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The finite difference methods of Godunov, Hyman, Lax and Wendroff (two-step),
MacCormack, Rusanov, the upwind scheme, the hybrid scheme of Harten and Zwas, the
antidiffusion method of Boris and Book, the artificial compression method of Harten, and
Glimm’s method, a random choice method, are discussed. The methods are used to in-
tegrate the one-dimensional Eulerian form of the equations of gas dynamics in Cartesian
coordinates for an inviscid, nonheat-conducting fluid. The test problem was a typical
shock tube problem. The results are compared and demonstrate that Glimm’s method has
several advantages.

1. INTRODUCTION

In the past few years numerous methods have been developed for solving systems
of nonlinear hyperbolic conservation laws

where F is a smooth function on R” of U and the derivative matrix DF(U) possesses
strictly nonlinear or linearly degenerate eigenfunctions and eigenvalues in the sense
of Lax [16]. In the terminology of gas dynamic this corresponds to systems having
modes which admit respectively, discontinuities of shock type, or contact discon-
tinuities, only. For example, a single equation

U + g)s = 0,

is strictly nonlinear if g(t)q, 7 0 and is linearly degenerate if g(u) = Cu, where Cisa
constant.

There are several difficulties in solving such systems numerically. Inherent in any
finite difference scheme is an assumption on the regularity of the solution. Typically
such schemes produce oscillations behind a shock. All finite difference schemes
have numerical diffusion, dispersion, or both due to the truncation error. As a
result there will be diffusion across the contact discontinuity with each time step,
causing the contact discontinuity to be smeared in the course of the calculation.
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A shock is also smeared, though less dramatically. Finally, there is often difficulty
in obtaining an accurate approximation to the smooth parts of the solution,
particularly at points where certain higher order derivatives fail to exist.

The finite difference methods of Godunov [6], Hyman [13], Lax and Wendroff [19],
MacCormack [18], Rusanov [21], the upwind scheme [20], and the hybrid scheme of
Harten and Zwas {12] will be discussed. Glimm’s method, a random choice method,
will also be considered. Glimm’s method at first appearance may not seem to fit in the
category of the other methods. However, it shares several features with the above
difference schemes. All of these methods are fixed grid methods having the same grid
structure. These methods require about the same amount of storage. All of the above
finite difference schemes are finite difference approximations to the derivative arising
in the conservation laws and can treat in principle an arbitrary system of conservation
laws. Similarly Glimm’s method can treat an arbitrary system of conservation laws.
See Harten and Sod [11].

The finite difference schemes as well as Glimm’s method share one other feature,
namely, a family of waves interacting can be handled automatically. However, the
degree of resolution to which such interactions are represented is not the same for all
methods,

Most finite difference methods when applied to problems with discontinuities
produce oscillations behind the shock. Von Neumann and Richtmyer [26] developed
an artificial viscosity term which was introduced into the Lagrangian form
of the equations of gas dynamics. The goal of the artificial viscosity was to reduce
the oscillations while allowing the shock transition to occupy only a few mesh
points and having negligible effect in the smooth regions. All other forms of
artificial viscosity are variations of the one introduced by von Neumann and
Richtmyer. The one used in this survey due to Lapidus [14]is no exception. However,
it is suited to the conservation laws and can be added to an existing method as
a fractional step. One important feature of Lapidus’ form of artificial viscosity is that
a variant of it can be applied to general conservation laws. Artificial viscosity will not
spread a contact discontinuity (see section on artificial viscosity or Sod [25]). The
smearing of a contact discontinuity is due to the truncation error of the scheme and
the smearing of a shock is due to the truncation error of the scheme as well as the
artificial viscosity. The spreading of the contact discontinuity being much more severe,
O(n'/'+D) for a gth order accurate scheme, where n is the number of time steps.
See Harten [8].

Recently methods have been developed for correcting the smearing of shocks and
contact discontinuities. The “flux corrected transport” method of Boris and Book [1]
is used to obtain a high degree of resolution without oscillations. The artificial
compression method of Harten [8-10] is designed to sharpen results in regions con-
taining shocks and contact discontinuities.

The inviscid, non-heat-conducting equations of gas dynamics can be written in
conservation form with the flux ¥ having the form discussed above, However, there is
a large class of problems for which little is known. This is the case where F is either
nonsmooth or not strictly nonlinear. Examples are the Buckley-Leverett equation, in
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the case of a single equation (see Buckley and Leverett [27]) and the problem of an
exothermic reacting gas, in the case of systems. In these cases special methods have to
be considered. For the case of an exothermic reacting gas see Chorin [4] and Sod [24].

