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2 Universität Tübingen, Institut für Astronomie und Astrophysik, Abt. Computational Physics, Auf der Morgenstelle 10,
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Abstract. We study analytically and numerically the stability of the pressure-less, viscously spreading accretion ring. We show
that the ring is unstable to small non-axisymmetric perturbations. To perform the perturbation analysis of the ring we use a
stretching transformation of the time coordinate. We find that to 1st order, one-armed spiral structures, and to 2nd order addi-
tionally two-armed spiral features may appear. Furthermore, we identify a dispersion relation determining the instability of the
ring. The theoretical results are confirmed in several simulations, using two different numerical methods. These computations
prove independently the existence of a secular spiral instability driven by viscosity, which evolves into persisting leading and
trailing spiral waves. Our results settle the question whether the spiral structures found in earlier simulations of the spreading
ring are numerical artifacts or genuine instabilities.
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1. Introduction

In the theory of accretion discs, the idealised problem of a
viscously spreading, pressure-less ring orbiting a central point
mass on Keplerian orbits is often used to exemplify the main
features of an evolving thin accretion disc, i.e. the inward
transport of mass and outward transport of angular momentum
(Pringle 1981; Frank et al. 2002). With the approximation of
a small kinematic viscosity ν that is independent of the sur-
face density, an analytic solution exists for this problem, stated
originally by Lüst (1952) and later by Lynden-Bell & Pringle
(1974).

This axisymmetric analytic solution of the viscous dust ring
is frequently used as test problem for numerical methods devel-
oped to simulate accretion discs. The tested algorithms cover
particle methods like smoothed particle hydrodynamics (SPH)
(e.g. Flebbe et al. 1994; Speith & Riffert 1999) as well as grid-
based codes like RH2D (e.g. Kley 1999).

However, numerical simulations of the evolving ring often
show the appearance of additional structures in the disc. In the
majority of cases, these structures consist of non-axisymmetric
one-armed spirals, but sometimes also narrow concentric rings
appear. Since their first discovery, it is controversially debated
whether these structures are numerical artifacts or mathemat-
ical instabilities. While Maddison et al. (1996) show that for
the axisymmetric case the concentric rings found in SPH sim-
ulations are numerical artifacts of the method, we demonstrate
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in this paper that the non-axisymmetric spiral structures result
from a genuine physical instability of the problem.

Recently, Ogilvie (2001) analysed radially extended accre-
tion discs in a work presenting a general model of eccentric
accretion discs, of which the viscous ring is a simple special
case. However, because his main objective was much wider, he
did not elaborate on the stability properties of the ring.

The remainder of the paper is organised as follows. In the
next section, we first summarise the basic hydrodynamic equa-
tions used for our analysis of the evolving disc, and present for
reference the analytic solution of the viscously spreading dust
ring.

In Sect. 3 we use a special perturbation technique, the time-
stretching approach, which allows to obtain solutions of the
spreading ring at different orders of a small expansion param-
eter. We derive a linear evolution equation for an eccentricity
function E. It is shown that to 2nd order, the general solution
allows the development of one-armed as well as two-armed spi-
ral features.

In Sect. 4 we perform a local stability analysis of the final
equation for E and deduce a dispersion relation which indicates
an instability for some viscosity laws. These results are com-
pared with numerical simulations we present in Sect. 5 using
two different numerical methods, one grid-based and the other
particle based. We find in general very good agreement of both
numerical methods with the predictions of the local analysis.
Thus, the simulations confirm the existence of a physical insta-
bility in the viscously evolving ring problem. Finally, in Sect. 6
we give our conclusions.
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2. The equations

In accretion physics one assumes that the evolution of the disc
can be modelled by the hydrodynamic equations. In the present
case, we envisage a thin accretion disc, i.e. the vertical thick-
ness of the disc is very small in comparison to the radial ex-
tend. Therefore, the evolution of the surface density Σ of the
disc can be modelled by the vertically averaged hydrodynamic
equations which reduces the problem to two dimensions and
formally corresponds to the 2D-version of the hydrodynamic
equations.

2.1. Basic hydrodynamic equations

Because of the axisymmetry of the ring solution, it is conve-
nient to work in polar coordinates (R, ϕ). In the presence of a
central gravitational field originating by the mass Mc, the set
of the basic hydrodynamic equations consists of the continuity
equation

∂Σ

∂t
+

1
R
∂(RΣvR)
∂R

+
1
R

∂(Σvϕ)

∂ϕ
= 0, (1)

the radial component of the Navier Stokes equation

Σ

∂vR∂t + vR ∂vR∂R + vϕR ∂vR∂ϕ −
v2ϕ

R

 = −∂ps

∂R
− ΣGMc

R2

+
1
R
∂(RνsΣσRR)
∂R

+
1
R

∂(νsΣσRϕ)

∂ϕ
− νsΣ

R
σϕϕ, (2)

and the azimuthal component of the Navier Stokes equation

Σ

(
∂vϕ

∂t
+ vR
∂vϕ

∂R
+
vϕ

R

∂vϕ

∂ϕ
+
vRvϕ

R

)
= − 1

R
∂ps

∂ϕ

+
1
R

∂(RνsΣσRϕ)

∂R
+

1
R

∂(νsΣσϕϕ)

∂ϕ
+
νsΣ

R
σRϕ. (3)

Here vR and vϕ denote the radial and azimuthal velocity, ps is
the vertically averaged pressure, and G is the gravitational con-
stant. Assuming that the bulk viscosity is vanishing, the viscous
shear tensor σ has the form

σRR =
4
3
∂vR
∂R
− 2

3
vR
R
− 2

3
1
R

∂vϕ

∂ϕ
, (4)

σRϕ = σϕR =
∂vϕ

∂R
− vϕ

R
+

1
R
∂vR
∂ϕ
, (5)

σϕϕ = −2
3
∂vR
∂R
+

4
3
vR
R
+

4
3

1
R

∂vϕ

∂ϕ
, (6)

and νs is the vertically averaged kinematic viscosity.
As we only consider cold (pressure-less) discs, we neglect

the pressure ps throughout the rest of this paper.

