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1 Introduction

 

Instabilities are an important aspect of any dynamical system. It is
one thing to establish the dynamical equations for some system or
other, it is another to establish that the system is stable. If it is un-
stable, then the system will evolve to some other state. For example,
we showed, in dealing with shocks that there are two types of dis-
continuities - the shock discontinuity in which there is a mass flux
across the discontinuity and the tangential contact discontinuity for
which the mass flux is zero. The latter discontinuity is subject to a
classical discontinuity - the Kelvin-Helmholtz discontinuity which
is one of the subjects of this chapter.

 

2 The incompressible Kelvin-Helmholtz 
instability

 

The Kelvin-Helmholtz instability relates to the following situation.



 

Instabilities

2 C54 H– Astrophysical Fluid Dynamics

 

A large number of the properties of this instabilities can be under-
stood in terms of the following incompressible analysis.

 

Continuity equation for incompressible flow

 

Incompressibility means that the density is constant along a stream-

line, so that  and

 

Perturbation

 

To study stability, we perturb the above system as follows:

ρ1 V 1,

ρ2 V 2,

P1 P2=x

y

z

t∂
∂ρ div ρV( )+ 0=

t∂
∂ρ V ρ ρdivV+∇⋅+⇒ 0=

td
dρ ρdivV+⇒ 0=

td
dρ 0=

divV 0=
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where the 0 subscripts refer to the unperturbed situation. Thus

In developing the equations which describe the development of the
instability, we develop equations which refer to either  or

 as far as possible, introducing either  or  when neces-
sary, when we come to consider the boundary conditions at the in-
terface.

 

Perturbation of the continuity equation

 

This is simply

 

Perturbation of the momentum equation

 

The term

to first order, so that the perturbed momentum equation is:

Take the divergence of this equation

V V0 V′+=

P P0 P′+=

V0 V 1 0 0, ,( )= z 0>

V0 V 2 0 0, ,( )= z 0<

z 0<
z 0> V 1 V 2

divV′ 0=

V V∇⋅ V0 V′+( ) V′∇⋅ V0 V′∇⋅= =

ρ
t∂

∂ V′ V0 V′∇⋅+ ρ
t∂

∂ V′ V 0 x, x∂
∂ V′+= P′∇–=

ρ
t∂

∂ divV V 0 x, x∂
∂ divV′+⇒ ∇2P′–=
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Since ,

Form of the perturbation

Take all perturbed quantities to be of the form:

where  and  are real components of the wave vector. (Note the
use of a 0 superscript to indicate the amplitude, as distinct from the
0 subscript which characterizes the unperturbed initial state. 

Perturbation equation for the pressure

Take

The combination  appears frequently in the following, so

that we denote it by . Hence

We take different parts of this solution on different sides of the in-
terface. We require finite pressures at  and

divV′ 0=

∇2P′ 0=

f r t,( ) f 0 z( ) i kxx kyy ωt–+[ ]exp=

kx ky

P′ P0 i kxx kyy ωt–+[ ]exp=

∇2P′⇒
z2

2

d
d

P0 kx
2 ky

2+( )P0– i kxx kyy ωt–+[ ]exp 0= =

kx
2 ky

2+

k2

z2

2

d
d

P0 k2P0+ 0= P0 z( )⇒ A1ekz A2e kz–+=

z ∞±=

P0 A1ekz= z 0<

P0 A2e kz–= z 0>
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We now impose the boundary condition that the perturbed pres-
sures on both sides of the interface are equal so that 
and

Perturbation equation for the velocity

Taking,

We substitute these expressions into the momentum equation to ob-
tain:

where the different signs refer to  and  respectively. This
gives us the following solution for :