The only ““high”-order method considered in this survey is the hybrid scheme of
Harten and Zwas. Fourth- and sixth-order methods were originally considered for
the equations of gas dynamics. However, with all of the high-order methods using the
appropriate high-order artificial viscosity term, the coefficient of numerical diffusion
was so large that the time step became prohibitively small. The only way in which a
solution could be obtained with these high-order methods was to use the artificial
viscosity due to Lapidus, which is third order. With the use of a low-order artificial
viscosity term, all benefits obtained by using a high-order method are lost.

In the following sections a brief discussion of the methods is given, their solution to
a sample one-dimensional problem is compared, and the merits of the methods are
discussed. Due to the nonstandardness of Glimm’s method, as well as the difficulty in
programming, its acceptance as an effective and efficient numerical tool may be
restricted. For this reason the equations used by Glimm’s method are derived and a
flow chart for its implementation is given. For further details on these methods see
Sod [25].

Basic Equations

The one-dimensional equations of gas dynamics may be written in the (conservation)
form:

940 + du(pu) = 0, (2a)
o + 8,(m*p) +p) =0 (2b)
9,e + 2,((mlp)e +p) =0, (2c)

where p is the density,  is the velocity, m = pu is momentum, p is pressure, and e is
energy per unit volume. We may write ¢ = pe + &ptt’s where ¢ is the internal energy
Per unit mass. Assume the gas is polytropic, in which case

e=p/ly —Dp G)
where y is a constant greater than one. Furthermore, from (3) we have
p = AS)P )
Where S denotes entropy.
Equations (1)~(3) may be written in vector form
(5)

U, + F(U)m =0,
where

m
U= [;] and FU) = [(mz/p) +p ]
(m/p)(e + P)
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In order to deal with solutions containing shocks we write the equations in integrgl
form, which is obtained by integrating Eqgs. (22)—(2c) (or Eq. (5)) over any region in
the upper half of the (x, #) plane and applying Green’s theorem

fpdx+fmd:=o, (6)
[ max+ [ @lp) + py e = o, 7
[ eds + [ @nlpde + p)) dt — 0. ®)
TABLE I
Standard Finite Difference Methods
Originator Order Scheme Stability?
Godunov 1 ﬁ;‘:i{ = %-(u’;ﬂ +ur) — (At/Ax)(F’i‘+1 —F[) o<1
= ur — (A Ax)(Fril — Frid)
Lax-Wendroff 2 Wi = S +ur) — (41/24x)(Fy | — F ) o<1
(two-step) u’;“ =u’— (At/Ax)(F;':g — F:‘fg)
MacCormack 2 wptt = u — (dt)4 x)Er — F 1) o< 1
W =+ u) — (4e24x)(F — Fie)
Rusanov 1 uit =y S (At/ZAx)(F;‘Jr L~ FL) o<1
+ 3, + o —um) e w1l
= (o — ol D — up ),
o = w(dt/Ax)(u + o)
Upwind 1 uitl = u® - sgn(ui")(dt/dx)((}:‘ — G’;_HM) o]

~ (defaax)(sy,, — S,

where G = (pu, pu?, u(e + p))T, 8§ = (0, p, 0)T, and
s(u) = —1 if u > 0
1 if ut <0

“o = max(| u| + €)4t/dx, where ¢ denotes the local sound speed.
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2. DESCRIPTION OF THE METHODS

The methods of Godunov [6], Lax and Wendroff (two-step) [19], MacCormack [18],
Rusanov [21], and the upwind difference scheme [20] have been widely used and no
benefit can be obtained by describing them bere. Hence, these schemes will merely be
listed in Table I. The remaining methods under consideration will be briefly discussed.

Consider the nonlinear system of Eqs. (5). Divide time into intervals of length At
and let Ax be the spatial increment. The solution is to be evaluated at time 7 4x,
where 7 is a nonnegative integer at the spatial increments i dx,i=0, +1, £2,...,and
at time (n + 3) At at (i + %) 4x. Letu,” approximate U(i 4x, n At) and uj} approxi-
mate U(G + 1) 4x, (n + ) 48).

Glimm’s Method

Recently the random choice method introduced by Glimm [7] has been developed
for hydrodynamics by Chorin [3]. The method is a two-step method. To find ufif fa.x}d
thus define the method, consider system (5) along with the piecewise constant initial
data

UQx,ndt) =wt,, XZ (i + P 4x,
= ;" x < @+ 5 4dx.

®
This defines a sequence of Riemann problems. If At < Ax/2(u | + c), where c.is the
local sound speed, the waves generated by the different Riemann problems will not
interact. Hence the solution ¥(x, t) to the Riemann problem can be combined into a
single exact solution. Let &, be an equidistributed random variable which is given by
the Lebesgue measure on the interval [—%, }]. Define

wrtp = V(i + &) 4% (1 F 1) 41). (10)

At each time step, the solution is approximated by a piecewise constant function. The
solution is then advanced in time exactly and the new values are samplec%. The mefthod
depends on the possibility of solving the Riemann problem exactly and inexpensively.
Chorin [3] (see also Sod [22]) modified an iterative method due to Godunov [5]
which will be described below.