2.2. Analytic solution of the viscous ring

For the time evolution of the viscously spreading ring, we
assume νs = const. Then, with initial condition

Σinit(R) =
M

2πR0
δ(R − R0) (7)

at t = 0 with total ring mass M, the surface density of the ring
evolves according to

Σring(τ∗, x) =
M

πR2
0

1
τ∗x1/4

I 1
4

(
2x
τ∗

)
exp

(
−1 + x2

τ∗

)
(8)

(e.g. Lynden-Bell & Pringle 1974), where x = R/R0, τ∗ =
12νst/R2

0, and I 1
4

is the modified Bessel function to the order
of 1/4.

The azimuthal velocity of the ring is equal to the Keplerian
velocity,

vKepler =

√
GMc

R
= ΩR, (9)

where we have defined the angular velocity

Ω(R) =

√
GMc

R3
· (10)

The radial velocity of the ring obeys the relation

vspreading = − 3

Σring
√

R

∂

∂R

[
νsΣring

√
R
]
· (11)

It is important to realize, that solution (8) fulfils the hydrody-
namic equations given in Sect. 2.1 only by approximation, as-
suming the kinematic viscosity νs being small compared to the
specific angular momentum ΩR2.

3. Perturbation analysis

To study the stability properties of the ring solution (8), we per-
form a perturbation analysis of the hydrodynamic Eqs. (1), (2)
and (3).

3.1. Stretching transformation

According to the idealised problem, we assume that the av-
eraged kinematic viscosity νs is very small and depends only
on R. To take this into account, we replace

νs = νs(R) = ε ν(R) where ε = const.� 1. (12)

Then, two different timescales can be distinguished, the vis-
cous timescale tvisc ∼ R2/νs which determines the radial
spreading of the ring, and the dynamic timescale tdyn ∼
R/vϕ =

√
R3/GMc describing the azimuthal motion of the gas

in the disc. Because of (12), the dynamic timescale is much
shorter than the viscous timescale, tdyn/tvisc ∼ νs/√GMcR =
ε ν/(ΩR2) � 1. Therefore, in addition to the dynamic time t
we define a viscous time

τ = ε t. (13)

In principle, the ring may evolve on the dynamic timescale as
well as on the viscous timescale. Thus we assume for the time
dependencies of all hydrodynamic quantities

Σ(t) = Σ̂(t, τ) , vR(t) = v̂R(t, τ) , vϕ(t) = v̂ϕ(t, τ). (14)

This leads to a stretching transformation for the time deriva-
tives,

∂ f (t)
∂t
=
∂ f̂ (t, τ)
∂t

+ ε
∂ f̂ (t, τ)
∂τ

, (15)

where f symbolises any of the hydrodynamic quantities.
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3.2. Approach

To generalise the approach, we do not restrict the stability anal-
ysis to a perturbation of the ring solution (8) but we start with
less determined unperturbed functions. The initial condition of
the problem shall consist of an arbitrary axisymmetric surface
density distribution Σinit(R) rotating around a central mass Mc.
Because self gravity of the disc can be neglected, the initial az-
imuthal velocity shall be equal to the Keplerian velocity (9),
vinit
ϕ = vKepler. Then, the following approach is made for the

expansion

Σ(t,R, ϕ) = Σ̂0(t, τ,R) + ε Σ̂1(t, τ,R, ϕ)

+ ε2 Σ̂2(t, τ,R, ϕ) + O(ε3), (16)

vR(t,R, ϕ) = v̂R0(t, τ,R) + ε v̂R1(t, τ,R, ϕ)

+ ε2 v̂R2(t, τ,R, ϕ) + O(ε3), (17)

vϕ(t,R, ϕ) = v̂ϕ0(τ,R) + ε v̂ϕ1(t, τ,R, ϕ)

+ ε2 v̂ϕ2(t, τ,R, ϕ) + O(ε3). (18)

Here it is assumed that the 0th order quantities are axisymmet-
ric and do not depend on the azimuthal angle ϕ, and that the 0th
order azimuthal velocity evolves only very slowly and is inde-
pendent of the dynamical time t (both assumptions are justified
by the initial conditions).

The approaches (16), (17) and (18) are inserted in (1), (2)
and (3) considering the stretching transformation (15) and (12),
and the terms of the resulting equations are ordered according
to powers of ε.

There are three main differences of the present approach
compared to previous analyses like those by Ogilvie (2001).
The kinematic viscosity is assumed to be a function of radius
only, while Ogilvie (2001) considered νs to be a function of
surface density. Both dynamic and viscous timescale are taken
into account, while Ogilvie (2001) assumed at the outset that
non of the variables varies on the dynamic timescale. And the
expansion is carried out up to second order, so that non-linear
terms appear in the perturbation. Usually, a linear perturbation
is performed.

3.3. Zeroth order results

In O(1), the continuity equation reads

∂Σ̂0

∂t
+

1
R
∂(RΣ̂0v̂R0)
∂R

= 0, (19)

the radial component of the Navier Stokes equation reads

∂v̂R0

∂t
+ v̂R0

∂v̂R0

∂R
−
v̂2ϕ0

R
= −GMc

R2
, (20)

and the azimuthal component accordingly

v̂R0

R

∂(Rv̂ϕ0)

∂R
= 0. (21)

From (21) follows immediately that the 0th order radial veloc-
ity has to vanish everywhere,

v̂R0 ≡ 0, (22)

because the alternative solution of (21), v̂ϕ0 ∝ 1/R, does not
fulfil the initial condition for the azimuthal velocity.

Inserting (22) into (19) and (20) results in

∂Σ̂0

∂t
= 0, (23)

and

v̂ϕ0 = vKepler, (24)

i.e., the 0th order of the azimuthal velocity is equal to the
Keplerian velocity, and the 0th order of the surface density does
not depend on the dynamical time, Σ̂0 = Σ̂0(τ,R).

