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ABSTRACT

Context. Recently, a number of planets orbiting binary stars have been discovered by the Kepler space telescope. In a few systems
the planets reside close to the dynamical stability limit. Due to the difficulty of forming planets in such close orbits, it is believed that
have formed further out in the disk and migrated to their present locations.
Aims. Our goal is to construct more realistic models of planet migration in circumbinary disks, and to determine the final position of
these planet more accurately. In our work, we focus on the system Kepler-38 where the planet is close to the stability limit.
Methods. The evolution of the circumbinary disk is studied using two-dimensional hydrodynamical simulations. We study locally
isothermal disks as well as more realistic models that include full viscous heating, radiative cooling from the disk surfaces, and
radiative diffusion in the disk midplane. After the disk has been brought into a quasi-equilibrium state, a 115 Earth-mass planet is
embedded and its evolution is followed.
Results. In all cases the planets stop inward migration near the inner edge of the disk. In isothermal disks with a typical disk scale
height of H/r = 0.05, the final outcome agrees very well with the observed location of planet Kepler-38b. For the radiative models,
the disk thickness and location of the inner edge is determined by the mass in the system. For surface densities in the order of 3000
g/cm2 at 1 AU, the inner gap lies close to the binary and planets stop in the region between the 5:1 and 4:1 mean-motion resonances
with the binary. A model with a disk with approximately a quarter of the mass yields a final position very close to the observed one.
Conclusions. For planets migrating in circumbinary disks, the final position is dictated by the structure of the disk. Knowing the
observed orbits of circumbinary planets, radiative disk simulations with embedded planets can provide important information on the
physical state of the system during the final stages of its evolution.
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1. Introduction

An interesting development in exoplanetary science has been the
recent discovery of circumbinary planets (CBPs) by the Kepler
space telescope. In contrast to systems where a planet revolves
around one star of a binary, here the planet orbits the entire bi-
nary system. Currently known main sequence binaries with cir-
cumbinary planets are: Kepler-16 (Doyle et al. 2011), Kepler-
34 and 35 (Welsh et al. 2012), Kepler-38 (Orosz et al. 2012a),
Kepler-47 (Orosz et al. 2012b) and Kepler-64 (Schwamb et al.
2013). In all these systems, the binary is close with an orbital
period of 7 to 41 days. The orbital periods of their planets range
from 50 to 300 days.

Since the discovery of the first circumbinary planet in the Ke-
pler 16 system, it has been noted that in some of these systems,
the innermost planet is very close to the boundary of the dynam-
ical stability (Dvorak 1986; Holman & Wiegert 1999). Given
that, as indicated by the observations, the orbital planes of these
binaries are perfectly aligned with those of their planets, this im-
plies that the planets are formed in flat, circumbinary disks. The
proximity of the orbits of these CBPs to the stability limit then
raises the question as to whether these planets formed in their
current orbits, or at farther distances from the binary and mi-
grated to their present locations.

Although not all aspects of planet formation are fully un-
derstood, it is widely accepted that planets form around single

stars through a bottom-up process where growth is achieved via
a sequence of sticking collisions with subsequent gas accretion
for the more massive objects (Armitage 2010). In a binary star
system, the presence of the binary in the middle of the protoplan-
etary disk will alter this process and make planet formation more
complicated. The perturbation of the binary and its (eccentric)
disk will dynamically excite the orbits of planetesimals and hin-
der their growth to larger objects (Scholl et al. 2007; Meschiari
2012; Marzari et al. 2013). Because in a circumbinary disk, the
outer edge of the central cavity, that is created due to the effect of
tidal forces from the binary on the disk material, coincides with
the boundary of the planetary stability, the previous statement
implies that the in situ formation of CBPs close to the stabil-
ity limit may not be possible (Paardekooper et al. 2012). How-
ever, because of the small separations of CBP-hosting binaries
(each of the above-mentioned systems fits into the orbit of Mer-
cury), their effects on the formation of planets at large distances
will be negligibly small suggesting that these planets could have
formed farther out and migrated to their current orbits (Dunhill
& Alexander 2013; Marzari et al. 2013).

Planet migration is a natural consequence of planet-disk in-
teraction (Nelson et al. 2000; Kley & Nelson 2012). To study
the migration of planets in circumbinary disks, the structure of
the disk has to be analyzed and compared to those around sin-
gle stars. The most important dynamical difference between the
former and latter disks is the existence of a central cavity in the
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circumbinary disks. As shown by Artymowicz & Lubow (1994),
the radial extent of this cavity is a function of the binary semi-
major axis, eccentricity, and mass-ratio as well as the disk vis-
cosity. As indicated by these authors, for typical values of the
disk viscosity, and depending on the binary eccentricity, the lo-
cation of the inner edge of the disk will be about 2 to 3 times the
separation of the binary.