Consider system (5) with the initial data

U(x, 0) = S; = (prs U s Pi)s x <0,

(1D
=S¢¢(Pr’ufppr)a- x = 0.

The solution at later times looks like (see [15]) Fig. 1, where Sy and S, are either a

shock or a centered rarefaction wave. The region Sx is a steady state. The lines /; and

I, separate the states. The contact discontinuity dx/dt = Uy, separates the state S,

into two parts with possibly different values of px ; but equal values of u, and py. .
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be
g‘% = Uy
s
# Qa
S,
S

Fie. 1. Solution of a Riemann problem,
Using this iterative method we first evaluate p, in the state S« . Define the quantity
M, = (p, — P/ (u; — ). (12)
If the left wave is a shock, using the jump condition Uilp] = [pu], we obtain
M, = Pty — Uy = pul(tt — Uy), (13)

where U, is the velocity of the left shock and P« 1s the density in the portion of Sy
adjoining the left shock. Similarly, define the quantity

M, = (pr — p)I(t, ~ u). (14)

If the right wave is a shock, using the jump conditions U.,[p] = [pu], we obtain

M, = ""'Pr(ur - Ur) = _"P*(u* — Ur): (15)

where U, is the velocity o
adjoining the right shock,

In either of the two cases ((12) or (13) for M rand (14) and (15) for M,) we obtain

f the right shock and P 1s the density in the portion of .S,

M, = (0,22 $(po/p,), (162)
My = (p PV $(pu/py), (16b)
where

Hx) = (—2’—%—-—!—\ + X 1 )1/~ xX>=1,

t-, L]

1 1 X a7
pasnom) y—— _..

2)}1!3 1 _ .\_5____\:4, L) X '% 1.

Upon elimination of ty, from (12) and (14) we obtain

Pe = (g~ 1, + ‘,{’I’r + -%—)/(j% + Tlr) (18)



SURVEY OF FINITE DIFFERENCE METHODS 7

Equations (16a), (16b), and (18) represent three equations in three unknowns for
which it can be seen that there exists a real solution. Upon choosing a starting value
2,0 (or M2 and M,9), we iterate using Eqs. (16a), (16b), and (18). For details of the
starting values see Chorin [3] and Sod [25].

After p,., M, , and M, have been determined we may obtain u, by eliminating p,
from Egs. (12) and (14),

Uy z(Pz“Pr‘{" Mlul+Mrur)/(Ml+Mr)a (19)

from which the complete solution of the Riemann problem can be determined using
the jump conditions for shock waves and the isentropic law and constancy of the
Riemann invariants for the rarefaction waves. See the Appendix.

The finite difference method due to Godunov [6] in Table L is for the Eulerian form
of the equations of gas dynamics. The method developed by Godunov [5] for the
Lagrangian form is also a two-step method where the second step is the second half
step in Table I. However, the values of #7} and piiE are replaced by u, (19) and
P« (18) from the Riemann problem at i + .

Artificial Viscosity

In the methods of Godunov, MacCormack, and Lax and Wendroff (two-step), an
artificial viscosity term was added. The artificial viscosity term used was introduced
by Lapidus [14]. It has the advantage that it is very easy to add to an existing scheme
and it retains the high-order accuracy of the scheme. Let @i7** be the approximation at
time (7 + 1) 4¢ obtained by any one of the above schemes. This value is replaced by

the new approximation

u"_H’l — ﬁ;l:?a'i'l + VAI A/[l Alﬁr.z+1 .A’ﬁn+l]’ (20)

A X i+1 i+l

where A'G,* = {i,» — @i}, and v is an adjustable constant. _ '
Equation (20) is a fractional step for the numerical solution of the following
diffusion equation

U, = (v At/Ax)(Axs)” u; | Ua:]z .

It is shown (see Ladidus [14]) that this new difference scheme (obtai_ned by adcliing t.he
artificial viscosity) satisfies the same conservation law that the prevm}ls'eql}atlon d‘fl'
The values of the constant » used varied from method to method. This is discussed in
the section on numerical results. This artificial viscosity was not added in the sn}oo.th
Tegions and not applied to the first component (mass) egu_ati.on of (5). The artificial
viscosity is not applied to the mass equation so as to mimmize the amount of mass

diffused across the contact discontinuity.
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Harten’s Corrective Method of Artificial C ompression

In this section we discuss the Artificial Compression Method (ACM) developed by
Harten [9]. This method is designed to be used in conjunction with an already existing

finite difference scheme. The purpose of this method is to sharpen the regions which
contain discontinuities whether shocks or contact discontinuities.