3.4. First order results

In O(ε), the continuity equation has the form

∂Σ̂1

∂t
+ Ω
∂Σ̂1

∂ϕ
+
∂Σ̂0

∂τ
+

1
R
∂(RΣ̂0v̂R1)
∂R

+
Σ̂0

R

∂v̂ϕ1

∂ϕ
= 0, (25)

and for the Navier Stokes equation results as radial component

∂v̂R1

∂t
+ Ω

(
∂v̂R1

∂ϕ
− 2v̂ϕ1

)
= 0, (26)

and as azimuthal component

∂v̂ϕ1

∂t
+
Ω

2

2∂v̂ϕ1

∂ϕ
+ v̂R1 +

3

Σ̂0
√

R

∂
[
νΣ̂0
√

R
]

∂R

 = 0. (27)

Taking the derivative of (27) with respect to t considering (23)
and solving for ∂v̂R1/∂t, and taking the derivative of (27) with
respect to ϕ and solving for ∂v̂R1/∂ϕ, and inserting the results
into (26) yields

∂2v̂ϕ1

∂t2
+ 2Ω

∂2v̂ϕ1

∂t∂ϕ
+ Ω2 ∂

2v̂ϕ1

∂ϕ2
+ Ω2v̂ϕ1 = 0. (28)

The general solution of this equation is a linear superposition of

v̂ϕ1 =<
[
vϕ1 ei(mϕ−ωt)

]
(29)

with vϕ1 = vϕ1(τ,R), and where m and ω have to obey the
relation

ω2 − 2mΩω + Ω2m2 −Ω2 = 0, (30)

that is

ω = Ω(m ± 1). (31)

Solving (27) for v̂R1 then results in

v̂R1 = ṽR1 +<
[
vR1 ei(mϕ−ωt)

]
(32)

with

ṽR1 = − 3

Σ̂0
√

R

∂

∂R

[
νΣ̂0

√
R
]

(33)

and

vR1 = 2i
(
ω

Ω
− m

)
vϕ1. (34)
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Inserting (29) and (32) into (25) gives

∂Σ̂1

∂t
+ Ω
∂Σ̂1

∂ϕ
= −

[
∂Σ̂0

∂τ
+

1
R
∂(RΣ̂0ṽR1)
∂R

]

−<
[
iΣ̂0vR1

(
ϕ
∂m
∂R
− t
∂ω

∂R

)
ei(mϕ−ωt)

]

−<
[[

1
R
∂(RΣ̂0vR1)
∂R

+ im
Σ̂0

R
vϕ1

]
ei(mϕ−ωt)

]
· (35)

The first term in brackets on the right hand side of (35) and
the terms in parenthesis in the second line of the right hand
side of (35) are secular terms for Σ̂1. They have to vanish iden-
tically, otherwise Σ̂1 would increase linearly or, for the latter,
even quadratically with t or ϕ, respectively.

Then, (35) can be solved for Σ̂1,

Σ̂1 = <
[
Σ1 ei(mϕ−ωt)

]
(36)

with

Σ1 =
1

R(Ωm − ω)

[
i
∂(RΣ̂0vR1)
∂R

− mΣ̂0vϕ1

]
· (37)

The conditions for the disappearance of the secular terms in
parenthesis in (35) are

∂m
∂R
= 0 and (38)

∂ω

∂R
= 0. (39)

Because of relation (30) and Ω = Ω(R), this can only be
achieved by

ω ≡ 0, (40)

which leads to m2 = 1.
The condition for the disappearance of the secular term in

brackets in (35) is

∂Σ̂0

∂τ
= − 1

R
∂(RΣ̂0ṽR1)
∂R

(41)

=
3
R
∂

∂R

[√
R
∂

∂R

(
νΣ̂0

√
R
)]
·

This is the diffusion equation of the surface density for the ana-
lytic solution of the viscous dust ring. With initial condition (7)
and constant viscosity ν, the surface density (8) solves (41) ex-
actly (considering τ∗ = 12ντ/R2

0).
That is, the surface density of the analytic solution is equal

to the 0th order term of the perturbation. The azimuthal veloc-
ity of the analytic solution is also equal to the according 0th
order term of the perturbation, i.e., equal to the Keplerian ve-
locity (24). And the radial velocity of the analytic solution is
equal to the axisymmetric part of the according 1st order term
of the perturbation, i.e., relations (11) and (33) are identical.

Because of (40), all first order quantities are independent of
the dynamic time t. Therefore, the first order velocities take the
form

v̂R1 = ṽR1 +<
[
vR1 eimϕ

]
and (42)

v̂ϕ1 = <
[
vϕ1 eimϕ

]
= <

[ i
2

mvR1 eimϕ
]

(43)

with m = ±1. (44)

Thus, if a non-axisymmetric perturbation appears, to first or-
der it has to be an one-armed spiral structure. Additionally, it
follows

|vR1| = 2|vϕ1|, (45)

and vR1 and vϕ1 obey a phase shift of π2 .
Defining a function Ê = Ê(τ,R) similar to Ogilvie (2001)

with

vR1(τ,R) = imRΩ(R)Ê(τ,R) (46)

yields

vϕ1(τ,R) = −1
2

RΩ(R)Ê(τ,R). (47)

Then, with (36), the first order surface density takes the form

Σ̂1(τ,R, ϕ) =<
[
Σ1(τ,R) eimϕ

]
, (48)

where

Σ1 =
i

RΩm

[
∂(RΣ̂0vR1)
∂R

− Σ̂0vR1

2

]
= −R

∂(Σ̂0Ê)
∂R

· (49)

Furthermore, an initial phase ϕ0 can be found such that
Ê(τ,R) = E(τ,R) eiϕ0 with E = |Ê|.

3.5. Second order results

Consider the 0th order results (22) and (24) and the 1st order
results (42), (43) and (48). Then, in O(ε2) one yields for the
continuity equation

∂Σ̂2

∂t
+ Ω
∂Σ̂2

∂ϕ
+

1
R
∂(RΣ̂0v̂R2)
∂R

+
Σ̂0

R

∂v̂ϕ2

∂ϕ
=

− m
2R
∂

∂R

[
R2ΩE

∂(Σ̂0E)
∂R

]
sin(2mϕ + 2ϕ0)

+

(
R
∂

∂R

[
Σ̂0
∂E
∂τ

]
− R
∂

∂R

[
E
R
∂(RΣ̂0ṽR1)
∂R

]

+
1
R
∂

∂R

[
R2ṽR1

∂(Σ̂0E)
∂R

])
cos(mϕ + ϕ0), (50)

for the radial component of the Navier Stokes equation

Σ̂0

[
∂v̂R2

∂t
+ Ω

(
∂v̂R2

∂ϕ
− 2v̂ϕ2

)]
− mΣ̂0RΩ

∂E
∂τ

sin(mϕ + ϕ0)

