
4H FLUID DYNAMICS

4. Waves and Instability

4.1 Introduction
In this section, we turn our attention to the time-dependence of flows. In particular,
we shall be interested in investigating what happens to a steady (not necessarily station-
ary) basic state when it is given an infinitessimal perturbation. That the perturbation
is infinitessimal, permits a linearisation of the governing equations about the basic state;
simplifying the mathematical analysis. In an ideal fluid, the system can respond to the
perturbation in two ways:

1. The forces generated by the perturbation can act against the perturbation, i.e. to
reduce it and hence try to restore the system to its original basic state. When no
damping is present, the system will generally overshoot the basic state, leading to
an oscillation or a wave motion.

2. The forces generated by the perturbation can act in the direction of the perturba-
tion, i.e to amplify it, leading to instability.

In case (1), the system remains close to the basic state. In case (2), the perturbation grows
exponentially with time (until the linearisation approximation breaks down).

Examples

Here, we give some examples of the restoring forces that give rise to oscillations or wave
motion:

Gravity

Pressure

Surface Tension

In the case of gravity, it can also act to amplify a perturbation, giving instability. This
happens when the heavy fluid overlies the lighter fluid.
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4.2 Internal Gravity Waves
Consider a fluid with density distribution ρ0(y), with gravity g = −gŷ. Neglecting viscous
effects, the motion of the fluid is described by the Euler equations

ρ
Du
Dt

= −∇∇∇p+ ρg , ∇∇∇···u = 0 , (4.1)

together with a condition on the density ρ. We shall assume that the density of an in-
dividual fluid parcel does not change with time (i.e. there is no diffusion of density),
giving

Dρ

Dt
= 0 . (4.2)

The equilibrium or basic state has u = 0 and is described by

0 = −∇∇∇p0 + ρ0g ⇒ 0 = −dp0

dy
− ρ0(y) g . (4.3)

Given ρ0(y), this determines the “hydrostatic” pressure p0(y).

Let us consider a 2-dimensional perturbation u1 =
(
u1(x, y, t), v1(x, y, t), 0

)
, p1(x, y, t),

ρ1(x, y, t) to the basic state u = u0 = 0, p = p0(y), ρ = ρ0(y), such that

u = u1 , p = p0 + p1 , ρ = ρ0 + ρ1 . (4.4)

We shall assume that |p1| � |p0|, |ρ1| � |ρ0| and that |u1| is small (with ρ0∂u1/∂t of the
same order as ∇∇∇p1, so that the nonlinear terms (u1 · ∇∇∇u1 and u1 · ∇∇∇ρ1) can be neglected.
Then, (4.1) and (4.2) give

ρ0
∂u1

∂t
= −∇∇∇p0 −∇∇∇p1 + (ρ0 + ρ1) g ,

∇∇∇···u1 = 0 ,
∂ρ1

∂t
+ u1 · ∇∇∇ρ0 = 0 .

Given that the basic state satisfies (4.3), this becomes

ρ0
∂u1

∂t
= −∇∇∇p1 + ρ1g ,

∇∇∇···u1 = 0 ,
∂ρ1

∂t
+ u1 · ∇∇∇ρ0 = 0 .

(4.5)

Writing these equations in component form gives

ρ0
∂u1

∂t
= −∂p1

∂x
, ρ0

∂v1

∂t
= −∂p1

∂y
− ρ1g ,

∂u1

∂x
+
∂v1

∂y
= 0 ,

∂ρ1

∂t
+ v1

dρ0

dy
= 0 .

(4.6)
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The equations (4.6) are linear in the dependent variables u1, v1, p1 and ρ1 and the coeffi-
cients in the equation are functions only of y. Since the coefficients are independent of x
and t, we can seek solutions of the form

u1(x, y, t) = ũ1(y)ei(kx−ωt) , (4.7)

and similarly for v1, p1 and ρ1. Substituting this into (4.6) gives

−ρ0iωũ1 = −ikp̃1 , −ρ0iωṽ1 = −dp̃1

dy
− ρ̃1g ,

ikũ1 +
dṽ1

dy
= 0 , −iωρ̃1 + ṽ1

dρ0

dy
= 0 .