Only the basic idea of the ACM will be discussed for the case of a single conserva-
tion law. Let u(x, 7) be a solution of the conservation law

u, — flu), = 0 (21)

which contains a discontinuity (ur(1), ug(t), S(r)), where u, and uy are the values on
the left and right of the jump and S is the speed of the discontinuity. The discontinuity
is either a shock or a contact. Assume, without loss of generality that at any given

time £ the solution « does not take on any values between u;(r) and (7). Consider the
function g(, ) with properties

8(u, t) sgn [ug(t) — u ()] = 0 for u e (u (1), ug(t)), (22)
glu,t) =0 for w ¢ (u (1), uy(r)). (23)

This function g will be called an artificial compression flux.
It can be seen that v is also a solution of the conservation law

uy + (f(u) + glu, 1)), = 0. (24)

By (23) we see that when u is smooth Eq. (24) is identical with Eq. (21) and the shock
speed S(¢) remains the same. Finally it is observed (from (22)) that if (u;, ,up,S)isa
shock or contact for Eq. (21) then it is a shock for the modified equation (24).

The artificial compression method solves the modified equation (24) rather than the
original equation (21). For a complete discussion of the implementation of the method
see Harten [9].

Let @i} ** represent the approximate solution vector to (5) obtained by using any one
of the above first order difference methods. In solving the modified system (analogous to

(24)) we use operator splitting. We first define the difference representation g, of the
artificial compression flux g,

gi == aiAi [ (25)
where

A, = Uy, — iy,
and

— max J0, min [0 854 1, 8% - sgn(8%,,) 1) |
oy max '0, mkln [ I Sf},,‘} | - I 8175”% I '-*m]‘ (26)
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where k refers to the kth component of the @, 8%, , = &{th — @®, Let S;,; represent
p ! 1s Qivy +1 7 +4 -
the vector whose kth component is sgn (8f,,). Then the difference scheme which
applies the ACM to the given solution fr+is

| - At
ll:"“l s @Rl — __..__; (gi«el —_ gi-—l)
A 1
T 2dx (81— BiiSiey — 18— 8Bia | Si-y) (27a)
o Bt At 71 n
G gy (Gl — G 270)

where G;,, — & — 871 — | gl — 8" 1S applied componentwise. See Harten [8].

The method of artificial compression is designed for first-order schemes and
cannot be applied directly to higher-order schemes. The idea of ACM is based on the
existence of a viscous profile. See Harten [9]. Higher-order schemes introduce other
flux terms so that one obtains different (nonphysical) speeds of propagation.

Self-Adjusting Hybrid Schemes

The idea of self-adjusting hybrid schemes was introduced by Harten and Zwas [12}.
Consider a nonoscillatory first-order scheme L, and a kth-order (k > 2) scheme L;,

Lyu; = u; — (4 t/Ax)(fL.;_? _f}—{‘)s (28)
Loy, = ug — (AI/A-Y)(fZ':-} — fEp- (29)

So as not to violate the conservation, hybridize L, and L, through their numerical
fluxes. Define the hybrid operator L by

Lu; = w; — (AtAx)(firy — fieth (30)
where

L
ﬁ*& == Bi_b.%f}‘{u% + (1 - Hi+%)fi+§ > (31)
0:14 is a scalar quantity (called a switch) which satisfies 0 < 9,-4,*-% 1. 'At.c-ijscon-
tinuities the automatic switch is such that 8 ~ I. Hence at the discontinuities the

hybrid scheme is essentially the nonoscillatory first-order scheme.
Equation (30) can be written in the form

Luy = Ly + "ﬁ% [0i+&(f }4«{; ”“f ?Hf) - 9*‘-~&(f 11'—& — f :‘G—ﬁ)] (32
50 that if # is o(4x?) where the solution is smooth, then for p = k — 1 we have

Lut; = Lytt; -+ 0o(4xX*H). (33)
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1s discussed in
There are many choices for such schemes. The scheme chosen here is discuss

Harten [10]. Taking k¥ = 2 we choose MacCormack’s scheme and by adding the
artificjal viscosity term

%(9i+i~(ui+1 —u;) — Bi—-}(ui — U, 4)) (34)

to MacCormack’s scheme we obtain the first-order scheme.
The hybridized scheme becomes for system (5)

- yi|

W= A; ¥, —F7) (35)
1, — At — —

u;“'l — 5 (u?iZ-H — uin) —_ —Zmdx (Fiwl _ Ff:11

+ % (O 07, — ) — g2 (5" — ur ). (36)

The stability condition for the first-order scheme is

a2
max(| u | + C)—Z]}- S5

4

this being stricter than the stability condition for MacCormack’s scheme. So this is
the stability condition for the hybrid scheme,

It remains to describe how switch 8 is chosen.

