
Project 1

Linear Advection

1.1 Introduction

The hydrodynamic equations are a set of partial differential equations with spatial and
temporal derivatives. Due to the non-linearities in the Euler equations wave fronts
begin to steepen and it may come to discontinuities (shock waves). The numerical
solution requires a special treatment of these non-linear terms.

As a test problem on how such discontinuities behave numerically, in this project
the linear advection equation should be investigated.

1.2 Linear Advection

As a simple test system for numerical hydrodynamics often the linear advection equa-
tion is used. In a one dimensional setup it reads

∂ψ

∂t
+ a

∂ψ

∂x
= 0 . (1.1)

Here, ψ is a quantity to be transported (e.g. the density) and the constant a is the
velocity.

Verify that with the initial condition

ψ(x, 0) = ψ0(x)

the linear advection equation (1.1) has the following analytical solution

ψ(x, t) = ψ0(x− at) .

This implies that the initial conditions will be transported with constant velocity a to
the right if a > 0, and to the left if a < 0, i.e. the quantity a is the transport velocity
of the 1D wave.
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Figure 1.1: Illustration of the fluxes across the boundaries of a grid-cell using the
upwind method. Shown is the j-th gridcell where the flux Fin(j) (denoted Fj) is
located at point xj−1/2 and the flux Fout(j) (denoted Fj+1) at the right cell boundary
xj+1/2. The shaded area symbolizes the amount of ’material’ transported accross the
boundaries.

1.3 Numerical Solution

To integrate the linear advection equation a finite difference scheme should be used.
Here, the partial differential equation (pde) is translated in a finite difference equation
(fde) that can be solved numerically.

The numerical solution should be calculated on a grid. Let the length of each
gridcell be ∆x, and the time step ∆t be constant. The discretisation in time and in
space will be denoted by an upper and lower index, respectively, such that

ψnj = ψ(j∆x, n∆t)

will denote the numerical value of the quantity ψ at time t = n∆t (after n timesteps)
and at spatial location x = j∆x (the j-th gridpoint).

1.3.1 Two numerical methods

In this project two different methods should be implemented and compared to each
other. The first one is the upwind method which is the most simple stable evolution
method for the advection problem. This comes in two versions (1st and 2nd order)
which both should be implemented. As an alternative the Lax-Wendroff method should
be implemented as well.

1) Upwind (1st Order)
For the time derivative a forward and for the spatial derivative a backward deriva-
tive is used, a methodology sometimes named Forward Time Backward Space
(FTBS)

ψn+1
j − ψnj

∆t
+ a

ψnj − ψnj−1

∆x
= 0 . (1.2)
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Rearranging

ψn+1
j = ψnj − σ(ψnj − ψnj−1) (1.3)

where

σ ≡ a
∆t

∆x
> 0 (1.4)

is the so called CFL-number, after Courant-Friedrich-Lewy. σ plays an impor-
tant role for the stability of the method. For physical and numerical purposes it
is convenient to use a different approach that makes the conservative properties
of the problems more clear. Rewriting eq. 1.1 as

∂ψ

∂t
+
∂aψ

∂x
= 0 (1.5)

we can integrate this to

ψn+1
j ∆x = ψnj ∆x+ ∆t(Fin − Fout) (1.6)

where Fin and Fout denote the fluxes of a conserved quantity (e.g. mass with F =
velocity · density) accross the boundaries of the cell. Denoting on the left side
Fin = Fj and at the right boundary Fout = Fj+1 (see Fig. 1.1) then eq. (1.6) can
be written as

ψn+1
j = ψnj −

∆t

∆x
(Fj+1 − Fj) . (1.7)

For the fluxes the upstream values need to be taken. Assuming that the velocity
a is positive, i.e. the transport is to the right we find for the fluxes

Fj = aψj−1 . (1.8)

Using this in eq. (1.7) corresponds to the first order upwind scheme as it assumes
constant states in each gridcell.