(4.8)

Eliminating ũ1, p̃1 and ρ̃1 gives

d2ṽ1

dy2 +
ρ′0
ρ0

dṽ1

dy
+ k2

(
N2

ω2 − 1
)
ṽ1 = 0 , (4.9)

where

N2 = −g ρ
′
0

ρ0
, and ρ′0 =

dρ0

dy
. (4.10)

When ρ′0 < 0 (i.e. light fluid lies over heavier fluid), N is known as the buoyancy frequency
or Brunt-Väisälä frequency.

Equation (4.9) is a second-order ODE in y. The coefficients are also functions of y through
ρ′0/ρ0. To illustrate the wave character of this problem, we choose the simplest example
where ρ′0/ρ0 is a constant (= −1/H) i.e. ρ0 = ρc exp(−y/H). The length H is known as
the scale height of the density variation. Then (4.9) becomes (with N2 = g/H)

d2ṽ1

dy2 −
1
H

dṽ1

dy
+ k2

(
N2

ω2 − 1
)
ṽ1 = 0 . (4.11)

This may be easily solved to give

v1 = ey/2Hei(kx+ly−ωt) , (4.12)

where we have assumed

l2 = k2
(
N2

ω2 − 1
)
− 1

4H2 > 0 .

Rewriting, this gives

ω2 =
N2k2

k2 + l2 + (1/4H2)
. (4.13)

This relationship between the frequency ω and the wave vector k = (k, l) is known as a
dispersion relation.
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Short wavelength limit
Often the wavelength will be short compared with the scale height H, i.e. (k2 + l2)−1/2 �
H. Then (4.13) gives

ω ≈ ± Nk

(k2 + l2)1/2 . (4.14)

Then, the group velocity

cg =
(
∂ω

∂k
,
∂ω

∂l

)
= ± Nl

(k2 + l2)3/2

(
l,−k

)
, (4.15)

while the phase velocity c has magnitude ω/(k2 + l2)1/2 and is in the direction normal to
the wave front kx+ ly =const., i.e. in the direction ∇∇∇(kx+ ly) = (k, l). Hence

c = ± Nk

(k2 + l2)3/2

(
k, l
)
. (4.16)

An important feature to note for these internal gravity waves is that c · cg = 0, i.e. that
a wave packet is observed to travel perpendicular to that direction of travel of individual
wave crests.

[For a discussion of wave phase and group velocities, see Acheson Chapter 3.]

4.3 Surface Waves
In Section 4.2, we considered gravity as the restoring force in a situation where the basic
state density varied continously throughout the fluid. We now consider the case where
the density variation is concentrated at y = 0, i.e. where we have one fluid of density ρ1

occupying the region y > 0 and another of density ρ2 occupying y < 0, with ρ1 and ρ2

both independent of y. Then, there is no buoyancy force within either fluid (as each has
constant density) and hence no restoring force. If we restrict our attention to inviscid,
irrotational fluids, then

∇∇∇···u = 0 and u = ∇∇∇φ , so ∇2φ = 0 , (4.17)

describes the flow inside each layer of fluid. The motion of the system is then driven by
the density difference across the interface between the two fluids. The conditions at the
interface are then crucial in determining the flow.
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In the basic state, the interface is at y = 0. A perturbation displaces this to

y = η(x, t) , (4.18)

assuming a 2-dimensional system with g = −gŷ and u =
(
u(x, y, t), v(x, y, t), 0

)
Hence,

while the problem inside each layer is straightforward, requiring a solution of (4.17), con-
necting the solutions in the two layers requires some care because the interface is not fixed.
In fact the position of the interface (4.18) must emerge as part of the solution to the whole
problem.

To simplify the problem, let us consider the case where the upper fluid is air.

The Free-Surface Condition

Let us define
F = y − η(x, t) . (4.19)

For any fluid parcel on the free surface, F = 0. Moreover, since all parcels on the surface
remain on the surface, we can say that

DF

Dt
=

∂F

∂t
+ u · ∇∇∇F = 0 on y = η .