+
1
2
Σ̂0R2Ω2E

[(
3
4

E
R
− ∂E
∂R

)
cos(2mϕ + 2ϕ0) − 1

4
E
R
+
∂E
∂R

]

− mΩ

[
E
R

(
1

R2

∂(R3νΣ̂0)
∂R

+ 3R2

[
1

Σ̂0

∂Σ̂0

∂R
∂(νΣ̂0)
∂R

− ∂
2(νΣ̂0)
∂R2

])

− 1
3
∂E
∂R

(
13R
∂(νΣ̂0)
∂R

+
17
2
νΣ̂0

)
− 4

3
νΣ̂0R

∂2E
∂R2

 sin(mϕ + ϕ0)

=
4
3

1
R
∂

∂R

[
νΣ̂0R

√
R
∂

∂R

(
ṽR1√

R

)]

+
2
3
νΣ̂0R

∂

∂R

(
ṽR1

R2

)
− Σ̂0

(
∂ṽR1

∂τ
+ ṽR1

∂ṽR1

∂R

)
(51)
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where for some transformations the relation (33) is used, and
for the azimuthal component of the Navier Stokes equation

Σ̂0

[
∂v̂ϕ2

∂t
+ Ω

(
∂v̂ϕ2

∂ϕ
+

1
2
v̂R2

)]
− 1

2
Σ̂0RΩ

∂E
∂τ

cos(mϕ + ϕ0)

+
1
4

mΣ̂0R2Ω2E
∂E
∂R

sin(2mϕ + 2ϕ0)

= Ω

[
E
R

(
− 3

2
νΣ̂0 +

1
2

Rν
∂Σ̂0

∂R
− RΣ̂0

∂ν

∂R

− 3
2

R2ν

[
∂Σ̂0

∂R

]2

+
3
2

R2ν
∂2Σ̂0

∂R2


+
∂E
∂R

(
5
12
νΣ̂0 − 1

2
Rν
∂Σ̂0

∂R
− 2RΣ̂0

∂ν

∂R

)

+ νΣ̂0R
∂2E
∂R2

 cos(mϕ + ϕ0), (52)

again considering relation (33).
Solving (51) for v̂ϕ2 and inserting in (52) yields

Σ̂0

2Ω

[
∂2v̂R2

∂t2
+ 2Ω

∂2v̂R2

∂t∂ϕ
+ Ω2

(
∂2v̂R2

∂ϕ2
+ v̂R2

)]

+
1
2
Σ̂0Ω

(
U1 cos(mϕ + ϕ0) + U2 sin(2mϕ + 2ϕ0)

)
= 0 (53)

with

U1(τ,R) =
E
R

(
R
∂ν

∂R
+ 3R2 ∂

2ν

∂R2
− 2R

ν

Σ̂0

∂Σ̂0

∂R
+ 3

R2

Σ̂0

∂ν

∂R
∂Σ̂0

∂R

)

+
∂E
∂R

(
2ν +

25
3

R
∂ν

∂R
+

16
3

R
ν

Σ̂0

∂Σ̂0

∂R

)

− 2
3
νR
∂2E
∂R2
− 2R

∂E
∂τ

(54)

and

U2(τ,R) =
3
4

mR2ΩE

(
2
∂E
∂R
− E

R

)
· (55)

A solution of (53) is

v̂R2 = <
[
vR2 ei(m̃ϕ−ω̃t)

]
(56)

− 1
2

U1ϕ sin(mϕ + ϕ0) +
1
3

U2 sin(2mϕ + 2ϕ0)

with vR2 = vR2(τ,R), and with

ω̃ = Ω(m̃ ± 1). (57)

Inserting (56) into (51) results in

v̂ϕ2 = ṽϕ2 +<
[
vϕ2 ei(m̃ϕ−ω̃t)

]
+

1
4

W1 sin(mϕ + ϕ0) − 1
4

mU1ϕ cos(mϕ + ϕ0)

+W2

(
cos(2mϕ + 2ϕ0) + 1

)
(58)

with

ṽϕ2 =
1

2Ω

(
∂ṽR1

∂τ
+ ṽR1

∂ṽR1

∂R

)
− Rν

3Ω
∂

∂R

(
ṽR1

R2

)

− 2

3RΣ̂0Ω

∂

∂R

[
νΣ̂0R

√
R
∂

∂R

(
ṽR1√

R

)]
, (59)

vϕ2 = −1
2

i
(
ω̃

Ω
− m̃

)
vR2, (60)

W1(τ,R) =
E
R

− 6mν − (2m + 1)R
∂ν

∂R
+ (6m − 3)R2 ∂

2ν

∂R2

− 2(m − 1)R
ν

Σ̂0

∂Σ̂0

∂R
+ (6m − 3)

R2

Σ̂0

∂ν

∂R
∂Σ̂0

∂R

− 6mR2 ν

Σ̂2
0

[
∂Σ̂0

∂R

]2

+ 6mR2 ν
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and

W2(τ,R) =
1
4

R2ΩE

(
3
∂E
∂R
− 5

4
E
R

)
· (62)

Inserting (56) and (58) into the continuity Eq. (50) again results
in a secular term of the form

∝
(
ϕ
∂m̃
∂R
− t
∂ω̃

∂R

)
, (63)

which has to vanish. Like in the 1st order case, this can only be
achieved by

ω̃ ≡ 0. (64)

Again this leads to m̃2 = 1. Hence follows that all quantities in
2nd order, v̂ϕ2, v̂R2 and Σ̂2, are also independent of the dynami-
cal time t, and Σ̂2 also can be integrated directly.

There exists a second secular term in (50), which is appear-
ing already in (56) and (58) and which is proportional to U1ϕ.
Therefore, U1 has to vanish,

U1 ≡ 0. (65)

This leads to a differential equation for E(τ,R),
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)
− 1

3
ν
∂2E
∂R2
· (66)

It is worth noting that (66) agrees exactly with Eq. (58) of
Ogilvie (2001) in the case of a pressureless viscous fluid with
constant kinematic viscosity ν.