A1 A2 A= =

P0 Aekz= z 0<
P0 Ae kz–= z 0>

V z′ V z
0 z( ) i kxx kyy ωt–+[ ]exp=

x∂
∂

V z′ V z
0 z( ) ik× x i kxx kyy ωt–+[ ]exp=⇒

x∂
∂

V z′ V z
0 z( ) ikx( )× i kxx kyy ωt–+[ ]exp=

t∂
∂

V z′ V z
0 z( ) iω–( )× i kxx kyy ωt–+[ ]exp=

ρ0 V z
0 z( ) kxV 0 ω–( )[ ] i kxx kyy ωt–+[ ]exp×

z∂
∂

P′–=

Ae kz+−± i kxx kyy ωt–+[ ]exp=

z 0> z 0<
V z

0 z( )

V z
0 z( ) Ae kz+−

ρ0 kxV 0 ω–( )
--------------------------------±=
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Displacement of the surface

To proceed further, we need to consider the displacement of the flu-
id at the interface. 

Consider the displacement of a fluid element at any position in the
fluid. A given fluid element satisfies:

so that putting

where  is the variation from the zeroth order flow as a result of
the perturbation, gives

The differentiation on the left hand side is “following the motion”
so that this perturbation equation is, in fact,

ζ

Unperturbed position of
interface

Perturbed interface

td
dr V=

r r0 r′+=

r′

td
d r0 r′+( ) V0 V′+=

td
d r′⇒ V′=
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The component of this set of equation which is of the most use to
us, is the  component. Denoting the  component of  by ,

As with all other functions, we put,

Therefore, the equation for  becomes:

Now, at , the displacements calculated from either side of the
interface should be identical. Therefore, 

Expanding out the quadratic terms:

t∂
∂ r′ V r′∇⋅+

t∂
∂ r′ V 0 x, x∂

∂ r′+ V′= =

z z r′ ζ

t∂
∂ζ

V 0 x, x∂
∂ζ

+ V z′
Ae kz+−

ρ0 kxV 0 ω–( )
--------------------------------±= =

ζ ζ0 i kxx kyy ωt–+[ ]exp=

t∂
∂ζ

iωζ0 i kxx kyy ωt–+[ ]exp–=

x∂
∂ζ

ikxζ0 i kxx kyy ωt–+[ ]exp=

ζ

iζ0 kxV 0 ω–( ) i kxx kyy ωt–+[ ]exp× Ae kz+−

ρ0 kxV 0 ω–( )
--------------------------------±=

i kxx kyy ωt–+[ ]exp×

ζ0⇒ Ae kz+−

ρ0 kxV 0 ω–( )2
-----------------------------------±=

z 0=

ρ1 kxV 1 ω–( )2 ρ– 2 kxV 2 ω–( )2=

ρ1 kxV 1 ω–( )2 ρ2 kxV 2 ω–( )2+⇒ 0=
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and the solution of this quadratic is

This is our main result, the dispersion relationship between fre-
quency and wave number. The important feature of this solution is
that it has both real and imaginary parts:

The complex part corresponds to both exponentially decaying and
growing solutions, since

An arbitrary set of initial conditions will give both decaying and
growing solutions, so that the above solution enables us to identify
a growth rate,

where, the density ratio,

and

ρ1 ω2 2ωkxV 1– kx
2V 1

2+[ ] ρ2 ω2 2ωkxV 2– kx
2V 2

2+[ ]+ 0=

ρ1 ρ2+( )ω2 2ωkx ρ1V 1 ρ2V 2+[ ]– kx
2 ρ1V 1

2 ρ2V 2
2+[ ]+ 0=

ρ1 ρ2+( ) ω
kx
----- 

  2
2

ω
kx
----- 

  ρ1V 1 ρ2V 2+[ ]– ρ1V 1
2 ρ2V 2

2+[ ]+ 0=⇒

ω
kx
-----

ρ1V 1 ρ2V 2+( ) i V 1 V 2–( ) ρ1ρ2( )1 2/±
ρ1 ρ2+

-----------------------------------------------------------------------------------------=

ωR

kx
------

ρ1V 1 ρ2V 2+

ρ1 ρ2+
-------------------------------=

ωI

kx
------ V 1 V 2–( )

ρ1ρ2( )1 2/

ρ1 ρ2+
-----------------------=

i ωR iωI t±[ ]exp iωR ωI t+−exp×exp=

ωg V 1 V 2–( )
ρ1ρ2( )1 2/

ρ1 ρ2+
-----------------------kx

η1 2/

1 η+
------------- V 1 V 2–( )kx= =

η
ρ1

ρ2
-----=



Instabilities

C54H – Astrophysical Fluid Dynamics 9 

is the component of the wave number in the direction of flow.

