Numerical Hydrodynamics: A Primer

Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen

Bad Honnef 2016

Hydrodynamics: Hydrodynamic Equations

The Euler-Equations in conservative form read

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0 \tag{1}$$

$$\frac{\partial(\rho\vec{u})}{\partial t} + \nabla \cdot (\rho\vec{u} \otimes \vec{u}) = -\nabla \rho + \rho\vec{k}$$
(2)

$$\frac{\partial(\rho\epsilon)}{\partial t} + \nabla \cdot (\rho\epsilon \vec{u}) = -\rho \nabla \cdot \vec{u}$$
(3)

 \vec{u} : Velocity, \vec{k} : external forces, ϵ specific internal energy The equations describe the conservation of mass, momentum and energy. For completion we need an equation of state (eos):

$$\boldsymbol{\rho} = (\gamma - 1) \,\rho\epsilon \tag{4}$$

Using this and eq. (3), we can rewrite the energy equation as an equation for the pressure

$$\frac{\partial \boldsymbol{\rho}}{\partial t} + \nabla \cdot (\boldsymbol{\rho} \vec{u}) = -(\gamma - 1)\boldsymbol{\rho} \nabla \cdot \vec{u}$$
(5)

Hydrodynamics: Reformulating

Expanding the divergences on the left side and use for the momentum and energy equation the continuity equation

$$\frac{\partial \rho}{\partial t} + (\vec{u} \cdot \nabla)\rho = -\rho \nabla \cdot \vec{u}$$
(6)

$$\frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} = -\frac{1}{\rho}\nabla\rho + \vec{k}$$
(7)

$$\frac{\partial \boldsymbol{p}}{\partial t} + (\vec{\boldsymbol{u}} \cdot \nabla) \boldsymbol{p} = -\gamma \boldsymbol{p} \nabla \cdot \vec{\boldsymbol{u}}$$
(8)

Since all quantities depend on space (\vec{r}) and time (t), for example $\rho(\vec{r}, t)$, we can use for the left side the total time derivative (Lagrange-Formulation). For example, for the density one obtains

$$\frac{D\rho}{Dt} = \frac{\partial\rho}{\partial t} + (\vec{u} \cdot \nabla)\rho = -\rho \,\nabla \cdot \vec{u} \,. \tag{9}$$

The Operator

$$\frac{D}{Dt} = \frac{\partial}{\partial t} + \vec{u} \cdot \nabla \tag{10}$$

is called material derivative (equivalent to the total time derivative, d/dt).

Hydrodynamics: Lagrange-Formulation

Use now the material derivative

$$\frac{D\rho}{Dt} = -\rho \nabla \cdot \vec{u} \tag{11}$$

$$\frac{\partial \vec{u}}{\partial t} = -\frac{1}{\rho} \nabla p + \vec{k}$$
(12)
$$\frac{\partial p}{\partial t} = -\gamma p \nabla \cdot \vec{u}$$
(13)

These equations describe the change of the quantities in the comoving frame = Lagrange-Formulation.

For the Euler-Formulation, one analysed the changes at a specific, fixed point in space !

The Lagrange-Formulation can be used conveniently for 1D-problems, for example the radial stellar oscillations, using comoving mass-shells.

For the Euler-Formulation a fixed grid is used.

Numerical Hydrodynamics: The problem

Consider the evolution of the full time-dependent hydrodynamic equations. The non-linear partial differential equations of hydrodynamics will be solved numerically Continuum \Rightarrow Discretisation

Numerical Hydrodynamics: Method of solution

fixed Grid - matter flows through grid

$$\rho\left(\frac{\partial \vec{u}}{\partial t} + \vec{u} \cdot \nabla \vec{u}\right) = -\nabla \rho$$

Methods:

- finite differences non-conservative
- Control Volume conservative
- Riemann-solver wave properties
- Problem: Discontinuities

moving Grid/Particle - flow moved grid

$$\rho \, \frac{d\vec{u}}{dt} = -\nabla \rho$$

Well known method: Smoothed Particle Hydrodynamics, SPH

'smeared out particles' good for free boundaries, self-gravity

Numerical Hydrodynamics: consider: 1D Euler equations

describe conservation of mass, momentum and energy

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0$$
 (14)