To summarise, according to (64), all quantities up to sec-
ond order are independent of the dynamic time t. The 2nd
order quantities depend on the azimuthal angle ϕ in a linear
combination of harmonic oscillations with frequencies mϕ, m̃ϕ
and 2mϕ, where m = ±1 and m̃ = ±1. Therefore, if a non-
axisymmetric perturbation occurs, it has to be a superposition
of one-armed and two-armed spiral structures in second order.
This is an effect of the non-linearity of the analysis.
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4. Local stability

The solution of (66) rules the stability or instability of the
viscously spreading ring. Assuming that short wavelengths
become unstable first (which is supported by the numerical
results), we make the approach

E(τ,R) = <
[
E0 ei(kR−στ)] , (67)

where E0 is a constant. Then, (66) gives the dispersion relation

σ = −kV2 + i
(V1

R
+ k2 ν

3

)
(68)

with
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1
2
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and

V2(τ,R) =
ν

R
+

25
6
∂ν

∂R
+

8
3
ν

Σ̂0

∂Σ̂0

∂R
(70)

which are real functions. As soon as the imaginary part of σ
becomes positive,

σi =
V1

R
+ k2 ν

3
> 0, (71)

the ring becomes unstable. This inequality implies that the
axisymmetric ring is always unstable to perturbations of suf-
ficiently short wavelength. Since there exists also a non-
vanishing real part of σ, which evokes oscillatory behaviour,
and because the instability is driven by the kinematic viscos-
ity ν, it is a type of viscous overstability (see e.g. Kley et al.
1993).

Assume ν = const. Then, the dispersion relation (68) takes
the form

σ = −k

(
ν

R
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8
3
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Σ̂0

∂Σ̂0
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)
+ i

(
k2 ν

3
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∂Σ̂0
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)
, (72)

and the condition for instability is

k2 >
3

RΣ̂0

∂Σ̂0

∂R
· (73)

Using the analytic solution (8) of the surface density Σ̂0, the
growth rate σi becomes

σi =
1
3

k2ν +
ν

2R2
0x2τ∗

(τ∗ + 4x2
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− 4x

I− 3
4

(
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I 1

4
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 · (74)

Therefore, with the assumption of small viscous times, i.e.
τ∗ � x, the growth rate is

σi =
1
3

k2ν +
3
4
ν

R2
+

1
6τ

(
1 − R0

R

)
, (75)

where suitable approximations of the modified Bessel func-
tions have been applied. The condition for instability is
accordingly

k2 > − 9
4R2
− 1

2ντ

(
1 − R0

R

)
· (76)

With the assumption of large viscous times, i.e. τ∗ � x, the
growth rate becomes

σi =
1
3

k2ν +
1
6τ
· (77)

Obviously, for late times the viscous ring is unconditionally
unstable against non-axisymmetric perturbations.

Although according to the dispersion relation the instability
should grow faster with increasing wave number, in the numer-
ical simulations finite wavelengths dominate the perturbation.
There are two reasons why the instability might not occur at
very short wavelengths. First, the relevant scales may not be
resolved in the numerical calculations. This effect is indicated
in Fig. 10, which shows that the instability grows faster with
higher spatial resolution of the numerical method. Secondly,
the analysis will break down when the separation of dynamical
and viscous timescale becomes invalid, i.e., below the charac-
teristic radial scale R ∼ (ν/Ω)1/2.

The main limitation of the presented analysis is the omis-
sion of pressure. In particular, the more general analysis of
Ogilvie (2001) shows that, in a disc with significant pressure,
the eccentricity vector precesses rapidly and differentially due
to pressure, in addition to its viscous growth or decay. When
pressure dominates over viscosity, the afore mentioned char-
acteristic radial scale where the analysis may break down is
replaced by the semi-thickness of the disc. Furthermore, the ec-
centric instability can be enhanced or suppressed by allowing
for the kinematic viscosity to depend on the surface density, by
introducing a bulk viscosity, by allowing for stress relaxation,
or by including three-dimensional effects.

5. Numerical models

To verify the theoretical results obtained in Sects. 3 and 4,
we performed various numerical simulations of the viscously
evolving ring, concentrating on the case of constant kinematic
viscosity νs = const. To be able to distinguish between numer-
ical and physical effects, we selected two fundamentally differ-
ent numerical methods for the simulations, and we inspected a
wide range of parameters.

5.1. Using SPH

The first method we used was smoothed particle hydrodynam-
ics (SPH). This Lagrangian particle method was introduced
by Gingold & Monaghan (1977) and Lucy (1977) to simulate
compressible flows with free boundaries. For an overview of
the SPH method see, for example, Monaghan (1992).

In our simulations we did not use the artificial viscosity
approach (see e.g. Monaghan & Gingold 1983) usually applied
to model viscid fluids with SPH, but we chose a version of SPH
that includes the entire viscous stress tensor (Flebbe et al. 1994;
Riffert et al. 1995). This implementation allows for the proper
treatment of viscous shear flows. Additionally, in compliance
with the assumption of a cold disc, pressure was completely
neglected in all the simulations. A detailed description of the
application of this SPH approach to the viscously evolving ring
can be found in Speith & Riffert (1999).
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Fig. 1. Evolution of the surface density of the viscous dust ring in an SPH simulation. Parameters of the disc are R0 = 1 R�, disc mass
M = 10−10 M�, central mass Mc = 1 M�, and kinematic viscosity νs = 3 × 10−8R2�/s = 1.5 × 1014 cm2/s. The initial density distribution at
viscous time τ∗ = 0.018 is shown in the top left plot. The symmetric structures seen in the distribution at τ∗ = 0.054 may be of numerical nature
due to relaxation effects of the initial particle distribution. Later, the development of the spiral instability can be seen very clearly.

The simulation presented below was performed with the
following parameters. The initial SPH particle distribution rep-
resents the surface density (8) of the analytic solution at the
viscous time τ∗ = 0.018, with R0 = 1 R�, disc mass M =

10−10 M�, and central mass Mc = 1 M�. The kinematic vis-
cosity was set to νs = 3 × 10−8R2�/s = 1.5 × 1014 cm2/s
throughout the whole simulation. The initial distribution con-
sists of 40 000 particles which are arranged symmetrically to
make sure that at the beginning the centre of mass lay exactly
at the origin. Due to the stochastic nature of the SPH method,
no further seed perturbations are required to bring potential in-
stabilities to grow.