Features
• Growth depends upon there being a velocity difference.
• Growth rate proportional to  (component of wave number in 

the direction of flow) so that the smallest waves (largest ) 

grow the fastest.
• The growth rate reduces to zero for waves perpendicular to the 

direction of motion.
• The growth rate is a maximum for .
• All perturbations diminish exponentially away from the inter-

face. ( ) This is a characteristic feature of 
surface waves.

• These features are also characteristic of the KH instability for 
compressible flows (as we show in the next section).

kx k φcos=

k kx ky,( )=

φ

x

y

Plan view of interface

kx

kx

η 1=

Perturbation kz±exp∝
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3 Compressible Kelvin-Helmholtz 
instability

3.1 General comments

When we deal with compressible flow, the main complicating fac-
tor is that we have to deal with are sound waves when we perturb
the flow. In one sense we can think of the KH instability as sound
waves in an inhomogeneous medium. (Sound waves are emitted as
the surface is disturbed.)

The consideration of the compressible KH instability is similar to
that of the incompressible KH instability with some complications
related to compressibility. The steps in the development are:

• Determine the dispersion relations for waves in each medium.
• Apply boundary conditions at  and at the interface. This 

leads to polynomial equations and conditions on the roots of 
these leads to useful information.

3.2 Dispersion relations in each medium

We start with the usual equations:

and perturb them according them according to the usual recipe:

z ∞±=

t∂
∂ρ

xi∂
∂ ρV i( )+ 0=

ρ
t∂

∂V i V j x j∂
∂V i+

xi∂
∂P+ 0=

ρ ρ0 ρ′+= V i V 0 i,= V i′+
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These perturbations imply that

(used in the continuity equation) and

(used in the momentum equation).

Make these substitutions

In the following, we adopt the pressure as the primary variable
since it is continuous across the interface rather than the density
which may be discontinuous. In doing so we use,

ρ1 V 1,

ρ2 V 2,

P1 P2=x

y

z

ρV i ρ0V 0 i, ρ0V i′ ρ′V 0 i,+ +=

j x j∂
∂V i V 0 j, V j′+( )

x j∂
∂

V i′ V 0 x∂
∂

V i′= =

t∂
∂ρ1 ρ0 x j∂

∂
V j′ V 0 j, x j∂

∂ ρ′+ + 0=

ρ0 t∂
∂V i V 0 x∂

∂
V i′+

xi∂
∂

P′+ 0=
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Hence, the continuity equation becomes

Summary of perturbation equations

Combine  and  in continuity equation and put together with
momentum equation:

Similar to the compressible case, we take perturbations of  and
 proportional to

where  is real and  and  may be complex. Compare this

with the -dependence for the incompressible Kelvin-Helmholtz
instability . 

Take

With these dependencies:

t∂
∂

xi∂
∂

 
 
 
 
 

ρ 1
cs

2
-----

t∂
∂

xi∂
∂

 
 
 
 
 

P=

1
c0

2
-----

t∂
∂

P′ V 0 x∂
∂

P′+ ρ0 x j∂
∂

V j′+ 0=

ρ0 c0
2

t∂
∂

P′ V 0 x∂
∂

P′+ ρ0c0
2

x j∂
∂

V j′+ 0=

ρ0 t∂
∂V i V 0 x∂

∂
V i′+

xi∂
∂

P′+ 0=

P′
V i′

i kxx kyy kzz ωt–+ +[ ]exp

kẋ ky,( ) kz ω
z

e kz±∝

P′ A i kxx kyy kzz ωt–+ +[ ]exp=

V i′ Ai i kxx kyy kzz ωt–+ +[ ]exp=
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Putting all of this together, using ,