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u u}{\partial x} = -\frac{\partial p}{\partial x}$$
(15)
$$\frac{\partial \rho \epsilon}{\partial t} + \frac{\partial \rho \epsilon u}{\partial x} = -p \frac{\partial u}{\partial x}$$
(16)

- ρ : density
- u: velocity
- p: pressure
- *ϵ*: internal specific energy (Energy/Mass)

with the equation of state

$$\boldsymbol{\rho} = (\gamma - 1)\rho\epsilon \tag{17}$$

 γ : adiabatic exponent

partial differential equation in space and time

 \rightarrow need discretisation in space and time.

Numerical Hydrodynamics: Discretisation

$$\psi_j^n = \psi(x_j, t^n) \approx \frac{1}{\Delta x} \int_{(j-1/2)\Delta x}^{(j+1/2)\Delta x} \psi(x, n\Delta t) dx$$

 ψ_i^n is piecewise constant. *j* spatial index, *n* time step.

Numerical Hydrodynamics: Integration in time

Consider general equation

$$\frac{\partial \psi}{\partial t} = \mathcal{L}(\psi(\mathbf{x}, t)) \tag{18}$$

with a (spatial) differential operator \mathcal{L} . typical Discretisation (1. order in time), at time: $t = t^n = n\Delta t$

$$\frac{\partial \psi}{\partial t} \approx \frac{\psi(t + \Delta t) - \psi(t)}{\Delta t} = \frac{\psi^{n+1} - \psi^n}{\Delta t} = L(\psi^n)$$
(19)

now at a special location, the grid point x_j (with moving terms)

$$\psi_j^{n+1} = \psi_j^n + \Delta t \mathcal{L}(\psi_k^n) \tag{20}$$

 $L(\psi_k^n)$: discretised differential operator \mathcal{L} (here explicit)

- *k* in $L(\psi_k)$: set of spatial indices:
- typical for 2. order: $k \in \{j 2, j 1, j, j + 1, j + 2\}$ (need information from left and right, 5 point 'Stencil')

Numerical Hydrodynamics: Operator-Splitting

$$\frac{\partial \vec{A}}{\partial t} = \mathcal{L}_1(\vec{A}) + \mathcal{L}_2(\vec{A})$$
(21)

 $\mathcal{L}_i(\vec{A}), i = 1, 2$ individul (Differential-)operators applied to the quantities $\vec{A} = (\rho, u, \epsilon)$. Here, for 1D ideal hydrodynamics

 $\mathcal{L}_1: \text{Advection}$

 \mathcal{L}_2 : pressure, or external forces

To solve the full equation the solution is split in several substeps

$$\vec{A}^{1} = \vec{A}^{n} + \Delta t L_{1}(\vec{A}^{n})$$
$$\vec{A}^{n+1} = \vec{A}^{2} = \vec{A}^{1} + \Delta t L_{2}(\vec{A}^{1})$$
(22)

 L_i is the differential operator to \mathcal{L}_i .

Numerical Hydrodynamics: advection-step

$$\frac{\frac{\partial \rho}{\partial t}}{\frac{\partial \rho}{\partial t}} = -\frac{\frac{\partial \rho u}{\partial x}}{\frac{\partial (\rho u)}{\partial t}}$$
$$\frac{\frac{\partial (\rho u)}{\partial t}}{\frac{\partial (\rho \epsilon)}{\partial t}} = -\frac{\frac{\partial (\rho \epsilon u)}{\partial x}}{\frac{\partial (\rho \epsilon u)}{\partial x}}$$

In explicit conservation form

$$\frac{\partial \vec{u}}{\partial t} + \frac{\partial \vec{f}(\vec{u})}{\partial x} = 0$$
(23)

for $\vec{u} = (u_1, u_2, u_3)$ and $\vec{f} = (f_1, f_2, f_3)$ we have:

$$\vec{u} = (\rho, \rho u, \rho \epsilon) \text{ and } \vec{f} = (\rho u, \rho u u, \rho \epsilon u).$$