The migration of planets in circumbinary disks was first stud-
ied by Nelson (2003) for massive, Jupiter-type planets. He found
that for small values of the binary eccentricity, the migrating
planet will be captured in a 4:1 mean-motion resonance (MMR)
with the binary whereas in more eccentric systems (ebin & 0.2),
the planet would be captured in a stable orbit further out (see
also Pierens & Nelson 2008b). Subsequent studies by Pierens &
Nelson (2007) extended these analyses to planets with masses as
small as 20 MEarth showing that these planets usually stop near
the edge of the cavity, and they suggested that planets in cir-
cumbinary disks should be predominantly found in that area. As
the inner edge of the disk roughly coincides with the boundary
of planetary stability, the predictions of these authors turned out
to be in a very good agreement with the orbital architecture of
several Kepler CBPs. More general cases in which accretion and
multiple planets were also considered were later studied by the
same authors (Pierens & Nelson 2008a,b).

In a recent paper Pierens & Nelson (2013) revisited planet
migration in circumbinary disks and developed models to ex-
plain the orbits of the planets around binaries Kepler-16, Kepler-
34 and Kepler-35. Similar to the majority of the simulations of
this kind, these authors considered a locally isothermal approxi-
mation where the disk thermodynamics is modeled by prescrib-
ing a given temperature profile. They also considered a closed
boundary condition at the edge of the cavity assuming zero mass
accretion onto the central binary. Although the work by Pierens
& Nelson (2013) represents significant results, their applicability
may be limited due to the simplifying assumptions of an isother-
mal disk with a closed boundary conditions for the central cav-
ity. Numerical simulations by Artymowicz & Lubow (1996) and
Günther & Kley (2002) have shown that despite the appearance
of the above-mentioned cavity in the center of a circumbinary
disk, material can still flow inside and onto the central binary.
In other words, a more realistic boundary condition would allow
for the in-flow of the material through the inner edge of the disk
into the disk cavity.

Here, we present an improved and extended disk model that
allows for much more realistic simulations. We consider the sys-
tem of Kepler-38 as this system represents one of the binaries in
which the circumbinary planet is in close proximity to the sta-
bility limit. We have developed an improved approach which
includes detailed balance of viscous heating and radiative cool-
ing from the surface of the disk (D’Angelo et al. 2003), as well
as additional radiative diffusion in the plane of the disk (Kley
& Crida 2008). For a planet embedded in disks, this improved
thermodynamics can have dramatic effects on the planet orbital
dynamics such that for low-mass planets, it can even reverse the
direction of migration (Kley & Crida 2008; Kley et al. 2009).
Also, unlike Pierens & Nelson (2013), we allow free in-flow of
material from the disk into the central cavity and construct mod-
els with net mass in-flow through the disk.

This paper is organized as follows. In Section 2, we present
the physical setup of our disk models. In Section 3, we study
locally isothermal disks and in Section 4, we present the results
of our full radiative models and compare them to the results from
standard isothermal cases. Section 5 concludes this study by
summarizing the results and discussing their implications.

2. The hydrodynamic model

As mentioned above, we consider Kepler-38 to be our test bi-
nary star and carry out simulations for that system. To model
the evolution of a disk around a binary star, we consider a cir-
cumbinary disk around Kepler-38, and assume that the disk is
vertically thin and the system is co-planar. The assumption of
co-planarity is well justified as the mutual inclination of Kepler-
38 and its planet is smaller than 0.2 degrees. We then perform
two-dimensional (2D) hydrodynamical simulations in the plane
of the binary.

To simulate the evolution of the disk, the viscous hydrody-
namic equations are solved in a polar coordinate system (r, φ)
with its origin at the center of mass of the binary. In our stan-
dard model, which we use as a basis for comparing the results
of our subsequent simulations, we consider the radial extent of
the disk (r) to be from 0.25 to 2.0 AU, and φ to vary in an entire
annulus of [0, 360◦]. This domain is covered by an equidistant
grid of 256 × 512 gridcells. For testing purposes, we have also
used a grid twice as fine. In all models we evolve the vertically
integrated equations for the surface density Σ, and the velocity
components (vr, vφ).

When simulating locally isothermal disks, we do not evolve
the energy equation, and instead use an isothermal equation of
state for the pressure. When considering radiative models, a ver-
tically averaged energy equation is used, which evolves the tem-
perature of midplane (Müller & Kley 2012). Radiative effects
are include in two ways. First, a cooling term is considered to
account for the radiative loss from the disk surface (D’Angelo
et al. 2003). Second, we include diffusive radiative transport in
the midplane of the disk using flux-limited diffusion (Kley &
Crida 2008). The use of a flux-limiter is required because near
its inner edge, the disk is very optically thin, which would lead
to an unphysical high energy flux in the diffusive part of radia-
tive transport equations. For more details on the implementation
of this diffusive transport, see Müller & Kley (2013). In our
radiative simulations, we consider the full, vertically averaged
dissipation (Müller & Kley 2012). However, stellar irradiation
is not taken into account.