Notation for wave vector

At this point we introduce the following notation for the wave vec-
tor

where  is the component of the wave vector parallel to the inter-
face. With this notation the perturbation equations become:

Take the scalar product of the second of the above equations with
. This gives

t∂
∂

P′ V 0 x∂
∂

P′+ i ω kxV 0–( )A i kxx kyy kzz ωt–+ +[ ]exp–=

t∂
∂V i V 0 x∂

∂
V i′+ i– ω kxV 0–( )Ai i kxx kyy kzz ωt–+ +[ ]exp=

x j∂
∂

V j′ ik j A j i kxx kyy kzz ωt–+ +[ ]exp=

ρc0
2 γ P0=

i– ω kxV 0–( )A γ P0 ik j A j( )+ 0=

i– ρ0 ω kxV 0–( )Ai iki A+ 0=

k kx ky kz, ,( ) k|| kz,( )= =

kx k || φcos= ky k || φsin=

k2 k ||
2 kz

2+ kiki= =

k||

i– ω k ||V 0 φcos–( )A γ P0 ik j A j( )+ 0=

i– ω k ||V 0 φcos–( )ρ0 Ai iki A+ 0=

ki
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Substitute this result back into the first of the perturbation equa-
tions.

Solving, and dividing out the common factor of 

Note that we have essentially recovered the dispersion equation for
sound waves!

For the two different sides of the interface,

Perturbation of the surface

As before consideration of the perturbation of the surface is impor-
tant.

The -component of the displacement is the same as for the incom-
pressible case and is given by

i– ω k ||V 0 φcos–( )ρ0ki Ai ik2 A+ 0=

iki Ai⇒ ik2 A
ρ0 ω k ||V 0 φcos–( )
--------------------------------------------=

i– ω k ||V 0 φcos–( )A γ P0 ik j A j( )+ i– ω k ||V 0 φcos–( )A=

γ P0

ρ0
--------- ik2 A

ω k ||V 0 φcos–( )
--------------------------------------+

0=

A

ω k ||V 0 φcos–( )2
γ P0

ρ0
---------k2 c0

2k2 c0
2 k ||

2 kz
2+( )= = =

ω k ||V 1 φcos–( )2 c1
2k2=

ω k ||V 2 φcos–( )2 c2
2k2=

z

t∂
∂ζ

V 0 x∂
∂ζ

+ V z′ Az i kxx kyy kzz ωt–+ +[ ]exp= =
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Putting

gives

Now we have from the perturbation equations:

so that

and therefore, , the coefficient of the  component of displace-

ment is given in terms of , the coefficient of the pressure field, by

This is a generic equation which applies to either region. However,
both the displacement, and the pressure are continuous

 at the interface. Therefore  is continuous and

Now go back to the dispersion relations which we derived for the
two regions, viz,

ζ Bz i kxx kyy kzz ωt–+ +[ ]exp=

i ω k ||V 0 φcos–[ ]Bz– Az=

Bz⇒
iAz

ω k ||V 0 φcos–[ ]
--------------------------------------=

i– ω k ||V 0 φcos–( )ρ0 Ai iki A+ 0=

Az

kz A

ρ0 ω k ||V 0 φcos–( )
--------------------------------------------=

Bz z

A

Bz

ikz A

ρ0 ω k ||V 0 φcos–( )2
-----------------------------------------------=

Bz A1⁄

k1 z,

ρ1 ω k ||V 1 φcos–( )2
-----------------------------------------------

k2 z,

ρ2 ω k ||V 2 φcos–( )2
-----------------------------------------------=
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We make  the subject of these equations,