This step yields: $\rho^n \to \rho^1 = \rho^{n+1}, \quad u^n \to u^1, \quad \epsilon^n \to \epsilon^1$

Numerical Hydrodynamics: Force terms

Momentum equation

$$\frac{\partial u}{\partial t} = -\frac{1}{\rho} \frac{\partial p}{\partial x}$$
(24)

$$u_j^{n+1} = u_j - \Delta t \frac{1}{\bar{\rho}_j^{n+1}} \frac{(p_j - p_{j-1})}{\Delta x}$$
 for $j = 2, N$ (25)

energy equation

$$\frac{\partial \epsilon}{\partial t} = -\frac{p}{\rho} \frac{\partial u}{\partial x}$$
(26)

$$\epsilon_j^{n+1} = \epsilon_j - \Delta t \, \frac{p_j}{\rho_j^{n+1}} \, \frac{(u_{j+1} - u_j)}{\Delta x} \quad \text{for} \quad j = 1, N \tag{27}$$

on the right hand side we use the actual values for u, ϵ and p, i.e. here u^1 , p^1 , ϵ^1 .

This step yields: $u^1 \rightarrow u^{n+1}$, $\epsilon^1 \rightarrow \epsilon^{n+1}$

Numerical Hydrodynamics: Model equation for advection

The continuity equation was

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0 \tag{28}$$

Here, $F^m = \rho u$ is the mass flow

Using the notation $\rho \rightarrow \psi$ and $u \rightarrow a = const$. we obtain the Linear Advection Equation

$$\frac{\partial \psi}{\partial t} + a \frac{\partial \psi}{\partial x} = 0.$$
 (29)

with a constant velocity a, the solution is a wave traveling to the right

using
$$\psi(x, t = 0) = f(x)$$
 we get $\psi(x, t) = f(x - at)$

Here f(x) is the initial condition at time t = 0, that is shifted by the advection with a constant velocity *a* to the right.

The numerics should maintain this property as accurately as possible.

Numerical Hydrodynamics: Linear Advection

FTCS: Forward Time Centered Space algorithm

 $\frac{\partial \psi}{\partial t} + a \frac{\partial \psi}{\partial x} = 0$ $\frac{\psi_{j-1} \quad \psi_j \quad \psi_{j+1}}{1 \quad 1 \quad 1}$ $x_{j-1} \quad x_j \quad x_{j+1}$ (30)

Specify the grid :

and write

$$\frac{\partial \psi}{\partial t}\Big|_{j}^{n} = \frac{\psi_{j}^{n+1} - \psi_{j}^{n}}{\Delta t}$$

$$\frac{\partial \psi}{\partial x}\Big|_{j}^{n} = \frac{\psi_{j+1}^{n} - \psi_{j-1}^{n}}{2\,\Delta x}$$
(31)

it follows

$$\psi_{j}^{n+1} = \psi_{j}^{n} - \frac{a\Delta t}{2\Delta x} \left(\psi_{j+1}^{n} - \psi_{j-1}^{n} \right)$$
(33)

The method looks well motivated: but it is unstable for all Δt !

W. Kley Numerical Hydrodynamics: A Primer Bad Honnef 2016

Numerical Hydrodynamics: Upwind-Method I

$$\frac{\partial \psi}{\partial t} + \frac{\partial a \psi}{\partial x} = 0$$
 (34)

or

$$\frac{\partial \psi}{\partial t} + a \frac{\partial \psi}{\partial x} = 0$$
 (35)

a: constant (velocity) > 0 $\psi(x, t)$ arbitrary transport quantity

change of ψ in grid cell j

$$\psi_j^{n+1}\Delta x = \psi_j^n \Delta x + \Delta t (F_{in} - F_{out})$$
 (36)

The flux F_{in} is for constant ψ_j

$$F_{in} = a\psi_{j-1}^{n}$$
(37)
$$F_{out} = a\psi_{j}^{n}$$
(38)

Upwind-Method Information comes from upstream

purple regions will be transported into the next neighbour cell

Numerical Hydrodynamics: Upwind-Method II

Extension for non-constant states

$$F_{in} = a \psi_l \left(x_{j-1/2} - \frac{a \Delta t}{2} \right)$$
(39)