To calculate the necessary height of the disk H at a position
r, we first note that in a circumstellar disk (around a single star
at the position r∗), the vertical height of the disk is given by

H(r) = cs

(
|r − r∗|3

GM∗

)− 1
2

. (1)

In this equation, M∗ is the mass of the central star, cs is the speed
of sound in the disk at the location r, and G is the gravitational
constant. In a binary star system, H(r) has to be calculated by
taking the contributions of both stars into account (Günther &
Kley 2002). That is,

H(r) =

∑
i=1,2

GMi

c2
s
√
|r − ri|

3

−
1
2

=

∑
i=1,2

H−2
i (r)

−
1
2

, (2)

where Mi = M1 and M2 are the masses of the stars of the binary.
Equation 2 indicates that in a circumbinary disk, the total height
H is always smaller than the individual heights Hi.

The equation of state of the gas in the disk is given by the
ideal gas law using a mean molecular weight, µ = 2.35 (in
atomic mass units), and an adiabatic exponent of γ = 1.4. For
the shear viscosity we use the α-parametrization with α = 0.01
for our standard model, and we set the bulk viscosity to zero. For
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Table 1. The binary parameter and the observed planetary parameter of
the Kepler-38 system used in the simulations. The mass of the primary
star is 0.949M�. The values have been taken from Orosz et al. (2012a).

a) Binary Parameter
Mass ratio Period abin ebin
q = M2/M1 [days] [AU]
0.2626 18.6 0.1469 0.1032

b) Planet Parameter
Mass Period ap ep
MJup [days] [AU]
0.34 105.6 0.46 < 0.03

the Rosseland opacity, we use analytic formula as provided by
Lin & Papaloizou (1985), and the flux-limiter as in Kley (1989).

To calculate the gravitational potential of the binary-planet
system at a position r in the disk, we use, for all 3 bodies, a
smoothed potential function of the form

Ψk(r) = −
GMk

[(r − rk)2 + (εH)2]1/2 , (3)

where Mk denotes the masses of the objects (stars and planet),
r−rk is the vector from a point in the disk to each object, and H is
calculated using eq. (2). The quantity ε in eq. (3) is a smoothing
parameter that accounts for the effect of the finite thickness of
the disk. In our simulations, we assume ε = 0.6 or 0.7 (Müller
et al. 2012). We note that for the planet, the smoothing length
cannot be smaller than ε rH, where rH = ap(mp/3Mbin)1/3 is the
radius of the Hill sphere around the planet, ap is the semi-major
axis of the planet’s orbit, and Mbin = M1 + M2. The indirect
terms are taken into account through a shift of the positions of
the objects such that the binary’s barycenter always coincides
with the origin of the coordinate system.

The hydrodynamical equations are integrated using a mixed,
explicit/implicit, scheme. The standard hydrodynamical terms
are integrated explicitly using a standard Courant condition with
Courant number fC = 0.66. The viscous and the diffusive radia-
tive parts are integrated implicitly to avoid instabilities. For the
time-integration of the hydrodynamical equations, we utilize the
RH2D-code with the FARGO (Masset 2000) upgrade.

The motions of the stellar binary and the planet are integrated
using a 4th order Runge-Kutta integrator. All objects, including
the two stars, feel the gravity of the disk as well as their mutual
gravitation. The self-gravity of the disk is not considered.

To calculate the force from the disk acting on the planet, we
exclude parts of the Hill sphere of the planet using a tapering
function

f (d) =

[
exp

(
−

d/rH − p
p/10

)
+ 1

]−1

. (4)

In this equation, d is the distance from the grid cell to the planet,
and p is a dimensionless parameter that is set to 0.6 for the
isothermal models and 0.8 for the radiative runs. We calculate
the orbital parameters of the planet using Jacobian coordinates,
assuming the planet orbits a star with mass Mbin = M1 + M2, at
the binary barycenter.

2.1. Initial setup and boundary conditions

In all models, the disk initial surface density is chosen to have
a Σ(r) = Σ0 r−1/2 profile where r is the distance from the cen-

ter of mass of the binary, and Σ0 = 3000g/cm2 is the surface
density at 1 AU. Such a radial profile for Σ corresponds to that
usually adopted for the minimum solar mass nebula. As the total
stellar mass in the Kepler-38 system is approximately 1.2 solar-
masses, one can assume that, to a first order of approximation,
the mass of the circumbinary disk would lie in the same range
as that of the disk around the protosun. Assuming that the ob-
served circumbinary planets have reached their current positions
in the late phase of their evolution, such a disk surface density
may be on the high side. However, together with the relatively
large value of the viscosity parameter (α = 0.01), it allows for
a sufficiently fast evolution of the system in our standard model
such that it can be numerically simulated. We will vary these
parameters for the radiative models below.

