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Case for migration

Close-in giant 
planets: Hot Jupiters

Can probably only 
form at ~5 AU

Must have migrated 
inward





Planet migration

Planets form inside 
circumstellar discs

Gas disc exerts force 
(torque) on the 
planet

Result: orbital 
migration



Type 0, I, II, III
All embedded bodies subject to migration

Type 0: aerodynamic drag causes small particles to 
drift inward (Weidenschilling 1977)

Type I: low-mass planets excite linear waves 
causing inward migration (Ward 1997)

Type II: massive planets undergo ‘accretion’ onto 
the central star (Lin & Papaloizou 1986)

Type III: intermediate-mass planets embedded in 
massive discs undergo runaway migration (Masset 
& Papaloizou 2003)



Migration by waves

Planets up to a few M⊕ excite linear 

waves in the disc (Goldreich & Tremaine 
1979)

Asymmetries in disc (density, rotation) 
lead to an exerted torque

Semi-analytic torque formula (Tanaka et 
al. 2002): inward migration



 

-0.02 0.00 0.02 0.04
 
 

-1 0 1
 x 

 

 

 

-1

0

1



m(Ω−Ωp) =±Ω

Ω/Ωp =
m

m∓1

r/rp =
(

m
m∓1

)−2/3

Migration by waves

Waves are launched 
at Lindblad 
resonances 
(Goldreich & 
Tremaine 1979)

Wake is sum of all 
waves
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Migration by waves

Competition between inner and outer 
wake

Outer resonances push planet inward, 
inner resonances push planet outward

Outer resonances closer to planet: they 
win in general, planet moves inward
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Migration by waves

Inward migration is 
robust for reasonable 
disc parameters

Linear calculations: 
Tanaka et al. (2002)

Bigger planets move 
faster

Σ ∝ r−α



Planet at 5 AU in MMSN
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Type I problem
Migration can be very efficient

Type 0: m-sized bodies migrate into the 
central star in ~100 years

Type I: Earth-sized planets migrate inward 
in ~105 years

Disc lifetime: 106-107 yr

Population synthesis models usually 
include a fudge factor of order 10x



Planet at 5 AU in MMSN
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Gap formation

High-mass planets induce a non-linear 
disc response

Angular momentum flux too large to be 
compensated by viscous flow

Annular gap forms





R.P. Nelson, QMUL, London



Gap formation

Crida et al. (2006): minimum planet mass 
depends on disc scale height and 
viscosity

Typically M > MJup

Different mode of migration: Type II



W. Kley, Tuebingen



Type II migration

Planet opens up deep annular gap

It can not move with respect to the gap

Gap accretes with rest of disc

Planet accretes onto star

Time scale: viscous



Planet at 5 AU in MMSN
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Type II migration

Independent of planet mass (unless 
planet much more massive than disc)

Requires a VERY clean gap

Otherwise, residual wave torque drives 
planet inward faster



Migration by waves
Embedded planets launch tidal waves

Resulting torque pushes planets inward at 
an alarming rate: Type I migration

Cut-off at high mass due to gap 
formation: Type II migration 

Wave theory is quite robust

Verified to within 10% by numerical 
simulations



m(Ω−Ωp) = 0

Ω = Ωp

r ≈ rp

Enter: corotation

Waves originate 
approximately one 
scale height from the 
planet

Additionally, gas that 
corotates with planet 
also feels strong 
perturbation 



Corotation resonance

Apply successful resonance theory to 
corotation 

No waves at corotation

Perturbation carried away by viscous flow

Torque is sum of contribution from all 
corotation resonances 
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Corotation Torque
Goldreich & 
Tremaine (1979): 
resonances at 
corotation radius

Proportional to 
radial vortensity 
gradient

Always smaller than 
Lindblad torque



Γ =−(1.364+0.541α)
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Disc thickness h! 1

p = p(Σ)

Total Torque

Tanaka et al (2002)

Widely used

Low-mass planets

Usually negative

Barotropic disc

Σ ∝ r−α



The maze of corotation

Ward (1991) provides an alternative 
formulation of corotation torque

Based on streamline analysis

Material on horseshoe orbits exerts 
torque on planet 



F. Masset, CEA Saclay



∆Σ =
dω
dr

∣∣∣∣
rp

∆r

Horseshoe drag

In 2D, barotropic 
flow, vortensity is 
conserved along 
streamlines

After making the 
turn, density must 
change

ω =
∇×!v

Σ
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The maze of corotation

Horseshoe drag

Linear corotation 
torque 



Horseshoe drag

Alternative view on corotation torque

Inherently non-linear

Relation to linear (resonant) torque?