There are many possible choices, the
one selected is described ip Harten [10]. Let 4

i+3 = P — p; . Define

b= |14l =4, p N
CTAG RIS for Myt i4,,) 2 .
=0, otherwise,
In th.is Cas p=1and e >0 is chosen as a measure of negligible variation in the
density p, We define the switch 8 by

Bf”"} = max(gi ) gi+1).

II?-H' = ﬁ;""l —_—

At
225 GGy — 02,67 ), (3K)
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Antidiffusion Method of Boris and Book

In this section we shall discuss briefly the antidiffusion method developed by Boris
and Book [1]. The purpose of this special technique known as ‘“‘flux correction™ is to
achieve high resolution without oscillations.

It can be shown that a first-order difference scheme can be represented by
an equation of the form

u, + f(u), — At [glu, AdtfAx) u,]., (39

where g(u, 4¢/Ax) is the coefficient of the diffusion term.

The basis of the antidiffusion method is to use a stable modification of a diffusive
difference scheme. Let the original scheme be represented by (39). The modification is
represented by

u, + flu), = At [(glu, AtjAx) — r(u, 4t/Ax)) uz]. (40)

where r is a positive function. One can introduce the antidiffusion term by operator
splitting. The first step consists of solving

uy + f): =0, (41)

with the original difference scheme, say @7+* = Lu;". Then in the second step let 4 be
a difference operator approximating the diffusion equation

u, + At[r(u, 4t]4x) u}, = 0. (42)

The second step is the antidiffusion step, which is unstable by itself since it approxi-
mates the backward heat equation. We define

uptt = At = ALu™.
It can be seen that if
g(u, 4t/dx) — r(u, 4t}4x) = 0, (43)

then the combined scheme AL is stable. However, (43) places more of a restriction on

At/4x than the stability condition for L. . .
We chose for I, the two-step Lax-Wenfroff scheme. Following Boris et al. [2], the

procedure iy

1 At n n
u;'}'{;ﬁ o 5 (u‘l" ._i,., u?‘*_l) —— 52]; (Fi+1 — Fi ), (44&)

4t , 2
ﬁ? o “iﬂ = "2]; (F?.il;f - F?.j{j )! (44b)
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44c
e 75, — 20" + u? ), (440)

44d
ll;l+1 == ﬁ;H'l - (ff-}-} '_.fg*‘})’ ( )
where

iy = @R — ),

Aﬂ_* = ﬁ?.:? - ﬁ?+1s
- s 1 i q : 1-
Fiey = sen(d;,;) max{0, min[sgn(d;.y) Aoy, | disy 1, sgn(dyyy) Aiy g

The parameter » is the diffusion/antidiffusion coefficient. The stability condition is

max(| u | + c)(dt/dx) < 1.
Hyman's Predictor-Corrector M ethod

In [13] Hyman describes a predictor-corrector
are approximated by a second-order difference o
time integrator) uses the improved Euler schem
bines a first-order explicit predictor with a seco

For stability and to insure proper entropy production an artificial viscosity term is

added. The artificial viscosity term used is similar to that used by Rusanov [21].
The scheme is given by

type scheme. The spatial deri\fatives
perator while the time derivative (or
¢. The improved Euler scheme com-
nd-order trapazoidal rule corrector.

Wt =y AH(DF» — o(¢7,, — ) (45a)
= l]‘-“ _ At Pi"’

wP = 0 — (A2)(DR o, (450)
where |

DF" = (y 12Ax)(~—F?+2 + 8Fg, — ¥y -+ Fiy),

Py = (1/4dx) g, + %R, — u),
= (4 c)r,

and ¢ is the local sound speed.
The stability of the scheme depends

(45b) and on §, We took as the stabiljt

on the number of ap
¥ condition

plications of the corrector

max (Ju) - e){didx) < 1.

In order to maintain

stabil
in the smooth regions. Ho

ity, the artificia] viscosity must not be completely removed
we

Ver, it can be reduceq in these regions by using a type of
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switch. The one chosen was suggested by Hyman [13]. Replace ¢7,; in (45a) by
Bér,; where

=1 if o, > "+ (4x/3)

=1, otherwise.

This type of switch greatly reduces the smearing of the contact discontinuity as well as
the shock wave. This switch is a type of artificial compression.

