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Principles and Problems of

Planet formation

Collapse of star-forming core to star + protoplanetary disk
around it,

Dust coagulates to grains & boulders,

Accretion of surrounding material (dust & gas) by gravity.

Grain growth stage up to | metre poorly understood (“metre
barrier”)

Long planet formation times >100 Myr at >10 AU (Uranus &
Neptune!)

Disk lifetime usually only about 5 Myr

Direct gravitational instability (Gl) improbable below <100 AU
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Possible solutions

Outward migration or scattering of Uranus & Neptune
after formation

Extreme disk conditions to force Gl (Boss papers)

Enhanced coagulation by dust trapping (Barge &
Sommeria |1995; Klahr & Bodenheimer 2003ff)

New Possible ansatz:

Tidal perturbations may trigger temporary Gils.

Vortices form in contracting gas due to conservation of
angular momentum.

Trapped dust coagulates rapidly to >Im-sized boulders.
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® Stars are born in star clusters — planet formation
is not an isolated phenomenon!
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2007)!
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The stellar environment of Planet formation

® Stars are born in star clusters — planet formation
is not an isolated phenomenon!

® Close star-star encounters about ~100 AU are
common events in intermediate- and high-mass
clusters

® |sotopes in Meteorites indicate supernova ejecta
entering the early Solar System — the Sun’s birth

cluster must have been massive (Bizzarro et al.
2007)!

Realistic planet formation models must
include star-star encounter effects!
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Encounter Probab’hty
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Smoothed Particle Hyclroclgnamics
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Smoothed Particle chlroclgnamics

SPH Features:

® Simple implementation and data evaluation
Fully Lagrangian — high resolution where it’s needed

® SPH supresses fragmentation rather than faking it (Hubber,
Goodwin & Whitworth 2006)
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Smoothed Particle chlroclgnamics

SPH Features:

® Simple implementation and data evaluation

e Fully Lagrangian — high resolution where it’s needed

® SPH supresses fragmentation rather than faking it (Hubber,
Goodwin & Whitworth 2006)

The DRAGON Code

® Based upon the Cardiff group code, rewritten and improved

by Simon Goodwin (Sheffield)
®¢ DRAGON is a well-tested SPH code and used for star

formation as well as for disk dynamics
® New routines for radiative cooling by Whitworth et al. 2007ff

available
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Disk models

e Radial profile from Stamatellos & Whitworth (2008)

S(R) = % <%> o

- - 1/2

R —2qT
T(R) = |T§ (A—U) + T2

e Simple T(R) equation of state (EOS) for first runs to
test the general effects of tidal perturbations (and to

save CPU time...)
o Whitworth et al. 2007ff EOS for long-term runs
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Disk and Encounter Params

Disk mass 0.09 Msun
Disk radius |0-50 AU
20 (at | AU) 600 g/cm?
To (at | AU) 1200 K

T (background) 10 K
Perturber mass 0.3 Mgun

Periastron 80 AU
Eccentricity .1

Inclination 10°
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Sample Sequences

Surface density (g /cm?)

Local rotation (revs / 10° yr)

Average density (g / cm?3)
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Density and solar distance of another SPH particle. This time there
is only a brief rise by 4 dex while the average distance increases
slightly.
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Etfects of tidal Perturbations

® Spiral compressions due to tidal forces (tidal
arms)

® | ocal temporary gravitational contraction (until
stopped by gas pressure)

® | ocal spin-up in compressed regions due to
conservation of angular momentum

Vortex-like overpressure regions — will dust
trapping work!?

® |nduced vortices are short-lived (about 100 yr),
but

® high compressions (up to 4 dex)

® high spins (about 100 x Keplerian frequency)
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Summarg

What we’ve found so far

® TJemporary gravitational instabilities occur in perturbed
disks, forming vortices.

® These vortices are much stronger than convection-
induced ones, but short-lived.

® Disk is also truncated in the outer regions.
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Summarg

What we’ve found so far

® TJemporary gravitational instabilities occur in perturbed
disks, forming vortices.

® These vortices are much stronger than convection-
induced ones, but short-lived.

® Disk is also truncated in the outer regions.

Outlook

® Calculations with dust treatment
® Test brown dwarf formation in large perturbed disks

(direct Gls possible @ Goodwin & Whitworth 2007)
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Summarg

What we’ve found so far

® TJemporary gravitational instabilities occur in perturbed
disks, forming vortices.

® These vortices are much stronger than convection-
induced ones, but short-lived.

® Disk is also truncated in the outer regions.

owesx THank 3ou!

® Calculations with dust treatment
® Test brown dwarf formation in large perturbed disks

(direct Gls possible & Goodwin & Whitworth 2007)
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Density and solar distance of a selected SPH particle. While
migrating from the outer into the inner region of the disk the

density increases by several orders of magnitude.
Ingo Thies - Tubingen 2009

Monday, 20 April 2009



-10.5 : - : 80
"'1 1 o " it “.\
AL EECH o } 70
S A 60 2
2 425 <
> | density , —~
- -13 | distance === | 000 times! 50 §
-
3]
8 -135 =
o .14 W T
8 145 '
= e - 30
'1 5 ‘\\ “au®’
-15.5 : : : 20
-300 -200 -100 O 100 200 300 400 500

t/yr

Density and solar distance of a selected SPH particle. While
migrating from the outer into the inner region of the disk the

density increases by several orders of magnitude.
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