Both proportional to vortensity gradient

‘Free’ parameter: horseshoe width xs 



Linear horseshoes?

So which of the two approaches is 
correct?

This issue has never been settled...

Linear theory: perturbed circular orbits

Horseshoe drag: horseshoe bends

These cannot co-exist...
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What determines xs?
Critical for 
calculating 
horseshoe drag

Simple model (C<1 
accounts for 
gravitational 
softening)

Paardekooper & 
Papaloizou (2009)
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Horseshoe vs Linear

This value of xs gives 
a horseshoe drag 
that is much larger 
than the linear 
corotation torque!

They only differ in 
magnitude
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Numerical simulations

2D isothermal disc

Low-mass planet (4 M⊕) 

Different surface density profiles
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The maze of corotation
Numerical hydrodynamical simulations 
show departure from linear theory 
whenever the vortensity gradient is non-
zero

Linear corotation torque is replaced by 
(stronger) horseshoe drag

Migration may be slowed down by an 
order of magnitude for α<0



p = c2Σ

p = ΣR T

Extension

Applies to barotropic 
fluid (isothermal)

Releasing this 
assumption means 
solving the energy 
equation

p = p(Σ)



s =
p

Σγ

Σ ∝ r−α, T ∝ r−β

s ∝ r(γ−1)α−β

Γ ∝ (β− (γ−1)α)

Adiabatic simulations

Add conservation of 
entropy to (2D)
equations

Gives rise to 
additional horseshoe 
torque

Wave torque smaller 
by factor γ
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Adiabatic simulations
Extra horseshoe drag changes sign of 
torque!

Low-mass planets move outward for 
negative entropy gradients

Since the temperature usually decreases 
with r, this is not unrealistic

This behaviour can not be understood 
from linear theory!



Cooling efficiency

Isothermal: cooling very efficient

Adiabatic: no cooling

Depending on local opacity, expect 
adiabatic or isothermal result

3D, radiation hydrodynamical 
simulations



Paardekooper & Mellema 2006



Radiation-hydrodynamics

High density (opacity): adiabatic result, 
planet moves outward.

Low density (opacity): isothermal result, 
planet moves inward.

Safety net for low-mass planets



Torques and migration

Wave torque is independent of migration 
rate

Horseshoe region is no longer closed

Inflow of fresh material drives additional 
migration



5.4 Co-orbital Flow and Type III Migration 37

Figure 5.9: Schematic presentation of the gas flow in the disc with embedded massive
planet for different planet’s migration rates ȧ. Three different cases are shown ȧ = 0,
|ȧ| < ȧ f and |ȧ| > ȧ f on upper, middle and lower panels respectively. Co-orbital region
is marked gray, with dark- , middle- and light- colour being tadpole, horseshoe and
co-orbital flow regions respectively. On the other hand regions of circular orbits in
the inner and outer disc, and interior of the Roche lobe are left white. There are no
co-orbital flow on the upper panel, and the whole horseshoe region shrinks to a single
tadpole-like region on the lower plot. Adapted from Ogilvie & Lubow (2006).

that the planet’s radial motion changes the gas flow in the co-orbital region
and gives a substantial growth of the corotation torque1, leading to a new,
rapid migration mode, the so-called type III migration regime. This migration
mode has no predefined direction, even though the differential Lindblad torque
breaks the symmetry between both cases and introduces a bias for inward
migration. It can be both inward and outward directed, since it is driven by the
co-orbital flow, which results from breaking the symmetry of horseshoe orbits
and can transfer mass from inner to outer, or from outer to inner discs. In
this section we will consider rapid migration of massive, Roche lobe forming
planets, since this is the best investigated case.

1The symmetry of horseshoe region may be broken by other mechanisms resulting in relative
planet-disc motion, such as disc viscosity (Masset, 2001).

Ogilvie & Lubow 2006



Type III migration

Corotation torque is proportional to 
migration rate

Positive feedback: runaway migration 
(Masset & Papaloizou 2003)

Time scale: 10-100 orbits (!)