We choose the initial temperature of the disk to vary with
r as T (r) ∝ r−1 such that, assuming a central star of Mbin, the
vertical thickness of the disk will always maintain the condition
H/r = 0.05. The initial angular velocity of the disk at a distance
r is chosen to be equal to the Keplerian velocity at that distance,
and the radial velocity is set to zero.

The parameters of the central binary have been adopted from
Orosz et al. (2012a) and can be found in Table 1, together with
the planetary data. Due to the interaction of the binary with the
disk (and planet), these parameters will slowly vary during a
simulation. For the models with an embedded planet, we con-
sider the planet to have a mass of mp = 3.63 × 10−4M1 which is
equivalent to mp = 0.34MJup or about 115 Earth-masses (see Ta-
ble 1). At the beginning of each simulation, we start the binary
at its periastron.

The boundary conditions of the simulations are constructed
such that at the outer boundary of the disk, rmax = 2.0 AU, the
surface density remains constant. This is achieved by using a
damping boundary condition where the density is relaxed toward
its initial value, Σ(rmax) = 2121g/cm2, and the radial velocity is
damped toward zero. For this, we use the procedure specified
by de Val-Borro et al. (2006). The angular velocity at the outer
boundary is also kept at the initial Keplerian value, and for the
temperature we use a reflecting condition so that there will be no
artificial radiative flux through the outer boundary. These condi-
tions at the outer boundary lead to a disk with zero eccentricity
at rmax. Hence, rmax has to chosen large enough such that the
inner regions are not influenced.

At the inner boundary (rmin), we consider a boundary con-
dition such that the in-flow of disk material onto the binary is
allowed. This means, for the radial boundary grid cells at rmin,
we choose a zero-gradient mass out-flow condition, where the
material can freely leave the grid and flow onto the binary. No
mass in-flow into a grid is allowed at rmin. The zero-gradient
condition is also applied to the angular velocity of the material
since due to the effect of the binary, no well-defined Keplerian
velocity can be found which could be used otherwise. This zero-
gradient condition for the angular velocity implies a physically
more realistic zero-torque boundary.

With these boundary conditions, the disk can reach a quasi-
stationary state in which there will be a constant mass-flow
through the disk.

3. The locally isothermal case

In this section we do not evolve the energy equation but instead
leave the temperature of the disk at its initial value. This proce-
dure has the advantage of making the simulations much faster as
no heating and cooling of the disk has to be considered. This is
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Table 2. Properties for the locally isothermal disk models without a
planet. Model 1 is our reference model that is described in detail in
Sect. 2.1. In the other two models certain (numerical) parameter vari-
ations that have been applied in order to compare to previous models,
in particular by Pierens & Nelson (2013). They are described in the
quoted sections.

Name Characterization Section
Model 1 standard model in 2.1
Model 2 closed inner boundary 3.2
Model 3 different inner radii 3.3
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Fig. 1. Graph of the total mass of the disk (without the planet) in
our locally isothermal standard model (model 1). After a few thousand
years, the disk reaches equilibrium and a nearly constant mass is estab-
lished.

an approximation that has often been used in planet disk simula-
tions and gives the first order results, but it also has its limitations
when planetary migration is concerned (Kley & Crida 2008). We
will first show the results of our standard case (model 1), and
then compare these results to those recently obtained by Pierens
& Nelson (2013) who also used a locally isothermal model. Ta-
ble 2 gives a very brief overview of the models and can serve as
a reference.

We begin by discussing models without a planet where we
bring the disk into equilibrium and analyse its structure. This
equilibration process is required because the disk structure is de-
termined by the action of the binary for which no simple ana-
lytic model can be prescribed. Additionally, the evolution of the
planet in the disk occurs so slowly that the disk always remains
near equilibrium.

3.1. The structure of the circumbinary disk

To analyse the disk’s own dynamics (i.e., without a planet) due
to the effect of the central binary, we simulated the dynamics of
the disk in our standard model with a zero-mass planet. Due to
the fact that the disk inner boundary is open, and at the outer
boundary, its surface density is considered to be constant, the
disk settles into a final quasi-stationary state in which the mass
of the disk is constant and there is a constant mass accretion rate
onto the central binary. This has been shown in Fig. 1 where the
total mass in the computational domain is plotted vs. time for the
locally isothermal model with no planet. After about 2000-3000
yrs a quasi-stationary state has been reached at which state the
outflow through the inner boundary is exactly balanced by the
’inflow’ from outside as established by keeping the value of the
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Fig. 2. Graph of the rate of mass accretion through the disk in model
1 measured at two different distances. The mean value, −8.68 × 10−7,
is also plotted for r = 0.68 AU. As the central binary accretes material,
the mass flow is directed inward and becomes negative. However, in
the main text, we report the accretion rate in form of positive absolute
values.
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Fig. 3. Azimuthally averaged surface density and disk eccentricity for
model 1. Displayed are the profiles at different evolutionary times (in
yrs), where the red curve denotes the initial setup.