 $\psi_l(x)$ interpolation polynomial Here linear interpolation (straight line) This yields

$$\underbrace{F_{in} = a \left[\psi_{j-1}^{n} + \frac{1}{2}(1-\sigma)\Delta\psi_{j-1}\right]}_{1st \ Order}$$
(40)

with $\sigma = a\Delta t / \Delta x$

$$\Delta \psi_j \approx \left. \frac{\partial \psi}{\partial x} \right|_{x_j} \Delta x$$

$$\psi_l(x) = \psi_j^n + \frac{x - x_j}{\Delta x} \Delta \psi_j$$
 (41)

 $\Delta \psi_j$ undivided differences 2nd order upwind

 $\psi_l(x)$ is evaluated in the middle of the purple area.

Numerical Hydrodynamics: Undivided Difference

a)
$$\Delta \psi_j = 0$$
 Upwind, 1st Order, piece-wise constant
b) $\Delta \psi_j = \frac{1}{2} (\psi_{j+1} - \psi_{j-1})$ Fromm, centered derivative
c) $\Delta \psi_j = \psi_j - \psi_{j-1}$ Beam-Warming, upwind slope
d) $\Delta \psi_j = \psi_{j+1} - \psi_j$ Lax-Wendroff, downwind slope

Often used is the 2nd Order Upwind (van Leer) Geometric Mean (maintains the Monotonicity)

$$\Delta \psi_{j} = \begin{cases} 2 \frac{(\psi_{j+1} - \psi_{j})(\psi_{j} - \psi_{j-1})}{(\psi_{j+1} - \psi_{j-1})} & \text{if} & (\psi_{j+1} - \psi_{j})(\psi_{j} - \psi_{j-1}) > 0\\ 0 & \text{otherwise} \end{cases}$$
(42)

The derivatives are evaluated at the corresponding time step level or the intermediate time step

Numerical Hydrodynamics: Lax-Wendroff Method

- Schematic overview of the method
- uses centered spatial and temporal differences

that makes it 2nd order in space and time

Using two steps:

predictor-step (at intermediate time $t^{n+1/2}$)

$$\tilde{\psi}_{j+1/2}^{n+1/2} = \frac{1}{2} \left(\psi_j^n + \psi_{j+1}^n \right) - \frac{\sigma}{2} \left(\psi_{j+1}^n - \psi_j^n \right)$$
(43)

The *corrector-step* (to new time t^{n+1})

$$\psi_j^{n+1} = \psi_j^n - \sigma \left(\tilde{\psi}_{j+1/2}^{n+1/2} - \tilde{\psi}_{j-1/2}^{n+1/2} \right)$$
(44)

Numerical Hydrodynamics: Example: Linar Advection

W. Kley Numerical Hydrodynamics: A Primer Bad Honnef 2016

Numerical Hydrodynamics: Stability analysis I

Substitute for the solution a Fourier series (von Neumann 1940/50s) consider simplifying one component, and analyse its growth properties

$$\psi_j^n = V^n \, e^{i\theta j} \tag{45}$$

here, θ is defined through grid size Δx and the total length L

$$\theta = \frac{2\pi\Delta x}{L} \tag{46}$$

Consider simple Upwind method with $\sigma = a\Delta t / \Delta x$

$$\psi_j^{n+1} - \psi_j^n + \sigma(\psi_j^n - \psi_{j-1}^n) = 0$$
(47)

Substituting eq. (45)

$$V^{n+1}e^{i\theta j} = V^n e^{i\theta j} + \sigma V^n \left[e^{i\theta(j-1)} - e^{i\theta j} \right]$$

dividing by V^n and $e^{i\theta j}$ yields

$$\frac{V^{n+1}}{V^n} = 1 + \sigma \left(e^{-i\theta} - 1 \right)$$
(48)