In the equation derived from the boundary condition, we put

giving us

Squaring,

and substituting for 

ω k ||V 1 φcos–( )2 c1
2k2 c1

2 k ||
2 k1 z,

2+( )= =

ω k ||V 2 φcos–( )2 c2
2k2 c2

2 k ||
2 k2 z,

2+( )= =

kz
2

k1 z,
2

ω k ||V 1 φcos–( )2

c1
2

----------------------------------------- k ||
2–=

k2 z,
2

ω k ||V 2 φcos–( )2

c2
2

----------------------------------------- k ||
2–=

ρ1

γ 1P0

c1
2

-----------= ρ2

γ 2P0

c2
2

-----------=

k1 z,

γ 1 ω k ||V 1 φcos–( )2

c1
2

----------------------------------------------

-----------------------------------------------
k2 z,

γ 2 ω k ||V 2 φcos–( )2

c2
2

----------------------------------------------

-----------------------------------------------=

k1 z,
2

γ 1
2 ω k ||V 1 φcos–( )4

c1
4

-----------------------------------------------

-----------------------------------------------
k2 z,

2

γ 2
2 ω k ||V 2 φcos–( )4

c2
4

-----------------------------------------------

-----------------------------------------------=

kz
2



Instabilities

C54H – Astrophysical Fluid Dynamics 17 

This can actually be simplified! We divide the numerators by 

and the denominators by  and put , the phase velocity

of the wave. This gives,

Furthermore, we can make a Galilean transformation in the  direc-
tion in which the velocity, , of the lower stream is zero, i.e.

and this transforms

Therefore, in the new frame,

and

where

ω k ||V 1 φcos–( )2

c1
2

----------------------------------------- k ||
2–

γ 1
2 ω k ||V 1 φcos–( )4

c1
4

-----------------------------------------------

-----------------------------------------------------

ω k ||V 2 φcos–( )2

c2
2

----------------------------------------- k ||
2–

γ 2
2 ω k ||V 2 φcos–( )4

c2
4

-----------------------------------------------

-----------------------------------------------------=

k ||
2

k ||
4 V ph

ω
k ||
----=

V ph V 1 φcos–( )2

c1
2

---------------------------------------- 1–

γ 1
2 V ph V 1 φcos–( )4

c1
4

----------------------------------------------

--------------------------------------------------

V ph V 2 φcos–( )2

c2
2

---------------------------------------- 1–

γ 2
2 V ph V 2 φcos–( )4

c2
4

----------------------------------------------

--------------------------------------------------=

x
V 1

x′ x V 1t–=

kxx ωt– to kx x′ V 1t+( ) ωt–[ ] kxx′ ω kx– V 1( )t–[ ]=

ω′ ω kxV 1–= ω⇒ ω′ kxV 1+=

ω kxV 2 φcos– ω′ kx V 2 V 1–( ) φcos–=

ω′ kx∆V φcos–=
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is the difference in velocity between the two streams.

Hence,

i.e. 

where  is the phase velocity in the primed frame, the one

in which the velocity of the lower stream is zero.

The equation for the KH instability becomes:

Finally, we express all velocities in terms of ratios with respect to
the sound speed in medium 1, i.e.

and this gives

∆V V 2 V 1–=

ω
k ||
---- V 1 φcos– ω′

k ||
-----=

ω
k ||
---- V 2 φcos– ω′

k ||
----- ∆V φcos–=

V ph V 1 φcos– V ph′=

V ph V 2 φcos– V ph′ ∆V φcos–=

V ph′ ω′
k ||
-----=

V ph′2

c1
2

------------ 1–

γ 1
2V ph′4

c1
4

------------------

----------------------

V ph′ ∆V φcos–( )2

c2
2

-------------------------------------------- 1–

γ 2
2 V ph′ ∆V φcos–( )4

c2
4

--------------------------------------------------

-----------------------------------------------------=

x
V ph′
c1

----------= m
∆V φcos

c1
--------------------=
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This is the basic dispersion relation for the compressible KH insta-
bility. It is a sixth order polynomial equation when multiplied out. 