density constant at rmax. During this process, the disk mass has
decreased by about 20% from 3.8 × 10−3M� to 3.04 × 10−3M�.
The small remaining oscillations are caused by the eccentric mo-
tion of the inner binary which induces variations of the disk
structure. In this simulation where we have been interested in
the structure of the disk without the planet, the disk does not af-
fect the motion of the binary. Nevertheless, the motion of the
binary has been numerically integrated to examine the accuracy
of the numerical method. We find that during the total evolution
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time of about 4000 years, which corresponds to over 80,000 bi-
nary orbits and 4.5 million(!) time steps, the semi-major axis of
the binary has only shrunk by 0.014%, a value sufficiently small
for our purposes.

At equilibrium, the rate of the mass-flow through the disk,
Ṁdisk, becomes on average nearly constant. Fig. 2 shows this
where Ṁdisk, measured at two different distances, is plotted near
the end of the simulation. The resulting accretion rate equals
approximately Ṁdisk = 8.7 × 10−7M�/yr. The oscillations are
much larger in the inner parts of the disk due to the pertur-
bation from the binary, and they occur at the binary’s orbital
period. This value may be compared to the typical theoreti-
cal equilibrium disk accretion rate, Ṁth = 3πΣν. At the outer
boundary, where the mass density has been kept constant, we
find Ṁth = 5.4 × 10−7M�/yr.

During time, the surface density slowly evolves away from
its initial profile until it settles in a new equilibrium state. This
is shown in the upper panel of Fig. 3 where the azimuthally av-
eraged radial surface density profile is shown at different evolu-
tionary times. In agreement with Fig. 1, the equilibration time
takes about 2000 yrs. At this state, the surface density profiles
will no longer change with time. Because of the tidal action
of the binary on the disk, a central gap is formed with a sur-
face density many orders of magnitude smaller than inside the
disk. The inner edge of the disk, which we can define, very ap-
proximately, as that radius at which the surface density is about
half the maximum value, lies here at around r ≈ 0.45AU. This
is slightly larger than 3abin and in a good agreement with the
findings of Artymowicz & Lubow (1994). We note that for the
binary system considered here, the stability limit for planetary
orbits is about 0.4 AU (Dvorak 1986; Holman & Wiegert 1999).
Outside of the gap beyond r = 0.6AU, the surface density pro-
file becomes relatively flat. One can notice that the mass-flow
rates shown in Fig. 2 correspond to a region deep inside the gap
(r = 0.31 ≈ 2abin), and immediately outside of it (r = 0.68).

As was shown by Pierens & Nelson (2013), circumbinary
disks can attain significant eccentricities. We calculate the ec-
centricity of the disk by treating each grid cell as an individual
particle with a mass and velocity equal to the mass and velocity
of the cell (Kley & Dirksen 2006). To calculate a radial depen-
dence for the disk eccentricity, edisk(r), we average over the an-
gular direction. In our simulations, the disk eccentricity remains
small, as shown in the lower panel of Fig. 3. In the regions out-
side of the central gap (beyond r = 0.6), the disk eccentricity
is always below edisk < 0.07. At radial distances r > 1.0, this
eccentricity becomes smaller than about 0.01. These values of
the disk eccentricity are in contrast to those reported by Pierens
& Nelson (2013), who found, on average, larger values. We at-
tribute this difference to the assumption of an open inner bound-
ary, and we will analyse this in more detail in the next section.

In Fig. 4, we show a the two-dimensional surface density
distribution for our isothermal disk models. Note that the figure
shows only the inner part of the computational domain around
the central binary. The Roche lobe of the secondary star is shown
as well. As shown here, an eccentric central binary strongly per-
turbs the disk and produces time varying patterns. As indicated
by the flat surface density profile, outside of the central gap, the
disk shows less structure and is relatively homogeneous.