Numerical Hydrodynamics: Stability annalysis II

For the square of the absolute value one obtains

$$\lambda(\theta) \equiv \left| \frac{V^{n+1}}{V^n} \right|^2 = \left[1 + \sigma \left(e^{-i\theta} - 1 \right) \right] \left[1 + \sigma \left(e^{i\theta} - 1 \right) \right]$$
$$= 1 + \sigma \left(e^{-i\theta} + e^{i\theta} - 2 \right) - \sigma^2 \left(e^{-i\theta} + e^{i\theta} - 2 \right)$$
$$= 1 + \sigma (1 - \sigma)(2\cos\theta - 2)$$
$$= 1 - 4\sigma (1 - \sigma)\sin^2 \left(\frac{\theta}{2} \right)$$
(49)

The method is now stable, if the magnitude of the *amplification factor* $\lambda(\theta)$ is smaller than unity. The upwind-method is stable for $0 < \sigma < 1$, the $|\lambda(\theta)| < 1$. Rewritten

$$\Delta t < f_{\rm CFL} \frac{\Delta x}{a} \tag{50}$$

with the Courant-faktor $f_{CFL} < 1$. Typically $f_{CFL} = 0.5$. **Theorem:** *Courant-Friedrich-Levy* There is no *explizit*, consistent and stable finite difference method which is

unconditionally stable (i.e. for all Δt).

Numerical Hydrodynamics: Modified Equation I

Consider again Upwind method mit $\sigma = a\Delta t / \Delta x$

$$\psi_j^{n+1} - \psi_j^n + \sigma(\psi_j^n - \psi_{j-1}^n) = 0$$
(51)

substitute differences by derivatives, i.e. Taylor-series (up to 2. order)

$$\frac{\partial\psi}{\partial t}\Delta t + \frac{1}{2}\frac{\partial\psi}{\partial\tilde{t}}\Delta t^{2} + \mathcal{O}(\Delta t^{3}) + \sigma\left(\frac{\partial\psi}{\partial x}\Delta x - \frac{1}{2}\frac{\partial^{2}\psi}{\partial x^{2}}\Delta x^{2}\right) + \mathcal{O}(\Delta t\Delta x^{2}) = 0$$
(52)

divied by Δt , and substitute for σ

$$\frac{\partial \psi}{\partial t} + a \frac{\partial \psi}{\partial x} + \frac{1}{2} \left(\frac{\partial \psi}{\partial \tilde{t}} \Delta t - a \frac{\partial^2 \psi}{\partial x^2} \Delta x \right) + \mathcal{O}(\Delta t^2) + \mathcal{O}(\Delta x^2) = 0 \quad (53)$$

Use wave equation $\psi_{tt} = a^2 \psi_{xx} \Rightarrow$ modified equation (index *M*)

$$\frac{\partial \psi_M}{\partial t} + a \frac{\partial \psi_M}{\partial x} = \frac{1}{2} a \Delta x \left(1 - \sigma\right) \frac{\partial^2 \psi_M}{\partial x^2}$$
(54)

The FDE adds a new diffusive term to the original PDE

Numerical Hydrodynamics: Modified Equation II

with the diffusion coefficient

$$D = \frac{1}{2} a \Delta x \left(1 - \sigma \right) \tag{55}$$

Note: only for D > 0 this is a diffusion equation, and it follows $\sigma < 1$ for stability. (**Hirt**-method). For Upwind-Method $D > 0 \Rightarrow$ Diffusion. Lax-Wendroff yields

$$\frac{\partial \psi_M}{\partial t} + a \frac{\partial \psi_M}{\partial x} = \frac{\Delta t^2 a}{\sigma} \left(\sigma^2 - 1 \right) \frac{\partial^3 \psi_M}{\partial x^3}$$
(56)

The equation has the form

$$\psi_t + a\psi_x = \mu\psi_{xxx} \tag{57}$$

$$\mu = \frac{\Delta t^2 a}{\sigma} \left(\sigma^2 - 1 \right) \tag{58}$$

This implies Dispersion. Here: waves are too slow ($\mu < 0$) \Rightarrow Oscillations behind the diskontinuity (cp. square function)

Numerical Hydrodynamics: The time step

From the above analysis: the time step Δt has to be limited for a stable numerical evolution.