3. Tue Svock TUBE PROBLEM

Figure 2 represents the initial conditions in a shock tube. A diaphragm at x,
separates two regions (regions 1 and 5) which have different densities and pressures.
The two regions are in a constant state. The initial conditions are p; > ps, p1 > Ps »
and #, = u; = 0; i.e., both fluids are initially at rest. At time ¢ >0 (see Fig. 3) the
diaphragm is broken. Consider the case before any wave has reached the left or right
boundary. Points x, and x, represent the location of the head and tail of the rare-
faction wave (moving to the left). Although the solution is continuous in this region

Region 1 : Reglon 5

Py ]
{
Py i
1
)

by

! 5

| P5

=0 ¥ =
W , u5 0

X

Reglon 1 |  Reglen 2 | Reglon 3 | Reglon Yy [ Fegl 5
| | [ |
l\ ! / [' 'P3 I pu l
i I J ' Loy |
! R R S
i i I | — Py
! l L | [ 5
% X %2 *3 Xy

Fic. 3. Shock tubeat 2> 0.
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(region 2) some of the derivatives of the fluid quantities may not be continuous The
point x, is the position that an element of fluid initially at x, has reached by time .
Point x; is called a contact discontinuity. It is seen that across
the pressure and the normal component of velocity are continuous. However, the
density and the specific Chergy are not continuous across a contact discontinuity.
Point x, is the location of the shock wave (moving to the right). Across a shock all of
the quantities (p, m, e, and p) will in general be discontinuous.

In the study of the above numerical methods the following test problem was
considered: p, = 1.0, p, = 1.0, u =00, p;=0.125, p, = 0.1, and uz = 0. The
ratio of specific heats v was chosen to be 1.4. In all of the calculations dx = 0.01. For
the Rusanov scheme the value of e (see Table I) was taken to be 1.0. In the scheme of
Boris and Book the parameter » was taken to be 0.125. For Hyman’s scheme the
value of & was taken to be 0.8. The constant in the artificial viscosity term v was taken
to be 1.0 in all but one case. Also the value of o (see Table I) was taken to be 0.9.

a contact discontinuity

1.20

+50
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b
8
T 8___
™
.Y
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b o
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1.00

X
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Two-step Lax—~Wendroff method.
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Chorin [3] is to choose £, only once per time step (hence the subscript #). The details
of the method of selection of the random number are found in Chorin [3] and Sod [22]).

Figure 4 indicates the results using the first-order accurate Godunov scheme. The
corners at the endpoints of the rarefaction wave are rounded. The constant state
between the contact discontinuity and the shock has not been fully realized. The
transition of the contact discontinuity occupies seven to eight zones while the transi-
tion of the shock occupies five to six zones.

Figure 5 indicates the results using the Godunov scheme with artificial compression.
It should be noted that for this case the constant in the artificia] term was taken to
be 2.0 to ensure that the solution before application of artificial compression was

oscillation free. For the artificial compression cannot be applied in the presence of
oscillations. The corners at the endpoints of the rarefaction wave are still rounded,

since the artificial compression method is not applied in smooth regions. There is a
slight undershoot at the right corner of the rarefaction. Also there are oscillations at
the contact discontinuity, The transition of the contact discontinuity occupies three
to four zones while the transition of the shock o

: ccupies only one to two zones.
'Flgure 6 shows the results of the two-step Lax-Wendroff scheme. There are very

plots in Fig. 6 are quite similar to th in Fi ined b
MacCormack’s method, q 0 those in Fig. 7 obtaine y
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Fic. 11. Glimm’'s method.

to stabilize the scheme, by using centered differences for the pressure term in the
momentum equation.

Figure 11 shows the results of the Glimm scheme. The shock wave and the contact
discontinuity have been computed with infinite resolution, i.e., the number of zones
over which the variation occurs is zero. Due to the randomness of the method the
positions of the shock and the contact discontinuity are not exact. However, on the
average their positions are exact. The corners at the endpoints of the rarefaction wave
are perfectly sharp. It is observed that the rarefaction is not smooth (due to the
randomnuess), yet it is extremely close to the exact solution. The constant states are
perfectly realized. . ._

The Glimm scheme requires between two and three times as much time (see .below)
as the other finite difference schemes tested. However, the Glimm scheme requires far
less spatial grid points for the same resolution. This is displayed in Table 1I, where
nine interior grid points are used. All details are visible.

The Glimm scheme on the average is conservative. One other cl_ieck on the accuracy
is to use the conservation laws (mass, momentum, and energy). For example, the

total mass is evaluated by

0, =Y pli 4x) Ax.

H
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TABLE 1T
Profiles Obtained by Glimm's Method for Nine Interior Grid Points

x p u J4 e r:

0.1 1.000 0.000 1.000 2.500 2.9533
02 1.000 0.000 1.060 2.500 2.958
03 0.869 0.164 0.822 2.363 2.95?
0.4 0.426 0.927 0.303 1.778 2958
0.5 0.426 0.927 0.303 L778 2,958
0.6 0.426 0.927 0.303 1.778 2,958
0.7 0.426 0.927 0.303 1778 2.958
0.8 0.266 0.927 0.303 2.853 3.624
0.9 0.125 0.000 0.100 2,000 2.646

* Iy is the Riemann invariant (ely — 1) + (1/2), where ¢ is the local sound speed.