3.2. A closed inner boundary

In this section, we study the effect of different boundary condi-
tions at the inner edge of the computational domain on the final
results. Inspired by the work of Pierens & Nelson (2013), who

Fig. 4. Two dimensional density structure of an isothermal disk (model
1) around the central binary star. The graph shows a local view around
the binary. The computational grid extends from r = 0.25 AU to r = 2.0
AU. The white inner region lies inside the computational domain and is
not covered by the grid. The positions of the primary and secondary are
indicated by the gray dots. The the Roche-lobe of the secondary is also
shown.

focused on models with closed inner boundaries, we carried out
simulations using their boundary conditions. In Fig. 5, we show
the surface density and disk eccentricity for two simulations; our
standard model with an open inner boundary, and disk model 2
(see Table 1) with reflecting conditions at rmin as used by Pierens
& Nelson (2013). Because in the latter model, material is not
allowed to leave the disk through the inner boundary, it will ac-
cumulate near the outer edge of the gap, as seen by the spike in
the density at r = 0.8AU in the top panel of Fig. 5. At the same
time, the eccentricity of the disk in this model becomes sub-
stantially larger than that in the model with the open boundary
condition. Our results of the simulations with the closed inner
boundary are very similar to those reported by Pierens & Nel-
son (2013), although these authors did not model the system of
Kepler-38, but some related ones.

3.3. Varying the location of the inner radius

In this section, we examine the effect of the location of the in-
ner boundary on the disk structure (model 3). Pierens & Nelson
(2013) found that, at least in the case of a closed inner boundary,
the amplitude of the disk eccentricity depends on the location of
rmin. In particular, if rmin is chosen so large that some MMRs
between the binary and the disk fall outside the computational
domain, the eccentricity of the disk will remain very small. To
examine whether the disk will behave similarly for an open inner
boundary, we carried out two additional simulations with slightly
smaller inner radii, rmin = 0.22 AU and 0.20 AU. Given the bi-
nary’s semi-major, abin = 0.1469AU, these radii correspond to
1.5 and 1.36 abin, respectively.

As shown in Fig. 6 (top panel), for small values of rmin, the
density of the disk increases outside of the gap, and at the same
time, the flow of the mass onto the binary is slightly reduced
(to about 8 × 10−7M�/yr). The profile of the edge of the gap,
where the slope of the density is positive, is hardly affected by
the choice of rmin. However, the gap is slightly wider. The ec-
centricity in the main part of the disk (outside r = 0.7) does not
vary with the location of rmin (lower panel of Fig. 6). At r = 1
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Fig. 5. Azimuthally averaged surface density and disk eccentricity pro-
files for two models with different inner boundary conditions. The red
curve corresponds to the standard model with an open inner boundary
and the blue curve represents a system with a reflecting inner boundary
(model 2). In both models, the disk is at equilibrium.

the disk eccentricity is about edisk = 0.1 and beyond r = 1.0 it
is always below 0.01. Within the gap region, where the density
is small, edisk rises to a maximum of 0.4 at the inner boundary
for the models with the smaller rmin. The disks with rmin = 0.2
AU and rmin = 0.22 AU show very similar behaviour. For the
sake of comparison, we also ran simulations with higher spatial
resolution. The results were very similar to those depicted by the
two panels of figure 6.

Overall, results of our simulations indicate that in a model
with an open inner boundary, the disk eccentricity edisk remains
small in a large portion of the disk and independent of the lo-
cation of the inner boundary. This is unlike the findings of
Pierens & Nelson (2013) who showed that in cases with close
boundaries, the disk eccentricity will rise to much larger val-
ues (Pierens & Nelson 2013). The latter can be attributed to the
fact that a reflecting inner boundary creates a cavity which sus-
tains the eccentric global mode of the disk. Our findings are also
in agreement with Kley et al. (2008) who found an eccentricity
reduction for circumstellar disks in close binary systems when
using outflow boundary conditions. In our opinion, open inner
boundaries are more realistic because they allow for the accre-
tion of material onto the binary stars. However, we would like
to caution that in the case of more eccentric binaries, it has been
found that an open inner boundary may cause the central cavity
to be very large since disk material cannot re-enter the compu-
tational domain once it has been lost through rmin (see Marzari
et al. (2009)). This situation occurs primarily in highly eccen-
tric binaries such as Kepler-34 which has an eccentricity of 0.52
(A. Pierens, private communication). For our system, Kepler-38,
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Fig. 6. Azimuthally averaged surface density and eccentricity profiles
for three disk models with different locations of the inner boundary,
rrmin. The red curve shows the standard model (model 1) with rmin =
0.25 AU, the blue curve is for a disk with rmin = 0.22 AU, and the green
curve represents the disk model with rmin = 0.20 AU (model 3). In all
three models, the disk is at equilibrium.

we found the opposite behaviour; a reduced disk eccentricity for
an open inner boundary. This follows from the fact that an open
inner boundary reduces the strength of a global eccentric mode.
Because in this paper we are more interested in the evolution of
planets in circumbinary disks, we do not study this interesting
behaviour of the disk any further and defer that to a future time.

We note that among the three models shown in figure 6,
the model with the smaller inner radii can have a considerably
smaller numerical time step. In addition to the smaller size of
the grid cells, this effect is caused by the larger deviation from a
uniform keplerian velocity as induced by the binary star, which
makes the FARGO-algorithm less effective. Therefore, to save
computational time and resources, in the remainder of this study,
we will use for the inner radius of the disk, a standard value of
rmin = 0.25 AU, although we will present some comparison sim-
ulations using rmin = 0.22 AU as well.