Figure 1 shows the evolution of the viscous ring during the
SPH simulation in a sequence of plots of the surface density
distribution. The top left plot represents the initial density dis-
tribution at viscous time τ∗ = 0.018. Immediately after the start
of the simulation, symmetric structures develop, which can still
be seen in the distribution at τ∗ = 0.054 in the top middle panel.
These narrow ring-like structures may be numerical artifacts
due to the relaxation of the initial particle distribution, or they
may be caused by the radial viscous overstability discussed e.g.
in Kley et al. (1993), but they vanish in the further course of the
simulation. Instead, the development of a spiral pattern begins,
in this case at the inner edge of the disc, until finally a distinct
spiral structure is covering the whole face of the disc, as can
clearly be seen in the distribution at τ∗ = 0.270 in the bottom
right panel of Fig. 1.

To determine the nature of the spiral structure, a Fourier
analysis of the evolving ring was performed during the simula-
tion. Figure 2 gives the time evolution of the first four azimuthal
Fourier modes (m = 1 to m = 4) at radius R = R0. For small
viscous times, the even modes m = 4 and especially m = 2
are high, while the odd modes m = 1 and m = 3 are low. This
effect is due to the symmetric initial particle distribution and
disappears eventually when the symmetry of the particle distri-
bution is lost. Later, the (m = 1)-mode increases exponentially,
while all the other modes decrease or stay small. In particular,
the (m = 3)-mode remains in the large noise background of
the simulation, which is intrinsic to the SPH method, and the
(m = 4)-mode decreases down to the noise background (as all
inspected higher modes do). The (m = 2)-mode seems to end
at a level slightly above the noise background, although this is
not clearly to determine because of the large oscillations of the
modes which are also caused by the SPH noise level.

The results of the Fourier analysis, i.e., the development
of a dominant one-armed spiral structure with an additional
weaker component of a two-armed spiral structure, are in com-
plete agreement with the theoretical results of the first and sec-
ond order perturbation analysis as derived in Sects. 3.4 and 3.5.

Further predictions of the perturbation analysis in Sect. 3,
that can be tested easily, are the relations between the first
order velocities vR1 and vϕ1. According to (45), their ampli-
tudes have a ratio of 2, and they obey a phase shift of π2 .
To verify this, we more thoroughly studied the most evolved
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Fig. 2. Time evolution of the first four Fourier modes at R = R0 of the simulation shown in Fig. 1. Because of the symmetric initial particle
distribution, even modes are high and odd modes are low at the beginning. Later, all modes decrease except the (m = 1)-mode which increases
exponentially as expected. The (m = 3)- and (m = 4)-mode merge with the noise background of the simulation, while the (m = 2)-mode
stays slightly above the noise level. The dashed line in the top left panel gives an approximated fit of the growth of the first Fourier mode to
σi = 1.8 × 10−5 s−1 = 0.028Ω(R0).

particle distribution of the SPH simulation presented in Fig. 1,
i.e. the ring at viscous time τ∗ = 0.270, whose density distri-
bution is shown in the bottom right panel of Fig. 1. In Fig. 3
the relation |vϕ − vKepler|/|vR − vspreading| is plotted over radius.
Here, vϕ and vR denote the simulation results, which are av-
eraged azimuthally using the SPH formalism, and vKepler and
vspreading are the velocities according to the analytic solutions (9)
and (11) of the viscous ring model. Taking vϕ−vKepler ≈ vϕ1 and
vR − vspreading ≈ vR1, the curve in diagram 3 matches the value 1

2
sufficiently to satisfy relation (45). Accordingly, Fig. 4 shows
the phase shift between vϕ − vKepler and vR − vspreading, and again
the plot matches the expected value of π2 satisfactorily.

Finally, we want to compare the local stability analysis and
the resulting dispersion relation established in Sect. 4 with the
SPH simulation results. From the top left panel of Fig. 2, the
growth rate at radius R = R0 of the first Fourier mode may
be estimated to σi = 1.8 × 10−5 s−1 = 0.028Ω(R0), the lat-
ter measured in units of the angular velocity (10) at R = R0.
With dispersion relation (75), the corresponding wave number
can be estimated to k = 42R−1

0 , which results in a wavelength
of λ = 0.15R0. Comparing that result with the surface density
distributions of Fig. 1 shows good agreement. That can be seen

in particular in Fig. 5, where the surface density distribution of
the ring at viscous time τ∗ = 0.270 is plotted in polar coor-
dinates, and where additionally lines of constant kR ± ϕ with
k = 42R−1

0 are drawn in for the region around R ≈ R0. The lines
match well the slopes and the wavelengths of the spiral struc-
tures. Note by the way that in this presentation of the surface
density clearly can be seen that in this case the spiral structure
consists of a leading (outer part of the disc) and a trailing (inner
part of the disc) spiral.

5.2. Using a finite difference method

5.2.1. Numerical considerations

In addition to the particle simulations above we performed runs
using a finite difference method for solving the hydrodynamic
equations. The code is based on the hydrodynamic program
RH2D suited to study general two-dimensional systems includ-
ing radiative transport (Kley 1989). RH2D uses a fixed Eulerian
grid and is a spatially second order accurate, mixed explicit
and implicit method. Due to an operator-splitting approach, the
method is partly centred in time and is therefore also in time
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of higher accuracy than the formal first order. The advection
is computed by means of the second order monotonic trans-
port algorithm, introduced by van Leer (1977), which guar-
antees global conservation of mass and angular momentum.
Advection and forces are solved explicitly, while the viscos-
ity is treated either explicitly or implicitly. The formalism for
application to thin discs in (R−ϕ) geometry has been described
in detail in Kley (1998, 1999).