TABLE III
Total Mass, Momentum, and Energy for Glimm®s Scheme
t/ At Qp Om Q,
1 0.547 0,018 ~2.213
2 0.550 0.019 2.217
3 0.554 0.032 2.218
4 0.550 0.039 2.219
5 0.552 0.047 2.223
6 0.550 0.059 2222
7 0.549 0.070 2.221
8 0.550 0.079 2.224
9 0.545 0.090 2232
10 0.546 0.097 2247
11 0.548 0.110 2.258
12 0.545 0.119 2.267
13 0.549 0.122 2.266
14 0.552 0.136 2,266
15 0.549 0.143 2.269
le 0.553 0.149 2275
17 0.550 0.158 2,266
18 0.546 0.164 2267
19 0.550 0.178 2.267
20 0.543 (.190 2272
_—_—
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In Table III the values of the total mass, momentum, and energy are displayed.
The mass and the energy are seen to be conserved on the average, i.e., there are
fluctuations but they are contained within a small interval, The momentum is seen to
increase linearly on the average (allowing for fluctuations).

Figure 12 shows the results of the antidiffusion method of Boris and Book applied
to the two-step Lax—Wendroff scheme. There is a slight overshoot at the right corner
of the rarefaction. The rarefaction wave is very accurately computed. The corners at
the endpoints of the rarefaction are only slightly rounded. The constant state between
the contact discontinuity and the shock wave is only partially realized. The transition
of the contact discontinuity occupies five to seven zones and the transition of the
shock occupies one to two zones. The resolution is much better than the two-step
Lax~Wendroff scheme alone (see Fig. 6).

Figure 13 represents the hybrid scheme (35) and (36) of Harten and Zwas. The
solution is free of oscillations. The corners at the endpoints of the rarefaction wave
are only slightly rounded. The constant state between the contact discontinuity and
the shock is only partly realized. The transition of the contact discontinuity occupies
eight to nine zones and the transition of the shock occupies five to six zones.

Figure 14 represents the hybrid scheme of Harten and Zwas with the use of artifical
compression. Since the artifical compression is not applied in smooth regions the
rarefaction is the same as in Fig. 13. The transition of the contact discontinuity
occupies three to four zones and the transition of the shock wave occupies two to three
zones.

Figure 15 represents the results of Hyman’s predictor—corrector scheme, where the
corrector has been applied once. The solution is oscillation free. The corners at the

TABLE 1V
Running Time per Time Step (in sec) on CDC 6600

Schemes Without ACM With ACM
Godunov 0.226 0.247
Lax-Wendroff 0.226 —_
MacCormack 0.224 —_
Rusanov 0.224 0.240
Upwind 0.225 —
Glimm 0.364 —_
Antidiffusion 0.242 —
Hybrid 0.258 0.269
Hyman 0.276 —_—

“ Times include computation of exact solution, calls to printing, and plotting routines, which
wete the same for all cases.
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4, CONCLUSIONS

OF ull the tinite difference schemes tested, without the use of corrective procedures,
Goddunov's and Hyman's methods produced the best results, _

It ix ubvious from the figures that the Glimm scheme gives the best resolution of the
shovks ind contaet discontinuities. Glimm’s scheme is at best first-order accurate
{vee Chorin [3)) so that boundary conditions are easily handled.

It is possible that the rarefacti

on wave obtained by Glimm’s method can be
Mivwthed out by a type of averaging. This is presently being considered.

The bybrid method of Harten and Zwas combines first- and high-order schemes in
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it can only be used for the equations of gas dynamics in rectangular coordinates. It is
possible to generalize Glimm’s method to other coordinate systems and different
equations. See Harten and Sod [11].

The applicability of Glimm’s method to other geometries has only just started to be
explored. One successful application is to the equations of gas dynamics for a cylindri-
cally or spherically symmetric flow. See Sod [23].

The usefulness of Glimm’s method in the analysis of reacting gas flow is given in
Chorin [4] and Sod [24]. In Chorin’s paper examples are given of deflagration and
detonation waves, with infinite and finite rates of reaction.

Since the Godunov iteration procedure provides an exact solution (up to the
tolerence prescribed to terminate the iteration) to the Riemann problem, the one-
dimensional shock tube problem can be viewed as a ‘“sitting duck” for Glimm’s or
any other numerical method using solutions of Riemann problems. However, it is
observed that due to the randomness the results of Glimm’s method are not exact.

The true value of a numerical method should be measured by its ability to solve
multidimensional problems. For such problems, Glimm’s method or others which
depend on the solution of one-dimensional Riemann problems may not have any
advantage over the other methods considered here. This is presently being studied.