3.4. Planets in isothermal disks

To study the evolution of the system with an embedded planet,
we start our simulations with a planet initially at different dis-
tances (semi-major axes, a0) from the center of mass (barycen-
ter) of the binary and in a circular orbit. The planet’s evolution
is determined by the gravitational action of the disk and the cen-
tral binary. As mentioned earlier, during the evolution of the
planet, its orbital elements are calculated using Jacobian coordi-
nates with respect to the barycenter of the central binary. The
planet mass is fixed to 115 Earth masses, and there is no accre-
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Fig. 7. The evolution of the semi-major axis of the planet in an isother-
mal disk (model 1). In two simulations, the planet is started in a circular
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is started at a0 = 1.0 AU in a relaxed disk. The inset shows the results
near the end of the simulation for the first model. The dashed black line
in the inset corresponds to the mean value of the planet semi-major axis
at ap = 0.436 AU.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

P
la

n
e
t 
e
c
c
e
n
tr

ic
it
y

Time [Years]

Fig. 8. Graph of the evolution of the eccentricity of the planet in
an isothermal disk shown in red in Fig. 7 (model 1). The planet was
embedded in the disk prior to the start of the disk evolution at a semi-
major of a0 = 1.75 AU.

tion onto the planet. As a reference, we present in Tab. 1, the
orbital parameters of the planet of Kepler-38, as inferred from
the observations.

Fig. 7 shows the evolution of planet through the disk. We
present here the results of three simulations that were carried
out for different initial setups to examine the dependence of the
outcome on the initial state of the disk and planet’s orbital ele-
ments. In the first model (red line) the planet is started directly
in the initial disk which has not been brought into an equilibrium
(i.e. using the initial disk setup of model 1). In this simulation,
the disk and the planet evolve simultaneously. In the other two
simulations, the planet is started in a disk that is already in an
equilibrium. The blue line corresponds to the planet starting at
a0 = 1.75 AU and the green line is when the planet starts at

Fig. 9. Two dimensional snapshots of the evolution of the disk sur-
face density with an embedded planet. The snapshots correspond to the
times 449, 729, 2807, and 7414 years. The planet, shown as the gray dot
with the Roche radius, was embedded in the disk at an initial distance
of r = 1.75 AU. The dashed gray line around the central binary shows
the approximate boundary of stability for planetary orbits. A movie of
the simulation shown here can be found in the supplementary online
material.

a = 1.0 AU. We have shifted the last model in time to ensure an
overlap with the first two.

As shown in the Fig. 7, the semi-major axis of the planet
continuously shrinks (i.e., the planet migrates toward the central
binary) until it reaches the inner cavity created by the binary.
The strong drop in the disk surface density within the central
cavity and the resulting positive density gradient act as a planet
trap (Masset et al. 2006). Here the negative Lindblad torques are
balanced by positive corotation torques. As a result, the planet
stops its inward migration in this region. As shown in the figure,
in all runs, the planet stops at approximately the same distance
from the binary. The semi-major axis of the planet in the three
runs has an average value of ap = 0.436 AU (blue line in inset
of Fig. 7). The results indicate that in all simulations, the system
evolves to the same final state. At this state, the planet resides in
an orbit with a period of about 100 days which is slightly outside
of its observed orbit (see Tab. 1). This implies that the outcome
of the migration process does not depend on the history of the
system and is determined solely by the physical parameters of
the disk. In an isothermal system and for a given binary, these
parameters are determined by the values of H/r and viscosity.

Fig. 8 shows the evolution of the eccentricity of the planet
corresponding to the red model in Fig. 7. As shown here, during
the planet’s inward migration, its eccentricity increases contin-
uously until at t = 4500 when it reaches a constant value close
to 0.05 and oscillates around that value for approximately 1000
years. At time (t ∼ 5700), the planet is temporarily captured
in a mean-motion resonance with the binary and its eccentricity
undergoes a sudden jump (Murray & Dermott 1999) where it os-
cillates between 0.15 and 0.20. We will discussed this resonant
capture in more detail in the next section.

