretical Model Conclusions

Introduction

Brownian motion (Weidenschilling 1984)

Vertical sedimentation, radial drift, azimuthal velocity differences (Weidenschilling 1984),

Strong outward directed winds over dust subdisks. (Cuzzi 1993)

Gas turbulence (magneto-rotational instability, shear instability, gravitational instability)

•••••

(Weidenschilling 1980; Sekiya 1998 Balbus & Hawley 1991; Schräpler & Henning 2004; Johansen et al. 2006)

A Model for the Collision Velocities Between Protoplanetary Dust Grains

Particles Used in Our Experiments

Experimental Setup

Laboratory Setup

Measurement method

- Measurment of the particle mass arriving at a greased target
- Measurement of the mass change of the agglomerate target

Agglomerate before imapact

Agglomerate after impact with µm spheres

Experimental Results

Erosion versus impact velocity

Numerical Model of Konstadopoulos (2000)

•High speed impacts increase the filling factor of an agglomerate and therefore the number of particle - particle contacts n (coordination number)

 maximum coordination number is an gaussian distribution with its maximum at 6 and its full width halve maximum of 4 (ff=0.6)

•A particle bond in the agglomerate can be described by an effective mass term (found by numerical simulations)

Impact energy needed to release an "effective" particle

Effective mass: m_{eff} = m (1 + C n) (Konstandopoulos 2000)

n: number of contacts to neighbour particles (coordination number)
 C:dimensionless rigidity parameter [1,infinity]

Energy transfered to an effective particle:

 $E_{eff} = E_{imp} 4(1+C n)(2+C n)^{-2}$ (momentum law)

Energy needed to release a particle from the agglomerate

E_{release}=E_{contact}n; E_{contact}=2 E-15 J (Heim & Blum 1999)

The agglomerate is passivated if the effective energy transferred by an impact is lower than the release energy

Koordination number on the surface:	Agglomerate: n~1.6;	
	Ratio of needed energy (5/1.6) ² ~ 10	

Agglomerate before impact

10. un

 $M_{DM} = -1.00 K X = D_{DAA} = -1514 = D_{DA} = -22 M_{DM} + 2007$

Agglomerate after impact of 15 m/s particles;

	0.000				
Kuchen 1	10µm	Mag =	1.00 K X	Photo No = 1525	Date :22 May 2007
		WD =	7 mm	EHT = 15.00 kV	Time :12:40:10

Aggomerate after impact of 30 m/s particles;

 Kuchen 27
 10µm
 Mag = 1.00 K X
 Photo No = 1533
 Date :22 May 2007

 WD = 8 mm
 EHT = 15.00 kV
 Time :12:53:09

Agglomerate after impact of 44 m/s particles;

Kuchen 11

10µm

Mag = WD =

1.00 K X 7 mm

Photo No = 1544 EHT = 15.00 kV

Date :22 May 2007 Time :13:11:25

Agglomerate after impact of 59 m/s particles;

Kuchen 15

10µm

Mag = WD =

1.00 K X 8 mm

EHT = 15.00 kV

Photo No = 1539 Date :22 May 2007 Time :13:05:24

Model (first part)

effective mass $m_{eff} = m (1 + C n)$ (Konstandopoulos 2000)

n: coordination number
 C:rigidity parameter [1,infty] chosen:1 (fluffy material)
 kinetic energy loss per impact 20x binding energy

Post impact energy and momentum for X-particle and impactor are known by momentum and energy laws.

The X-particle is ejected if its post impact kinetic energy is larger than its binding energy

The impact is calculated for all possible coordination numbers.

- The results are multiplied with the occurence of the respective coordination number and accumulated.
- After each possible impact the impactor is reflected and can impact at a further agglomerate particle
 - with a probability of 0.65 (escape cone angle 95°) corresponding to the surface structure of the agglomerate
 - in average a particle impacts 2.8 times (geometrical series)

Model (second part): Strikout of several particles per impact

The X particle impacts with its given momentum at the Y-particles

- The momentum is distributed reciprocally proportional to the effective masses of the Y-particles
- If E_{kin} >n*E_{contact} the Y-particle will be ejected.
 The Y-particle is transformed to a X-Particle (recursion)

- All possible combinations of effective masses and numbers of Y-particles in contact with the X-particle are calculated, multiplied with the probability of their occurance and added.
- The ejected X- and Y- particles will again impact at the agglomerate with a probability of 0.65.
- At high energies they release other particles At medium energies they are reflected

Conclusion

 solar nebula agglomerates faster than 35m/s are eroded by micron sized grains and are a source of micron sized particles

Impact of micron sized particles leads to a surface compaction of agglomerates

Cake after Impact of 3.5mg cm⁻² 44m/s Particles

20μm Mag = 250 X Photo No = 1543 Date :22 May 2007

Kuchen 11

phi = 1 – 3.08 / (n + 1.13) (Langemaat 2001)

Cake after Impact of 3.5mg cm⁻² 59m/s Particles

10um

a = 40

אס צו

Na - 1526

Data -22 May 2007

Introduction

Target Agglomerate Production (Blum & Schräpler 2004)

Preliminary Measurement Procedures: Tribo Charging

Velocity Loss of an Impactor on a Cake

0.03

0.2

0.6

0.9

All measurements:

Particle Contact Force is 10⁴ Times Larger Than the Electrical Force

Maximum Velocity Loss (m s^{-1})

Velocity Filter

- Removes Agglomerates
- •Velocity FWHM of Monomers: 17%

Predicted number of particle contacts that passivate the agglomerate

Surface Texturing

Theoretical Models of Kostoglou & Konstandopoulos (2000) :

Erosion Strengh varies by a few percent over the particle impact angleErosion Minima are at perpendicular and grazing impacts

Cake after Impact of 100mg Particles with Multiple Velocities

⇒41145. µm²

200µm Mag = 40 X Photo No = 1516 Date :22 May 2007

Mega1

Cake Before Impact

3070. um?

Toot 4 100 m Mag = 100 X Phot

Photo No - 1513 Date :22 May 200

Cake after Impact of 3.5mg 60m/s Particles

Kuchen 11

2µm

Mag = 3.00 K X

RCP Cake

Mag = 4.00 K X WD = 3 mm Photo No. = 1425 Date :21 Sep 2006

1µm

Cake after Impact of 100mg Particles with Multiple Velocities (Only Dense Areas and Vacuum)

Mega1

10µm

Mag =

600 X

Photo No = 1518

Date :22 May 2007

Erosion and Surface Roughness

Impact: 30m/s 4mg/cm²

6mm

Impact: Multiple Velocities 100mg/cm²

6mm

A Model for the Collision Velocities Between Protoplanetary Dust Grains

A Model for the Collision Velocities Between Protoplanetary Dust Grains