Condition on the solution

Since we want the solutions to vanish at  then we have the
following important conditions on the solution:

3.3 Physical interpretation of  and 

x2 1–
x4

--------------
γ 1

2

γ 2
2

-----
c2

2

c1
2

-----
x m–( )2 c2

2 c1
2⁄–

x m–( )4
-----------------------------------------=

z ∞±=

Re k1 z,( ) 0< and Re k2 z,( ) 0>

x m

∆V φcos

∆V
φ

x
V ph′
c1

----------
Phase velocity of perturbation in frame of 

lower stream relative to speed of sound
= =

m
∆V φcos

c1
--------------------

Relative Mach number of 2 streams

in direction of perturbation
= =



Instabilities

20 C54 H– Astrophysical Fluid Dynamics

3.4 Special cases

3.4.1 

Take 

then the dispersion equation becomes

Factoring the second term on the right hand side:

and factorising the equation:

so that either

or

γ 1 γ 2=

a
c2

c1
-----=

x2 1–
x4

-------------- a2 x m–( )2 a2–
x m–( )4

-------------------------------=

1
x2
----- 1

x4
-----– a2

x m–( )2
--------------------– a4

x m–( )4
--------------------+ 0=

1
x2
----- a2

x m–( )2
--------------------– 1

x4
----- a4

x m–( )4
--------------------–– 0=

1
x2
----- a2

x m–( )2
--------------------– 1

x2
----- a2

x m–( )2
--------------------+ 1

x2
----- a2

x m–( )2
--------------------–– 0=

1
x2
----- a2

x m–( )2
--------------------– 1 1

x2
-----– a2

x m–( )2
--------------------– 0=

1
x2
-----

a2

x m–( )2
--------------------      (quadratic)=

1
x2
----- a2

x m–( )2
--------------------+ 1      (quartic)=
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Roots of quadratic

Since

then

Note that both of these roots are real and therefore neither corre-
spond to an instability.

Roots of quartic

Special case:

a2x2 x m–( )2 x2 2mx– m2+= =

a2 1–( )x2 2mx m2–+⇒ 0=

x⇒ m
1 a–
------------ m

1 a+
------------,=

m
∆V φcos

c1
--------------------= a

c2

c1
-----=

x
ω

k ||c1
----------

∆V φcos
c2 c1–

-------------------- ∆V φcos
c1 c2+

--------------------,= =

ω
k ||
----

c1

c1 c2–
----------------∆V φcos

c1

c1 c2+
----------------∆V φcos,=

1
x2
----- a2

x m–( )2
--------------------+ 1=

a
c2

c1
----- 1= =

1
x2
----- 1

x m–( )2
--------------------+⇒ 1=

x m–( )2 x2+⇒ x2 x m–( )2=
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In order to solve this equation, put

making the equation into the following quadratic in :

Now the roots for  are always positive when

If  then  is real and so is , so that there is no instability.
Hence, the condition for there to be no instability is:

or, equivalently, the perturbation is unstable, if

y x
m
2
----–=

y
m
2
----– 

  2
y

m
2
----+ 

  2
+⇒ y

m
2
----+ 

  2
y

m
2
----– 

  2
=

2y2 m2

2
------+⇒ y2 m2

4
------– 

  2
=

y2

2y2 m2

2
------+ y4 m2y2

2
------------– m4

16
------+=

y4 m2

2
------ 2+ 

  y2– m4

16
------ m2

2
------– 

 +⇒ 0=

y2⇒ 1 m2

4
------+ 

  1 m2+( )1 2/±=

y2

1 m2

4
------+ 

  2
1 m2+>

1 m2

2
------

m4

16
------ 1 m2+>+ +

m2 8>⇒

y2 0> y x

m
∆V φcos

c1
-------------------- 8>=



Instabilities

C54H – Astrophysical Fluid Dynamics 23 

where  is the relative Mach number of the two streams.

Note that for any Mach number there is a critical angle for the wave
vector for which instability occurs given by:

Perturbations with  are unstable.

M rel φcos 8<

M rel
∆V
c1

--------=

φcritcos 8
M rel
----------=

φ φcrit>

∆V φcos

∆V
φcrit

Unstable

Stable