Type III migration

Can be both inward and outward, 
depending on initial conditions (Peplinski 
et al. 2008)

Inward migration is limited due to 
shrinking of horseshoe region

Outward migration is limited due to rapid 
growth of planet (Peplinski et al. 2008)
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Figure 10. Results of the simulations for different planet masses. Curves 1–3 correspond to the initial planet mass MP = 0.0007, 0.001 (standard case) and
0.0013, respectively. The upper left- and right-hand panels show the evolution of the planet’s semimajor axis a and the migration rate ȧ. The non-dimensional
migration rate Z as a function of the planet’s position in the disc and the evolution of the effective planet mass M̃P are presented in the lower left- and right-hand
panels. During the first 40 orbits (fast migration regime |Z| > 1) all systems evolve almost exactly the same way even though the (effective) planet mass may
vary. The simulations start to differ after reaching the slow migration regime. Even though the migration rate ȧ is almost identical for all simulations during the
fast migration regime, the non-dimensional migration rates Z differ slightly, since ȧf depends on M̃P.

The lower right-hand panel shows the effective mass evolution.
For a constant circumplanetary disc aspect ratio hp, higher mass
planets accumulate a larger amount of gas in the circumplanetary
disc. The mass accumulation rate is relatively low during the fast
migration regime and increases with decreasing |Z|. There is a vis-
ible increase of ˙̃MP for Z ≈ −1.7 in all three cases. Similarly the
mass outflow from the Roche lobe starts at Z ≈ − 0.6 indepen-
dently of the planet mass (and thus happens earlier for more massive
planets). The final planet masses are 0.000 95, 0.001 55, 0.0023 for
MP = 0.0007, 0.001 and 0.0013, respectively. This corresponds to
a relative increase of 35, 55 and 76 per cent after 100 orbits, respec-
tively, and thus the relation between MP and M̃P is not linear.

The lowest mass planet shows some evolutionary features not
seen in the other two. First, its mass accumulation rate shows two
instances of rapid growth, the first one at about 27 orbits (Z ≈
−2.5), and the second one at 45 orbits (Z ≈ −1.7). Secondly, after
80 orbits the lowest mass planet shows oscillations in its migration
rate. After 120 orbits these oscillations have damped out, and the
migration rate ȧ becomes similar to that of the more massive planets.
These oscillations are caused by a change of shape of the flow lines
in the planet’s vicinity from regular orbits in the circumplanetary
disc to a non-regular flow modified by the strong pressure gradient.

5.2 Effects of circumplanetary disc aspect ratio

The next parameter we consider is the circumplanetary disc aspect
ratio hp. As shown in Paper I, this parameter corresponds to the
temperature of the circumplanetary disc, and determines how much
material can be accumulated there. Since the mass accumulation

influences type III migration, it is interesting to study the effect of
this parameter.

In addition to our standard case of hp = 0.4, we ran simulations
using values of 0.5 and 0.6. We do not use a value lower than 0.4,
since the tests presented in Paper I showed that a model with 0.3
does not fully converge for the resolution used in our simulations.8

The results for all three cases (labelled 1–3) are presented in
Fig. 11. We use the same set of plots as in Fig. 10: the evolution of
the planet’s semimajor axis a and the migration rate ȧ in the upper
panels, and the non-dimensional migration rate Z as a function of
the planet’s position in the disc together with the evolution of the
effective planet mass in the lower panels.

As expected, changing hp has a strong effect on the evolution of
the effective planet mass M̃P. As we saw above, the standard case
(0.4, curve 1) shows a phase of strong mass accumulation, followed
by mass loss from the circumplanetary environment after migration
has slowed down. The other two cases do not show such strong mass
accumulation, and the higher the value of hp, the lower is the mass
accumulation. In fact curves 2 and 3 show that mass outflow already
starts at t ≈ 20 orbits, i.e. during the rapid migration stage.

Considering the evolution of a and ȧ we notice some small
differences. For hp = 0.5 and 0.6 the flow asymmetries in the
planet’s vicinity during the fast migration regime phase become less
pronounced, leading to a lower total torque |!|. This results in a

8 The results for hp = 0.3 are actually a more extreme version of the 0.4
results, see Paper I.
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Peplinski et al. 2008



Type III migration

Disc mass in horseshoe region needs to 
be comparable to planet mass

Important in massive discs

Driven by corotation torques



The maze of corotation
Disc planet interactions are less linear 
than previously thought

In absence of an enormously strong 
viscosity, non-linear corotation torques 
slow down inward migration for shallow 
density gradients

Torque reversal for cases with 
background entropy gradient



Conclusion

Planets are very mobile

One should be careful when applying 
linear formula

Proper thermodynamics is critical



Future work

Understand 3D horseshoe dynamics

Turbulence and horseshoes

Is there a simple formula capturing all 
this?



What was not discussed

Magnetic fields: magnetic resonances, 
MRI turbulence (Nelson & Papaloizou 
2003)

Self-gravity (Baruteau & Masset 2008)

Saturation (Paardekooper & Papaloizou 
2008)

Multiple planets