Hence
−∂η
∂t
− u∂η

∂x
+ v = 0 on y = η . (4.20)

Note: Two special cases of (4.20) are:
(i) A horizontal surface, for which (4.20) becomes v = ∂η/∂t.
(ii) A stationary surface, for which (4.20) gives v/u = ∂η/∂x.

Pressure Condition at the Free surface

Euler’s equation (1.20) for an unsteady flow becomes

∂

∂t
∇∇∇φ = −∇∇∇

(
p

ρ
+ χ+ 1

2u2
)
, (4.21)

for an irrotational flow. Here χ = gy. Integrating gives

∂φ

∂t
+
p

ρ
+ gy + 1

2u2 = G(t) , (4.22)
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where G(t) is an arbitrary function of time. [Note: taking ∇∇∇(4.22) gives (4.21).]

For all practical purposes, the pressure at the free surface is the atmospheric pressure p0.
We are free to choose G(t) since the choice does not affect u = ∇∇∇φ. Choosing G(t) = p0/ρ,
(4.22) becomes

∂φ

∂t
+ gy + 1

2 (u2 + v2) = 0 , on y = η . (4.23)

Summary

The problem for surface water waves consists of solving (4.17) in the fluid, subject to the
surface conditions (4.20) and (4.23), i.e.

∇2φ = 0 , (4.24a)

subject to

−∂η
∂t
− u∂η

∂x
+ v = 0 on y = η , (4.24b)

and
∂φ

∂t
+ gy + 1

2 (u2 + v2) = 0 , on y = η , (4.24c)

where u = ∇∇∇φ and the surface is y = η(x, t).

Linearisation

As with the internal gravity wave problem considered in Section 4.2, we shall simplify the
problem (4.24) by considering an infinitessimal perturbation to the interface, permitting
a linearisation of the problem about the basic state u = 0, η = 0. The equation (4.24a)
describing the flow is already linear. It is the surface conditions (4.24b) and (4.24c) that
are nonlinear.

Consider first (4.24b). Assuming all displacements and velocities are small, such that we
can neglect squares and products of u, v and η, (4.24b) becomes

v(x, η, t) =
∂η

∂t
. (4.25)

Expanding the left-hand side as a Taylor series about η = 0 gives

v(x, 0, t) + η
∂v

∂η
(x, 0, t) + . . . =

∂η

∂t
.

Consistent with the earlier linearisation of this equation, we neglect products of small
quantities, so since v and η are small, we have

v(x, 0, t) =
∂η

∂t
, (4.26)
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or
v =

∂φ

∂y
=

∂η

∂t
, on y = 0 . (4.27)

A similar treatment of (4.24c) gives

∂φ

∂t
+ gη = 0 on y = 0 . (4.28)

The linear problem then consists of solving (4.24a) subject to (4.27) and (4.28).

Solution of the Linear Problem

Let us seek a solution of the form

η = A cos(kx− ωt) , (4.29)

where A is the (small) amplitude of the perturbation to the surface. In a linear theory, A
is undetermined.

The choice (4.29) requires
φ = f(y) sin(kx− ωt) , (4.30)

to be consistent with (4.27) and (4.28).

Substituting (4.30) into (4.24a) gives

f ′′ − k2 f = 0 , (4.31)

which has general solution
f = Ceky +De−ky , (4.32)

where C and D are constants. Without loss of generality we can take k > 0.

Solution for Infinite Depth
The problem is simplest for the case of a fluid of infinite depth. (The case of finite depth
is dealt with in Question 1 of Problems 4.)

Since u must be bounded in the limit y → −∞, we must choose D = 0 in (4.32). Then we
have

φ = Ceky sin(kx− ωt) . (4.33)

Now, substituting the expressions (4.33) for φ and (4.29) for η into the surface conditions
(4.27) and (4.28) gives

Ck sin(kx− ωt) = ωA sin(kx− ωt) ,

and
−ωC cos(kx− ωt) = −gA cos(kx− ωt) ,
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so that
Ck = ωA , and ωC = gA .