For the linear Advection (with the velocity a) we find

$$\Delta t < \frac{\Delta x}{a} \tag{59}$$

In the more general case the sound speed has to be included and it follows the Courant-Friedrich-Lewy-condition

$$\Delta t < \frac{\Delta x}{c_s + |\vec{u}|} \tag{60}$$

physically this means that information cannot travel in one timestep more than one gridcell. Typically one writes

$$\Delta t = f_C \frac{\Delta x}{c_s + |\vec{u}|} \tag{61}$$

with the Courant-Factor f_C . For 2D situations: $f_C \sim 0.5$. Only for impliciten methods there are (theoretically) no limitations of Δt .

Numerical Hydrodynamics: Time step size - graphically

The numerical region of dependence (dashed line) should be larger than the physical one (gray shaded area) since $\Delta x / \Delta t > a$. The complete information from inside the physical 'sound cone' should be considered.

Numerical Hydrodynamics: Multi-dimensional

Grid definition (in 2D, staggered): skalers in cell centers (hier: ρ , ϵ , p, v_3 , ψ) Vectors ar interfaces (here: v_1 , v_2)

Fluxes across cell boundaries

Top: mass flux

bottom: X-momentum (griud shifted)

from: *ZEUS-2D: A radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. I* in *The Astrophysical Journal Suppl.*, by Jim Stone and Mike Norman, 1992.

Use Operator-Splitting and Directional Splitting: The *x* and *y* direction are dealt with subsequently. First *x*-scans, then *y*-scans.

Numerical Hydrodynamics: Summary: Numerics

Numerical methods should resemble the conservation properties.

write equations in conservative form

Numerical Methods should resemble the wave properties.

Shock-Capturing methods, Riemann-solver

Numerical Methods should control discontinuites.

need diffusion (\Rightarrow stability)

either explicitly (artificial viscosity) or intrinsically (through method) Numerical methods should be accurate

min. 2nd order in space and time

Freely available codes:

ZEUS: http://www.astro.princeton.edu/~jstone/zeus.html classical Upwind-Code, 2nd order, staggered grid, RMHD

ATHENA: https://trac.princeton.edu/Athena/ successo of ZEUS: Riemann solver, centered grid, MHD

- NIRVANA: http://www.aip.de/Members/uziegler/nirvana-code 3D, AMR, finite volume code, MHD
- PLUTO: http://plutocode.ph.unito.it/ 3D, relativistic, Riemann-solver/finite volume, MHD

Hydrodynamics: Wave structure

Consider one-dimensional equtions (motion in x-direction):

From Euler equations: With $p = (\gamma - 1)\rho\epsilon$ and separation of derivatives

$$\begin{array}{ccc} \frac{\partial\rho}{\partial t} + \frac{\partial\rho u}{\partial x} &= & \mathbf{0} \\ \frac{\partial\rho u}{\partial t} + \frac{\partial\rho u}{\partial x} &= & -\frac{\partial p}{\partial x} \\ \frac{\partial\rho e}{\partial t} + \frac{\partial\rho e u}{\partial x} &= & -\mathbf{p}\frac{\partial u}{\partial x} \end{array} \right\} \implies \qquad \begin{array}{ccc} \frac{\partial\rho}{\partial t} + u\frac{\partial\mu}{\partial x} + \frac{\partial\rho}{\partial x} &= & \mathbf{0} \\ \frac{\partial\mu}{\partial t} + u\frac{\partial\mu}{\partial x} + \frac{\partial\rho}{\partial x} &= & \mathbf{0} \\ \frac{\partial\rho}{\partial t} + u\frac{\partial\mu}{\partial x} + \gamma \mathbf{p}\frac{\partial\mu}{\partial x} &= & \mathbf{0} \end{array}$$

As Vector equation

$$\frac{\partial \mathbf{W}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{W}}{\partial x} = \mathbf{0}$$
 (62)

mit

$$\mathbf{W} = \begin{pmatrix} \rho \\ u \\ p \end{pmatrix} \quad \text{und} \quad \mathbf{A} = \begin{pmatrix} u & \rho & 0 \\ 0 & u & 1/\rho \\ 0 & \gamma p & u \end{pmatrix}$$
(63)

Equations are non-linear and coupled.

