Enhanced Coagulation in Tidally Perturbed Disks

Ingo Thies Pavel Kroupa Argelander-Instutit für Astronomie Bonn in collaboration with Simon Goodwin University of Sheffield

Planet Formation and Evolution - Tübingen 2009

Outline

- Motivation
 - Problems
 - Possible solutions
 - Planet formation in star clusters
- Methods
 - The DRAGON code
 - Disk models
- Results
- Summary

Prínciples and Problems of Planet formation

Principles and Problems of Planet formation

- Collapse of star-forming core to star + protoplanetary disk around it,
- Dust coagulates to grains & boulders,
- Accretion of surrounding material (dust & gas) by gravity.

Principles and Problems of Planet formation

- Collapse of star-forming core to star + protoplanetary disk around it,
- Dust coagulates to grains & boulders,
- Accretion of surrounding material (dust & gas) by gravity.
- Grain growth stage up to 1 metre poorly understood ("metre barrier")
- Long planet formation times >100 Myr at >10 AU (Uranus & Neptune!)
- Disk lifetime usually only about 5 Myr
- Direct gravitational instability (GI) improbable below <100 AU
 <p>Ingo Thies Tübingen 2009

 Outward migration or scattering of Uranus & Neptune after formation

- Outward migration or scattering of Uranus & Neptune after formation
- Extreme disk conditions to force GI (Boss papers)

- Outward migration or scattering of Uranus & Neptune after formation
- Extreme disk conditions to force GI (Boss papers)
- Enhanced coagulation by dust trapping (Barge & Sommeria 1995; Klahr & Bodenheimer 2003ff)

- Outward migration or scattering of Uranus & Neptune after formation
- Extreme disk conditions to force GI (Boss papers)
- Enhanced coagulation by dust trapping (Barge & Sommeria 1995; Klahr & Bodenheimer 2003ff)

New possible ansatz:

- Outward migration or scattering of Uranus & Neptune after formation
- Extreme disk conditions to force GI (Boss papers)
- Enhanced coagulation by dust trapping (Barge & Sommeria 1995; Klahr & Bodenheimer 2003ff)

New possible ansatz:

• Tidal perturbations may trigger temporary GIs.

- Outward migration or scattering of Uranus & Neptune after formation
- Extreme disk conditions to force GI (Boss papers)
- Enhanced coagulation by dust trapping (Barge & Sommeria 1995; Klahr & Bodenheimer 2003ff)

New possible ansatz:

- Tidal perturbations may trigger temporary GIs.
- Vortices form in contracting gas due to conservation of angular momentum.

- Outward migration or scattering of Uranus & Neptune after formation
- Extreme disk conditions to force GI (Boss papers)
- Enhanced coagulation by dust trapping (Barge & Sommeria 1995; Klahr & Bodenheimer 2003ff)

New possible ansatz:

- Tidal perturbations may trigger temporary GIs.
- Vortices form in contracting gas due to conservation of angular momentum.
- Trapped dust coagulates rapidly to >1m-sized boulders.

 Stars are born in star clusters – planet formation is not an isolated phenomenon!

- Stars are born in star clusters planet formation is not an isolated phenomenon!
- Close star-star encounters about ~100 AU are common events in intermediate- and high-mass clusters

- Stars are born in star clusters planet formation is not an isolated phenomenon!
- Close star-star encounters about ~100 AU are common events in intermediate- and high-mass clusters
- Isotopes in Meteorites indicate supernova ejecta entering the early Solar System – the Sun's birth cluster must have been massive (Bizzarro et al. 2007)!

- Stars are born in star clusters planet formation is not an isolated phenomenon!
- Close star-star encounters about ~100 AU are common events in intermediate- and high-mass clusters
- Isotopes in Meteorites indicate supernova ejecta entering the early Solar System – the Sun's birth cluster must have been massive (Bizzarro et al. 2007)!

Realistic planet formation models must include star-star encounter effects!