Hence we have
φ =

ω

k
Aeky sin(kx− ωt) , (4.34)

with
ω2 = gk . (4.35)

Note that A remains as an undetermined constant. If the surface perturbation is given,
then this determines the amplitude of the disturbance for y < 0. Equation (4.35) is the
dispersion relation for surface water waves in deep water, from which we can derive the
wave speed

c =
ω

k
=
√
g

k
, (4.36)

and the group speed

cg =
dω

dk
= 1

2

√
g

k
. (4.37)

Particle Paths

The solution (4.34) gives us the solution for the flow in y < 0 corresponding to the distur-
bance (4.29) to the surface. Using u = ∇∇∇φ gives

dx

dt
= u =

∂φ

∂x
=

ω

k
Aekyk cos(kx− ωt) ,

dy

dt
= v =

∂φ

∂y
=

ω

k
Akeky sin(kx− ωt) .

(4.38)

If we assume that any particle departs from its mean position (x, y) by only a small amount
(x′, y′) (i.e. x = x+ x′, y = y+ y′), then we may find its position as a function of time by
integrating

dx′

dt
= ωAeky cos(kx− ωt) ,

dy′

dt
= ωAeky sin(kx− ωt) ,

to get
x′ = −Aeky sin(kx− ωt) ,
y′ = Aeky cos(kx− ωt) .

(4.39)

Note that x′2 + y′2 = A2e2ky, so the particle paths are circles with radius decreasing
exponentially with depth.
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Limitation of Linear Theory

In the above analysis, we neglected the term u∂η/∂x compared with the term v in (4.24b)
to get (4.25). From our solution (4.38), we can see that u and v are comparable in
magnitude. Hence, our analysis can only be valid if |∂η/∂x| � 1, i.e. if kA� 1. This can
be interpreted as saying that, for the validity of our linear analysis, we require the slope of
the surface displacement to be small or the surface displacement must be small compared
with the wavelength of the disturbance.

Surface Tension

In Section 4.1 we mentioned surface tension as a possible restoring force that could lead
to wave motion. In the above analysis of surface waves, for simplicity, we neglected that
effect. Here we introduce the modification to the pressure condition at the interface that
is required to include the effect of surface tension.

At the interface between two fluids (for example water and air), a surface tension force T
acts, directed tangentially to the surface.

In our example of a surface y = η(x, t), the vertical component of the force is T∂η/∂s
where s is the distance along the surface. For small wave amplitudes, this is approximately
T∂η/∂x. Consider a small element, length δx, of the surface. It experiences surface tension
forces at both of its ends. The net force on δx is then

T
∂η

∂x

∣∣∣∣
x+δx

− T
∂η

∂x

∣∣∣∣
x

≈ T
∂2η

∂x2 δx . (4.40)

This gives the net upward force per unit surface area as

T
∂2η

∂x2 .

This must be balanced by the difference between the pressure in the upper layer and that
in the lower layer at the interface. When the upper layer is air, we then have, instead of
p = p0,

p = p0 − T
∂2η

∂x2 at y = η(x, t) , (4.41)

where p is the pressure in the fluid at the interface. Equation (4.24c) is then modified to

∂φ

∂t
− T

ρ0

∂2η

∂x2 + gy + 1
2 (u2 + v2) = 0 , on y = η . (4.42)
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4.4 Instability
In the examples of Sections 4.2 and 4.3, with light fluid above heavy fluid, gravity acts as
a restoring force, leading to wave motion. If the heavy fluid overlies the light fluid, gravity
acts to amplify any perturbation, leading to instability.

Other effects can be included that can compete with gravity. For example, surface tension
can act as a restoring force while gravity is acting to amplify a perturbation. Question 3
of Problems 4 considers the case where both surface tension and gravity are present.