Try decoupling: \Rightarrow Diagonalisation of **A**

Hydrodynamics: Diagonalisation

Eigenvalues (EV)

$$\det(\mathbf{A}) = \begin{vmatrix} u - \lambda & \rho & 0\\ 0 & u - \lambda & 1/\rho\\ 0 & \gamma p & u - \lambda \end{vmatrix} = (u - \lambda) \begin{vmatrix} u - \lambda & 1/\rho\\ \gamma p & u - \lambda \end{vmatrix}$$
$$= (u - \lambda) \left[(u - \lambda)^2 - \gamma p/\rho \right] = 0$$
(64)

It follows

$$\lambda_0 = u \lambda_{\pm} = u \pm c_s$$
(65)

with the sound speed

$$c_s^2 = \frac{\gamma \rho}{\rho} \tag{66}$$

The Eigenvalues are the <u>charakteristic</u> velocities, with which the information is spreading. It is a combination of fluid velocity (u) and sound speed (c_s) 3 real Eigenvalues \Rightarrow **A** diagonalisable

$$\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \Lambda \tag{67}$$

Q is built up from the Eigenvalues to the EV (λ_i , i = 0, +, -), Λ is a diagonal matrix.

Hydrodynamics: Charakteristic Variables

For **Q** it follows

$$\mathbf{Q} = \begin{pmatrix} 1 & \frac{1}{2} \frac{\rho}{c_s} & -\frac{1}{2} \frac{\rho}{c_s} \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & \frac{1}{2} \rho c_s & -\frac{1}{2} \rho c_s \end{pmatrix} \quad \text{und} \quad \mathbf{Q}^{-1} = \begin{pmatrix} 1 & 0 & -\frac{1}{c_s^2} \\ 0 & 1 & \frac{1}{\rho c_s} \\ 0 & 1 & -\frac{1}{\rho c_s} \end{pmatrix}$$

We had

$$\frac{\partial \mathbf{W}}{\partial t} + \mathbf{A} \frac{\partial \mathbf{W}}{\partial x} = 0 \tag{68}$$

and

$$\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q} = \Lambda$$

Define:

$$d\mathbf{v} \equiv \mathbf{Q}^{-1} d\mathbf{W}$$
 also $d\mathbf{W} = \mathbf{Q} d\mathbf{v}$ (69)

Multiply eq. (68) with \mathbf{Q}^{-1}

$$\frac{\partial \mathbf{v}}{\partial t} + \Lambda \frac{\partial \mathbf{v}}{\partial x} = 0 \tag{70}$$

 $v = (v_0, v_+, v_-)$ are the <u>charakteristic Variables</u>: $v_i = const.$ in curves

$$\frac{dx}{dt} = \lambda_i$$

Hydrodynamics: The variable v_0

from the definitions

$$dv_0 = d\rho - \frac{1}{c_s^2} d\rho \tag{71}$$

$$\frac{\partial v_0}{\partial t} + \lambda_0 \frac{\partial v_0}{\partial x} = 0 \quad \text{mit} \quad \lambda_0 = u$$
(72)

What is dv_0 ? From thermodynamics (1. Law) for specific quantities)

$$Tds = d\epsilon + p d\left(\frac{1}{\rho}\right) = d\epsilon - \frac{p}{\rho^2} d\left(\frac{1}{\rho}\right)$$
(73)

with $p = (\gamma - 1)\rho\epsilon$, $\epsilon = c_v T$, $\gamma = c_p/c_v$ it follows

$$ds = -\frac{c_{\rho}}{\rho} \left[d\rho - \frac{d\rho}{c_{\rm s}^2} \right] = -\frac{c_{\rho}}{\rho} dv_0 \tag{74}$$

$$\implies \frac{\partial s}{\partial t} + u \frac{\partial s}{\partial x} = 0 \tag{75}$$

i.e. s is const. along stream lines, hence

$$\frac{ds}{dt} = 0 \tag{76}$$

Hydrodynamics: Riemann-Invariants

For the additional variables

$$\frac{\partial \mathbf{v}_{\pm}}{\partial t} + (\mathbf{u} \pm \mathbf{c}_s) \frac{\partial \mathbf{v}_{\pm}}{\partial \mathbf{x}} = \mathbf{0}$$
(77)

with

$$dv_{\pm} = du \pm \frac{1}{\rho c_s} dp \tag{78}$$

it follows

$$\mathbf{v}_{\pm} = \mathbf{u} \pm \int \frac{d\mathbf{p}}{\rho c_{s}} \,. \tag{79}$$