Encounter probability

(Thies, Kroupa & Theis 2005)

Ingo Thies - Tübingen 2009

p_{enc} / per cent

Smoothed Partícle Hydrodynamics

Smoothed Particle Hydrodynamics

SPH Features:

- Simple implementation and data evaluation
- Fully Lagrangian high resolution where it's needed
- SPH supresses fragmentation rather than faking it (Hubber, Goodwin & Whitworth 2006)

Smoothed Particle Hydrodynamics

SPH Features:

- Simple implementation and data evaluation
- Fully Lagrangian high resolution where it's needed
- SPH supresses fragmentation rather than faking it (Hubber, Goodwin & Whitworth 2006)

The DRAGON Code

- Based upon the Cardiff group code, rewritten and improved by Simon Goodwin (Sheffield)
- DRAGON is a well-tested SPH code and used for star formation as well as for disk dynamics
- New routines for radiative cooling by Whitworth et al. 2007ff available

Dísk models

Radial profile from Stamatellos & Whitworth (2008)

$$\Sigma(R) = \Sigma_0 \left(\frac{R}{\mathrm{AU}}\right)^{-q_{\Sigma}}$$

$$T(R) = \left[T_0^2 \left(\frac{R}{\mathrm{AU}} \right)^{-2q_T} + T_\infty^2 \right]^{1/2}$$

- Simple T(R) equation of state (EOS) for first runs to test the general effects of tidal perturbations (and to save CPU time...)
- Whitworth et al. 2007ff EOS for long-term runs

Dísk and Encounter Params

Disk mass	0.09 M _{sun}
Disk radius	10–50 AU
Σ ₀ (at I AU)	600 g/cm ²
T ₀ (at I AU)	I 200 K
T∞ (background)	I0 K
Perturber mass	0.3 M _{sun}
Periastron	80 AU
Eccentricity	
Inclination	10°

Sample Sequences

Surface density (g /cm²)

Local rotation (revs / 10⁵ yr)

Average density (g / cm³)

back to index

Ingo Thies - Tübingen 2009

Monday, 20 April 2009

back to index

Ingo Thies - Tübingen 2009

Monday, 20 April 2009

back to index

Ingo Thies - Tübingen 2009

Monday, 20 April 2009

Density and solar distance of another SPH particle. This time there is only a brief rise by 4 dex while the average distance increases slightly.

Density and solar distance of another SPH particle. This time there is only a brief rise by 4 dex while the average distance increases slightly.

Spiral compressions due to tidal forces (tidal arms)

- Spiral compressions due to tidal forces (tidal arms)
- Local temporary gravitational contraction (until stopped by gas pressure)

- Spiral compressions due to tidal forces (tidal arms)
- Local temporary gravitational contraction (until stopped by gas pressure)
- Local spin-up in compressed regions due to conservation of angular momentum

- Spiral compressions due to tidal forces (tidal arms)
- Local temporary gravitational contraction (until stopped by gas pressure)
- Local spin-up in compressed regions due to conservation of angular momentum
- Vortex-like overpressure regions will dust trapping work?

- Spiral compressions due to tidal forces (tidal arms)
- Local temporary gravitational contraction (until stopped by gas pressure)
- Local spin-up in compressed regions due to conservation of angular momentum
- Vortex-like overpressure regions will dust trapping work?
 - Induced vortices are short-lived (about 100 yr), but

- Spiral compressions due to tidal forces (tidal arms)
- Local temporary gravitational contraction (until stopped by gas pressure)
- Local spin-up in compressed regions due to conservation of angular momentum
- Vortex-like overpressure regions will dust trapping work?
 - Induced vortices are short-lived (about 100 yr), but
 - high compressions (up to 4 dex)

- Spiral compressions due to tidal forces (tidal arms)
- Local temporary gravitational contraction (until stopped by gas pressure)
- Local spin-up in compressed regions due to conservation of angular momentum
- Vortex-like overpressure regions will dust trapping work?
 - Induced vortices are short-lived (about 100 yr), but
 - high compressions (up to 4 dex)
 - high spins (about 100 x Keplerian frequency)

What we've found so far

- Temporary gravitational instabilities occur in perturbed disks, forming vortices.
- These vortices are much stronger than convectioninduced ones, but short-lived.
- Disk is also truncated in the outer regions.

What we've found so far

- Temporary gravitational instabilities occur in perturbed disks, forming vortices.
- These vortices are much stronger than convectioninduced ones, but short-lived.
- Disk is also truncated in the outer regions.

<u>Outlook</u>

- Calculations with dust treatment
- Test brown dwarf formation in large perturbed disks (direct GIs possible → Goodwin & Whitworth 2007)

What we've found so far

- Temporary gravitational instabilities occur in perturbed disks, forming vortices.
- These vortices are much stronger than convectioninduced ones, but short-lived.
- Disk is also truncated in the outer regions.

- Calculations with dust treatment
- Test brown dwarf formation in large perturbed disks (direct GIs possible → Goodwin & Whitworth 2007)

Density and solar distance of a selected SPH particle. While migrating from the outer into the inner region of the disk the density increases by several orders of magnitude.

Density and solar distance of a selected SPH particle. While migrating from the outer into the inner region of the disk the density increases by several orders of magnitude.