Another important source of energy to drive an instability is the kinetic energy of a flow.
So far, we have considered basic states that are stationary. It is equally possible to consider
basic states where the basic flow u0 is nonzero. The analysis goes through very much as
before provided u0 is steady. On Problems 4, Questions 4 and 5 look at non-zero basic
flows. Question 5 additionally includes the effect of surface tension.

4.5 Instability of Plane-Parallel Flows
In Section 2, we solved for simple flows of the form U(y)x̂. Here, we consider the stability
of such flows, taking

u0 = U(y)x̂ , (4.43)

and for simplicity take the density ρ = ρ0 = const. The flow is confined in the plane layer
0 < y < d. We consider a 2-dimensional disturbance, so that

u = u0(y) + u1(x, y, t) , p = p0 + p1(x, y, t) , (4.44)

with u1 = (u1, v1, 0).

The Navier-Stokes equations, neglecting gravity,

∂u
∂t

+ (u · ∇∇∇)u = − 1
ρ0
∇∇∇p+ ν∇2u , ∇∇∇···u = 0 , (4.45)

become, in component form

∂u1

∂t
+ (U + u1)

∂u1

∂x
+ v1

∂

∂y
(U + u1) = − 1

ρ0

(
∂p0

∂x
+
∂p1

∂x

)
+ ν∇2(U + u1) ,

∂v1

∂t
+ (U + u1)

∂v1

∂x
+ v1

∂v1

∂y
= − 1

ρ0

(
∂p0

∂y
+
∂p1

∂y

)
+ ν∇2v1 ,

∂u1

∂x
+
∂v1

∂y
= 0 .

(4.46)

10



4H FLUID DYNAMICS - Waves and Instability

In the absence of a perturbation we have

0 = − 1
ρ0

∂p0

∂x
+ ν

d2U

dy2 , 0 = − 1
ρ0

∂p0

∂y
. (4.47)

Substituting this into (4.46) gives

∂u1

∂t
+ (U + u1)

∂u1

∂x
+ v1

∂

∂y
(U + u1) = − 1

ρ0

∂p1

∂x
+ ν∇2u1 ,

∂v1

∂t
+ (U + u1)

∂v1

∂x
+ v1

∂v1

∂y
= − 1

ρ0

∂p1

∂y
+ ν∇2v1 ,

∂u1

∂x
+
∂v1

∂y
= 0 .

(4.48)

Now, linearising on the basis of |u1| � |U | gives

∂u1

∂t
+ U

∂u1

∂x
+ v1

dU

dy
= − 1

ρ0

∂p1

∂x
+ ν∇2u1 ,

∂v1

∂t
+ U

∂v1

∂x
= − 1

ρ0

∂p1

∂y
+ ν∇2v1 ,

∂u1

∂x
+
∂v1

∂y
= 0 .

(4.49)

We now proceed as for the example of internal gravity waves, writing

u1(x, y, t) = ũ1(y)ei(kx−ωt) , (4.50)

and similarly for v1 and p1. Then, (4.49) become

−iωũ1 + U ikũ1 + U ′ṽ1 = −ik
p̃1

ρ0
+ ν

(
d2

dy2 − k
2
)
ũ1 ,

−iωṽ1 + U ikṽ1 = − 1
ρ0

dp̃1

dy
+ ν

(
d2

dy2 − k
2
)
ṽ1 ,

ikũ1 +
dṽ1

dy
= 0 .

(4.51)

For the case where viscous effects are negligible, we can eliminate ũ1 and p̃1 to get (with
c = ω/k)

(ikU − iω)ṽ1 = − 1
ρ0

d

dy

[
iρ0

k

(
(ikU − iω)

i
k

dṽ1

dy
+ U ′ṽ1

)]
⇒ k2(U − c)ṽ1 = −

(
−(U − c)d

2ṽ1

dy2 − U
′ dṽ1

dy
+ U ′

dṽ1

dy
+ U ′′ṽ1

)
⇒ (U − c)

(
d2ṽ1

dy2 − k
2ṽ1

)
− U ′′ṽ1 = 0 .