Let the entropy constant everywhere (i.e. $p = K \rho^{\gamma}$)

$$\implies v_{\pm} = u \pm \frac{2c_s}{\gamma - 1} \tag{80}$$

Riemann-Invariants: $v_{\pm} = const.$ on curves

$$\frac{dx}{dt} = u \pm c_s$$

Hydrodynamics: Steepening of sound waves

Linearisation of the Euler-equation results in the wave equation for the perturbations:

$$\frac{\partial \rho_1}{\partial \tilde{t}} = c_s^2 \, \frac{\partial^2 \rho_1}{\partial x^2}$$

but: c_s is not constant \Rightarrow steepening

Diskontinuities

Example for (receeding) shock wave

W. Kley Numerical Hydrodynamics: A Primer Bad Honnef 2016

Examples: Shocktube

Initial discontinuity in a tube at position x_0 (one-dimensional)

Jump in pressure (*p*) and density (ρ) Evolution:

- a shock wave to the right (X_4)
 - (supersonically $u_{sh} > c_s$)
- a contact discontinuity
- density jump (along X_3)
- a rarefaction wave

(between X_1 and X_2)

Examples: Sod-Shocktube

A standard test problem for numerical hydrodynamics, $x \in [0, 1]$ with $X_0 = 0.5$, $\gamma = 1.4$ $\rho_1 = 1.0$, $\rho_1 = 1.0$, $\epsilon_1 = 2.5$, $T_1 = 1$ and $\rho_2 = 0.1$, $\rho_2 = 0.125$, $\epsilon_2 = 2.0$, $T_2 = 0.8$ Hier solution with van Leer method (at time t = 0.228 after 228 time steps:)

W. Kley Numerical Hydrodynamics: A Primer Bad Honnef 2016

Examples: Sedov-Explosion

An example for bomb explosions (Sedov & Taylor, 1950s), analytical solution (Sedov) Basic setup for Supernovae-outbusts, e.g. estimate of the remnant size

Standard test problem of multi-dimensional hydrodynamics, e.g. for $x, y \in [0, 1] \times [0, 1]$ Energy-Input at origin, E = 1, in $\rho = 1$, $\gamma = 1.4$, 200 × 200 grid points

Here: solution with van Leer method (solve for total energy variable). Plotted: density

Examples: Water droplet: SPH

Water sphere (R=30cm), Basin (1x1 m, 60cm high) Incl. surface tension, time in seconds (TU-München, 2002)

(Website)

Examples: Ster formation: SPH

Molecular Cloud Mass: 50 M ··· Diameter: 1.2 LJ = 76,000 AUTemperature: 10 K

(M. Bate, 2002)

Examples: Kelvin-Helmholtz Instability I

Direct comparision: moving < - > fixed grid

Left: Moving grid (Voronoi-Tesselation) Right: fixed square grid (Euler)

with grid motion displayed

(Kevin Schaal, Tübingen) Youtube channel

Examples: Kelvin-Helmholtz Instability III

(Boulder (NCAR), USA)

W. Kley Numerical Hydrodynamics: A Primer Bad Honnef 2016

Examples: Rayleigh-Taylor Instability

PPM Code, 128 Nodes, ASCI Blue-Pacific ID System at LLNL 512³ Grid Cells (LLNL, 1999)

(Web-Link)

Examples: Diesel Injection

Finite Volumen Method (FOAM)

Velocity, Temperature, Particles (+Isosurfaces) (Nabla Ltd, 2004)

W. Kley Numerical Hydrodynamics: A Primer Bad Honnef 2016

Examples: Cataclysmic Variable: Grid

Examples: Kataclysmic Variable: Disk formation

RH2D Code, Van Leer slope

512² Gridpoints, mass ratio: $q = m_2/m_1 = 0.15$