2) Upwind (2nd Order)
In case of non-constant states the above method can be extended considering the
variation of the quantity within one gridcell. Taking a linear behavior we obtain

Fj = a
[
ψnj−1︸ ︷︷ ︸

1st Order

+
1

2
(1− σ)∆ψj−1

]
︸ ︷︷ ︸

2nd Order

(1.9)

where ∆ψj denotes the slope across the gridcell j, sometimes called the undivided
difference. It is an approximation of

∆ψ ≈ ∂ψ

∂x
∆x
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Figure 1.2: The procedure of the Lax-Wendroff method to integrate the hydrodynamic
equations. The method proceeds in two steps. First intermediate quantities are calcu-
lated at time tn+1/2, these are then used to update to the new level at time t = n+ 1.

Here, we use a 2nd Order Upwind Scheme (van Leer) where ∆ψ is approximated
by a geometric mean of the neighboring slopes. This choice preserves Monotonic-
ity.

∆ψj =


2 (ψj+1−ψj)(ψj−ψj−1)

(ψj+1−ψj−1)
if (ψj+1 − ψj)(ψj − ψj−1) > 0

0 otherwise

(1.10)

3) Lax-Wendroff Scheme
The derivatives are now implemented by a two-step forward Differencing in time
and using central spatial derivatives, as shown in Fig. 1.2. The first step is the
predictor-step (advancing to time tn+1/2). For the gridpoint at xj+1/2 this reads

ψ̃
n+1/2
j+1/2 =

1

2

(
ψnj + ψnj+1

)
− σ

2

(
ψnj+1 − ψnj

)
(1.11)

and the value for xj−1/2 is obained by shifting one cell to the left (Fig. 1.2). Then
the second corrector-step advances to time tn+1)

ψn+1
j = ψnj − σ

(
ψ̃
n+1/2
j+1/2 − ψ̃

n+1/2
j−1/2

)
(1.12)

Combining these two steps, one obtains the Lax-Wendroff scheme

ψn+1
j = ψnj −

σ

2
(ψnj+1 − ψnj−1) +

σ2

2
(ψnj+1 − 2ψnj + ψnj−1) (1.13)

Instead of this last formulation it is advantageous to use the methodology that we
introduced for the upwind method above and use a 2nd order method of eq. (1.9).
Indeed, the Lax-Wendroff method of eq. (1.13) can be written as a 2nd order upwind
method (eq. 1.9) with the following form of the undivided difference

∆ψj = ψj+1 − ψj . (1.14)

Verify that this definition leads to the Lax-Wendroff method of eq. (1.13).
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Figure 1.3: The grid structure for the advection problem. The actual domain where
the computations are done are the gridcells between xmin and xmax. This region is
covered by N gridcells with variables ψ2 to ψN+1.

1.4 Excercise: Linear Advection

Write a program to solve the linear advection equation (1.1). Use the Upwind method
in the form of (1.7) using the first and second order slopes of (1.9). Then use the
Lax-Wendroff method (1.13) using the 2nd order upwind method with the slope (1.14)
and compare all results on the linear advection problem.

Test your programme on the following example (square wave), see Fig. 1.4:
Let a = 1 the positive transport velocity. The computational domain is [−1, 1]. The
boundary conditions are periodic, i.e. ψ(−1, t) = ψ(1, t) for all times t.

The Initial Conditions at time t = 0, ψ(x, t = 0) are given by

ψ(x, t = 0) =

{
1.0 for |x| < 1

3

0.0 for 1
3
< |x| ≤ 1

Define

σ = a
∆t

∆x
= 0.8

and calculate, using σ = 0.8, the solution for ψ(x, 4) using 400 gridpoints.
The positions of the variables ψi in the grid is displayed in Fig. 1.3. Within xmin

and xmax are exactly N gridpoints. To implement the periodic boundary conditions
we have to identify the following points

ψ0 = ψN
ψ1 = ψN+1

ψN+2 = ψ2

ψN+3 = ψ3

(1.15)

This has to be done at each time step tn after the interior gridpoints ψj with j = 2 to
N + 1 have been updated.

Compare the obtained numerical solution with the analytical one and prepare plots
where the analytical solution is overplotted with the numerical one.

Describe the differences between the 1st and 2nd order upwind method and the
Lax-Wendroff method.
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Figure 1.4: The initial condition at t = 0 for the linear advection problem. For the
transport velocity a = 1 the final state (at time t = 4) is identical. The square wave
has made two ’rounds’.