APPENDIX: IMPLEMENTATION OF GLIMM’S METHOD

In this appendix we discuss the equations required for the computer implementation
of Glimm'’s method.

As in Fig. 1, the fluid initially at x << O is separated from the fluid initially at
X > 0 by a slip line dx/dt = u, . There are a toal of 10 cases to consider.

L. The sample point £, Ax lies to the left of the slip line (£, dx <uy A412).

(2) If the left wave is a shock wave (py > pp) and (1) if £, 4x ligs to the lfeft of
the shock line dx/dt = U, , we have p = p;, u = u; , and p = py, (2) if &, Ax lies to
the right of the shock line dx/dt = U, , we have p == py, 4 = Uy , P = P, Where p,
¢an be obtained from (13)

px = MyJ(Uy — ) (46)

(b) If the left wave is a rarefaction wave (psx < p;). Define the Sf)und speed to
be ¢ = (yp/p)*. The rarefaction wave is bounded on the left Py the line defined by
dejdt = u, — ¢, , where ¢, = (yp,/p)¥, and on the right by the line deﬁl_led by dzf,’dt =
“x — ¢4, where ¢, = (yp/ps)?. The flow is adiabatic in smooth regions, so in th:s’
Tegion A4(S) in (4) is a constant, denoted by 4, and we obtain the isentropic law
P = dp*. p, is obtained by using the isentropic law

PP = PubY = 4- “n
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Then we obtain from (46)

Py == (py A, (48)
(h Mg,

dx lies to the left of the rarefaction wave, then p=py,u=u,and
L

(2) If &, Ax lies inside the left rarefaction wave, we equate the slope of the
characteristic dy/df < 4 — ¢ to the st

ope of the line through the origin and (£, 4x,
A1/2), ubtaining

n— ¢ =2, Ax/dt, (49)

With the constancy of the Riemann invariant

2e(y —~ 1)1 o gy 20y — 1)1 4 w,, (50)

the isentropic law, and

the definition of ¢,
tropic law we obtain

Wwe can obtain p, u, and p. Using the isen-

P = pprpY = Ap». (51)

Using Fq. (501 we ubtain, by solving for ¢,

et 2yl =

Ry xubstitution of (3 into (49) and solving for u we obtain

. WE 26, dx &y — 1) 53
YT et 7 t)- 3
Hy sut(\:.titutian of (53) into (5 cis abtained; by substitution of (52) into the defini-
ton of ¢ ang solving fop pWe obtain
P = (Alpd)iv, 3
WY TE & Jx Ties to the right of the left rarefaction Wwave we obtain p = p« »
“ My.and p P

the right of the Slip line (¢, dx >, 41/2).
Aght wave is 4 shock wave (py > p) and (1) ; i the left
line detipar by e (Px>p)an (1) if &, Ax Ties to

= . ht L) “'C have e —_— — R
oblained from (15 r P=px,u=u,, and P = Px

(4} If the
ol the shoack
where Pals

e = =Mu, — 1), (54
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(2) If &, Ax lies to the right of the shock line defined by dx/dt = U, , we have
pP=Pr, U= u.,and p =p,.

(b) If the right wave is a rarefaction wave (py << p,). The rarefaction wave is
bounded on the left by the line defined by dx/dt = u, + ¢, , where ¢y = (ypslps)®
and p, can be obtained from the isentropic law

PPy = Papy = 4. (55)
Then we obtain from (55)
px = (PslAPV; (56)

and on the right by the line defined by dx/dt = u, + ¢, , ¢, = (ypsp)t.

(1) If &, Ax lies to the left of the rarefaction wave, then p = py , 4 = Uy,
and p = p, .

(2) If &, dx lies inside the right rarefaction wave, we equate the slope of the
characteristic dx/dt = u + ¢ to the slope of the line through the origin and (£, dx,
4t/2), obtaining

u -+ ¢ = 2¢, dx/4t. (57)
With the constancy of the Riemann invariant
2e(y — 1) — u=2¢ly — D7 — 4 (58)

the isentropic law, and the definition of ¢, we can obtain p, %, and p. Using the isen-
tropic law we obtain

p=ppp = Ap". (59)
Using Eq. (58) we obtain, by solving for ¢
¢ = ¢+ X5 w— ). (60)
Substitution of (60) into (57) and solving for u we obtain
u=y+l(At &+ ’) !

By substitution of (61) into (60) ¢ is obtained; by substitution of (59) into the definition
of ¢ and solving for p we obtain

p = (c*y AP/ (62)
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(3) If &, 4x lies to the right of the right rarefaction wave we obt

ainp=.0m
u=1u,,and p =p,,

. o, a
Equations (46)-(62) are the key to the programming of Glimm’s method. For
summary see the flow chart (Fig. 16).
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