(4.52)
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This is Rayleigh’s equation (for a constant density fluid). To determine the stability of the
flow it must be sloved subject to the boundary conditions

ṽ1(0) = ṽ1(d) = 0 . (4.53)

In general c will be found to be complex c = cr + ici. The real part determines the wave
character of a perturbation while the sign of ci determines whether the perturbation grows
or decays. Solutions are described as neutrally stable if ci = 0. Then, there is the possibility
of a singularity in the equation if U(y) = cr for some y in 0 < y < d. In practice, such a
singularity is removed by viscous effects, see later.

The Inflection Point Theorem

Using (4.52) and (4.53) we can derive a simple criterion that determines whether or not
instability is possible.

Firstly, we assume ci 6= 0. Then we multiply (4.52) through by ṽ∗1/(U − c) (where a ∗

denotes complex conjugate) and integrate from 0 to d to get∫ d

0

(
d2ṽ1

dy2 ṽ
∗
1 − k2ṽ1ṽ

∗
1 −

U ′′ṽ1ṽ
∗
1

U − c

)
dy = 0 .

Integrating the first term by parts, and using (4.53) (which also must apply to ṽ∗1), we get∫ d

0

(∣∣∣∣dṽ1

dy

∣∣∣∣2 + k2|ṽ1|2 + U ′′(U − cr + ici)
|ṽ1|2

|U − c|2

)
dy = 0 . (4.54)

The imaginary part of this requires (since ci 6= 0), U ′′ must change sign somewhere in the
interval (0, d), i.e. for instability, U(y) must have an inflection point.

Experimental results

Experiments have been conducted to test the theoretical prediction of the inflection point
theorem. When the basic flow U has an inflection point, instability will be observed. When
U does not have an inflection point, instability can still be found.

The explanation for this lies in the role of viscosity. Any experiment must use a viscous
fluid (even though the viscosity may be very small).

The Effect of Viscosity - The Orr-Sommerfeld Equation

If we consider moving from an inviscid system to a viscous one, it turns out that viscosity
can act in two quite distinct ways (which are not mutually exclusive):

1. The first is the expected role. Viscosity acts to resist motion and so will have a
damping effect on any instability. Only if the energy source driving instability is
large enough to overcome the viscous damping can a a perturbation grow.
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2. The second is unexpected. Viscosity gives the system additional freedom to extract
energy from the basic flow U . In the inviscid 2D system the vorticity of each
fluid parcel is conserved [see (1.23)]. In the viscous system, vorticity can diffuse.
The viscous system is therefore less constrained and can be unstable even when
the inviscid system is stable. Mathematically, the viscous system is described by
a fourth-order equation (see below) while the inviscid system is described by a
second-order one (4.52).

The Orr-Sommmerfeld Equation
If we take the viscous system (4.51) and use the stream function representation

ũ1 = U ∂ψ
∂ỹ

ṽ1 = −U ∂ψ
∂x̃

= −U ik̃ψ ,

where we use the non-dimensionalisation

x = x̃ d , y = ỹ d , k = k̃/d , c = c̃U , U = Ũ U

then, instead of Rayleigh’s equation, we obtain

− 1
ik̃R

(
d2

dỹ2 − k̃
2
)2

ψ + (Ũ − c̃)
(
d2

dỹ2 − k̃
2
)
ψ − Ũ ′′ψ = 0 , (4.55)

where
R =

Ud
ν

is the Reynolds number and U is a typical magnitude of the basic flow U . Equation (4.55)
is the Orr-Sommerfeld equation.

When R� 1 it can be reduced to Rayleigh’s equation, except where Ũ − c̃ is close to zero.
A location where Ũ = c̃ is known as a critical layer. Solutions of (4.55) must be found
numerically and are a severe test of numerical methods when R >> 1.

Example - Plane Poiseuille Flow
For plane poiseuille flow (flow between two parralle plates driven by a pressure gradient)

Ũ = y(d− y) , and Ũ ′′ = const. ( = −1) ,

hence there is no inflection point in the flow.

The stability diagram looks like

and numerical solution gives Rc = 5772.2 and kc = 1.0205.
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