To model the viscously evolving ring we work in cylindri-
cal coordinates and solve exactly the hydrodynamic equations
as given in Eqs. (1) to (3), using the full viscous stress tensor
presented in (4) to (6), using an extremely small pressure with
cs/vKepler ≈ 10−8. The equations are solved in dimensionless
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Fig. 5. Surface density distribution of the disc at τ∗ = 0.270 as shown
in the bottom right panel of Fig. 1 but plotted in polar coordinates (ra-
dius R over azimuth ϕ) instead of Cartesian coordinates. Additionally,
lines of constant kR ± ϕ with k = 42R−1

0 are drawn in around R ≈ R0.
Note that the spiral structure consists of a leading and a trailing spiral.

units using an arbitrary basic unit length R0. The unit of time t0
is chosen such that

t0 =

√
R3

0

GMc
, (78)

i.e. in these units GMc = 1, and the period of one Keplerian
orbit at (the dimensionless radius) R = 1 is P0 = 2π. The only
relevant physical constant entering the equations is the dimen-
sionless coefficient of the kinematic viscosity νs, which is mea-
sured in units of ν0 = R2

0/t0.
All the grid-based models presented in this paper use the

same computational domain D represented by [Rmin,Rmax] ×
[ϕmin, ϕmax] with Rmin = 0.2, Rmax = 1.8, ϕmin = 0.0 and
ϕmax = 2π. The ring D is covered in the basic model by
128×128 grid cells. However, to analyse resolution and numer-
ical effects we use different griddings ranging from 64× 128 to
256 × 733. For our basic reference model we use for the con-
stant dimensionless viscosity νs = 4.77× 10−5, which is in fact
identical to the value used in the particle simulations.

The initial setup consists of an axisymmetric density profile
following the analytic density Σring as given in Eq. (8). Because
the original δ-function distribution is hard to represent numer-
ically, we start, as above, with an initial density profile given
here by the analytic solution at the viscous time τ∗ = 0.016,
i.e. Σ(t = tinit, x = R/R0) = Σring(τ∗ = 0.016, x). The slight dif-
ference to the value 0.018, used in the SPH calculations, is of
no importance for the subsequent evolution. For the standard
viscosity 4.77 × 10−5 this refers to the initial (dimensionless)
time tinit = τ

∗R2
0/(12νs) = 4.34P0. Stated differently, one vis-

cous evolution time corresponds to 278 orbital periods P0 for
the given viscosity. The total dimensionless mass M in the disc
is normalised to unity. The initial radial velocity is set to zero
and the angular viscosity to vKepler.

The code is written such that axial symmetry is preserved
exactly for an explicit viscosity-solver, i.e. purely axisymmetric
initial conditions remain exactly axisymmetric. Hence, the ini-
tial density is disturbed randomly by typically 1 or 0.1% to sup-
ply seed perturbations, and the subsequent longterm integration
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Fig. 6. Grey-scale plot of the density in polar coordinates at different evolutionary times for a model with a 256 × 256 resolution. Times are
indicated in orbital periods P0 at R = 1R0. To compare with Fig. 1: one viscous time refers to 278P0. The time evolution of the system proceeds
similar to the particle simulations. In the initial phase axisymmetric perturbations are seen first (t = 17.45). They vanish later, and the system
returns to axisymmetry (t = 30.54). Then, from the inner parts the instability develops as a trailing spiral. At the end of the simulation a leading
spiral appears in the outer region of the ring.

has to follow the evolution on a viscous timescale which is typ-
ically about ≈100 orbital periods for the standard model.

5.2.2. The standard model

An analysis of the properties of the standard model is pre-
sented. This refers to fixed physical parameter and initial con-
ditions as outlined in the previous section. Starting from the
disturbed axisymmetric density distribution the configuration
evolves as presented in Fig. 6 where the density distribution
is plotted for a model with a resolution of 256 × 256 and an
initial density perturbation of 0.1%. During the initial phase
axisymmetric disturbances appear which vary on short dynam-
ical timescales. These radial oscillations may be related to the
viscous overstability discussed for example in Kato (1978) or
in Kley et al. (1993). The oscillations are damped however, and
the system becomes axially symmetric again. Apart from these
initial variations, there are no further indications of a variation
on the dynamical timescale during the remaining evolution. At
t ≈ 35 a trailing one-armed spiral density wave becomes visible
in the inner parts of the ring (at R ≈ 0.4R0) which propagates
slowly outwards. At later times a leading spiral appears in the
outer parts of the ring which has a negative density gradient.

This is in very good agreement with the SPH simulations pre-
sented above, and with the analytical results which indicated
the possibility of leading and trailing waves. The outer leading
spiral is not as tightly wound as the trailing inner one. That is,
the radial wave number of the outer wave is smaller than the
one on the inner side. This different behaviour may be caused
by a wrapping up of the inner spiral by the differential rotation.
At a given radius the radial separation of two wave crests (tight-
ness of the spiral) is approximately constant with time, while
for a given snapshot (time) there appears to be the tendency for
the spirals to widen for larger radii.

In Fig. 7 a radial cut through the density at the fixed angle
ϕ = π (crosses) is shown for the standard model (128×128 grid
points), for t = 52.4. Clearly seen are the different crests of
the spirals. The radial wavelength λ = 2π/k of the spiral is
of the order of a few grid points only. Overlaid we plotted
the azimuthally averaged density profile (triangles) which fol-
lows exactly the analytical solution (solid line). This feature
of the averaged density is a result of the modal form ∝eimϕ

of the developing spiral structure. The oscillations at the inner
boundary are caused by the artificial inner boundary condition
which allows for no outflow (vR = 0 at Rmin) for this particu-
lar model. Opening the inner boundary yields smooth density
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is given in orbits at R = 1R0.
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Fig. 8. Time evolution of the first 5 azimuthal modes for the standard
model measured at the radius R = 1.

distributions. The obtained growth rates are, however, not influ-
enced by the exact boundary conditions, as long as the density
there remains small with respect to the central density.

In Fig. 8 the growth rates for the first 5 modes m = 1 upto
m = 5 are displayed. The vertical axis refers to the decimal
logarithm of the amplitude. Clearly seen is the random initial
perturbation at the level of 1% which is reflected in a start of
all modes at the level of 10−3. During the initial evolution the
rings spreads slowly, the amplitudes decline until at later times
(t = 15−20) the m = 1 mode begins to grow exponentially with
time. From the plot and additional runs we may approximately
determine the growth rate σi = Im(σ) for this m = 1 mode of
the standard model to be

σi ≈ 0.035Ω(R = 1).
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Fig. 9. Time evolution of the logarithm of m = 1 mode (measured at
R = 1R0) for models with varying resolution in the angular direction.
The radial number of grid points is fixed to 128.

This is stated in units of the dimensionless time which is iden-
tical to the Keplerian orbital frequencyΩ at the radius R = 1R0.
To verify the numerical robustness of this result we varied sev-
eral numerical parameters such as rotating frame, implicit vis-
cosity, directional splitting, inner and outer boundary condi-
tions, and found no significant variation.

Of course, since the growth rate σi = σi(k) depends on the
azimuthal wave number k and thus on the grid size as well, we
do expect a dependence on the numerical resolution.

5.2.3. Varying resolution and viscosity

To test the influence of the numerical resolution we first fixed
the number of grid points in the radial direction (to 128) and
then varied the number of the angular grid points (from 128
to 370). The results in Fig. 9 indicate that the growth rate of the
m = 1 mode (measured at R = 1R0) is nearly independent of the
resolution in ϕ and converges for large Nϕ to one value. This is
consistent with our result that to second order the growth rates
should be independent of the azimuthal wave number m.

In the next set of models the number of radial grid points
was allowed to vary as well. The time evolution of the total
radial kinetic energy is displayed in Fig. 10 for models with
different radial (and azimuthal) grid resolutions. For very small
radial resolutions NR = 64 there is very little or no growth.
Then, for an increasing number of radial grid points the growth
rates increase as well. This effect of faster growth for higher
resolution is not an artifact of the numerical analysis but is to
be expected from our analytical estimates. It was shown that the
growth ratesσ depend on the radial wave number k: the smaller
the wavelength of the perturbation the faster the growth rates.
But the smallest wavelength that can be resolved by numerical
computations depends naturally on the resolution. Notice, that
the wave crests in such a simulation are always resolved by
only a few grid cells (see Fig. 7).
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Fig. 10. Time evolution of the total radial kinetic energy (dimension-
less units) in the system for different numerical resolution, as indicated
by the labels. The physical parameter of the models are those of the
standard model.

To study the influence of the kinematic viscosity we var-
ied ν from the standard value to higher and smaller values. In
Fig. 11 results are shown for several models. A measure of the
global deviation ∆Σ of the density from the axisymmetric struc-
ture has been plotted, with ∆Σ defined as

∆Σ = max
D

(
Σ(r, ϕ) − Σ(r, ϕ + π)
Σ(r, ϕ) + Σ(r, ϕ + π)

)
(79)

where the maximum is taken over the whole computational do-
mainD. This measurement of ∆Σ is often a better tool to anal-
yse the growth rates than just studying the m = 1 mode at some
specific radius as done above.

It can be seen that upon increasing the viscosity the growth
rates are also increasing, which is again in agreement with our
analytical estimates. The initial increase of∆Σ for the two mod-
els with the lowest viscosities (νs and 1/2 νs) is related to the
nearly ring like disturbances described before. These decline
first, and then later the growth of the spiral disturbance sets in.
The exact behaviour of the curves depends on the initial ran-
dom perturbation as well.

Finally we display the obtained growth rates for different
viscosity coefficients in Fig. 12, where the solid line denotes
the results computed by the finite difference method. For larger
viscosities the growth rates are also larger which is in agree-
ment with Eq. (75). To compare exactly with the analytical re-
sults, the wavelength of the most unstable mode needs to be
known as well. However, the wave number is a function of ra-
dius, making a detailed comparison not as easy. It is found in
general that the obtained growth rates (as given for example in
Fig. 12) are in the right order with the first term of Eq. (75)
but are consistently lower. The radial variation of the quantities
may easily account for this slight discrepancy.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

10 20 30 40 50 60

Lo
g1

0-
A

xi
sy

m
m

et
ry

Time

Standard

1/2

2.0

4.0

Fig. 11. Time evolution of the asymmetry ∆Σ, Eq. (79), for different
kinematic viscosities. Starting from the reference value (standard, ν =
4.77 × 10−5) we lowered and increased the value of ν by the factors
given in the key.

Additionally, results of similar SPH calculations are plotted
in Fig. 12, indicated by the dashed line. In all cases, the SPH
results fit the dispersion relation (75) well within the accuracy
of the SPH simulations. However, the growth rates as well as
the associated wave numbers of the most unstable mode are
lower than the grid-based results. Moreover, the growth rate in-
creases slower with increasing viscosity. This behaviour may
demonstrate that the relation of growth rate and wave num-
ber is depending on spatial resolution, initial condition, and
on the numerical method. The discrepancy may also be caused
by different evaluation methods. While for the SPH results the
growth rates were measured locally from the evolution of the
amplitude of the m = 1 Fourier mode at radius R = R0, for the
grid-based results they were determined globally by analysing
the change of ∆Σ according to Eq. (79). This may also be
another cause why the grid-based results fulfil the dispersion
relation (75) not exactly.

6. Conclusion

We have shown that the spiral instability found in various sim-
ulations of the viscously evolving dust ring can be understood
in terms of a secular spiral instability driven by viscosity. To
accomplish this, we performed a perturbation analysis using
a time-stretching transformation. It turned out that the widely
known analytic solutions for the surface density evolution and
the azimuthal velocity of the viscously spreading ring consist
of the zeroth order terms of the expansion, while the solution
for the radial velocity is given by the 1st order terms.

As a result of the perturbation analysis we found that the
ring may develop one-armed spiral structures to 1st order and
one- and two-armed spiral features to 2nd order. A local
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Fig. 12. The growth rates (in units of Ω at R = 1) versus kinematic
viscosity in units of the standard viscosity (4.77 × 10−5) for different
kinematic viscosities and for both numerical methods.

stability analysis of an eccentricity function E provided a dis-
persion relation that led for a constant kinematic viscosity to a
growth rate for secular spiral instabilities of

σi =
1
3

k2 ν + O(ν/R2)

in the limit kR � 1. The exact form of the growth rate depends
on the viscosity prescription ν = ν(R). Our theoretical results
could be confirmed in several simulations using two different
numerical methods.

As a consequence for numerical simulations of accretion
discs, the spiral instability has to be taken into account when
using the spreading ring for instance as test problem for code
development. Otherwise, occasionally emerging spiral features
may be mistaken for numerical instabilities of the algorithms
used for the calculation of the viscous forces.

The physical implications of our results are not as
obvious. Because the kinematic viscosity ν is held axisym-
metric throughout the whole stability analysis, the discovered

non-axisymmetric instabilities may be of importance mainly in
accretion discs where the viscosity is determined uniformly by
external effects like irradiation.
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