Fig. 9 shows four two-dimensional snapshots of the evolu-
tion of the disk surface density during the inward migration of
an embedded planet in one of our models. One can clearly see
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Fig. 10. Graph of the averaged radial surface density of a disk with
an embedded planet. The colors correspond to the times of the snap-
shots shown in Fig. 9. The big circle in each graph represents the radial
position of the planet at the time corresponding to the graph. For illus-
trative purposes, we have moved the circles close to their corresponding
curves.
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Fig. 11. The evolution of the period ratio of the planet and bi-
nary for the model where the planet is embedded in the initial disk at
a0 = 1.75 AU. The inset shows the period ratio for the final stage of its
evolution. The dashed line in the inset corresponds to the mean value of
Pplanet/Pbin = 5.22.

the spiral disturbances created by the planet during its migration.
The last panel, corresponding to t = 7417, shows the final posi-
tion of the planet in an orbit with a semi-major axis of ap = 0.436
AU (see Fig. 7). In Fig. 10, we plot the azimuthally averaged sur-
face density of the disk corresponding to the same times as in the
snapshots of Fig. 9. The colored circles in this figure represent
the planet in its actual radial distance from the center of mass of
the binary. A planet of this mass does not produce a full gap, but
only clears out about a third of the surface density. As the planet
moves inward, the surface density of the inner part of the disk
is strongly distorted. However, it regains its unperturbed profile
after the planet has reached its final position, (see Fig. 3).

3.4.1. Capture in Resonance

The evolution of the semi-major axis of the planet and in partic-
ular, the sudden increase in its eccentricity at time t ≈ 5700 seem
to point to a temporary capture in a mean-motion resonance with
the central binary. To further analyze this, we plotted the vari-
ations of the period-ratio of the planet and binary, Pplanet/Pbin,
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Fig. 12. Graphs of the resonant angles Φ1 and Φ2 (see Eqs. 6 and 7)
during the capture phase in a 5:1 mean-motion resonance.

during the inward migration of the planet. Fig. 11 shows the re-
sults. As shown here, as the planet migrates inward, this period-
ratio continuously decreases until it reaches a constant value at
t ≈ 5000. The inset in Fig. 11 shows the evolution of the system
near the end of the simulation for one thousand years. The black
dashed line in this inset denotes the arithmetic averaged value of
the period ratio, Pplanet/Pbin = 5.22, suggesting a possible cap-
ture into a 5:1 MMR with the binary.

To determine whether the planet is truly captured in a 5:1
MMR, its corresponding resonant angles have to be analyzed.
The capture in a resonance between two bodies occurs when at
least one of the resonant angles of the system librates around a
certain value and does not cover the full range of 0 to 2π (see
Murray & Dermott (1999) for details). For a general p:q com-
mensurability with p > q and in a planar system, the resonant
angles are defined as

Φk = pλp − qλb − p$p + q$b + k($p −$b), (5)

where λb, λp, $b and $p denote the mean longitudes and longi-
tude of periapse for the inner binary (b) and outer planet (p). The
integer k in this equation satisfies the condition q ≤ k ≤ p and
has p − q + 1 possible values. Of the p − q + 1 resonant angles,
at most two are linearly independent. That means, in a actual
resonant configuration, at least one of these angle will librate
(Nelson & Papaloizou 2002). As our numerical simulations in-
dicate the possibility of a capture in the 5:1 MMR, we studied
the time-variations of all resonant angles of our system. Note
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Fig. 13. The evolution of the semi-major axis of a planet embedded in
an isothermal disk for different values of the disk mass. The graph in red
corresponds the simulation of the standard disk model with the planet
initially starting at a0 = 1.0 AU. The graph in blue shows a similar
simulation but with half the disk mass. The graph in green corresponds
to a simulation with a quarter of the initial disk mass and continued
from the model in blue at t = 4300.

that in this case p = 5, q = 1, and k runs from 1 to 5. Fig. 12
shows the evolution of the following two resonant angles for 180
yrs from t = 5620 to t = 5800,

Φ1 = 5λp − λb − 4$p , (6)

and

Φ2 = 5λp − λb − 3$p −$b . (7)

As shown here, before t = 5670, the evolution of these angles
is rather irregular confirming that the planet was not in a reso-
nance. After this time, Φ1 shows a regular circulating behaviour,
whereas the angle Φ2 begins to librate around zero with an am-
plitude of less than 40 degrees. This librating evolution of Φ2
indicates that the planet is indeed captured in a 5:1 MMR with
the binary star. Our analysis of all other resonant angles of the
system, Φ3, Φ4, and Φ5 showed that these all have circulating
behaviours as well, sometimes prograde (as Φ1) and sometimes
retrograde. For all cases shown in Fig. 7, the planet remains cap-
tured in the 5:1 resonance for the duration of the simulations. We
also studied the behaviour of the longitude of periastron of the
binary star, $bin, during the slow inward migration of the planet.
Our analysis indicated that prior to the capture of the planet in a
5:1 MMR, $bin was precessing in a prograde sense. After cap-
ture into the 5:1 resonance, this precession became retrograde.

3.4.2. Variation of Disk mass

Up to this point, the presented results and analyses were based
on simulations in which, as shown in Fig. 1, the disk had a given
mass. To examine whether the results will depend on the mass of
the disk, we carried out simulations where the disk surface den-
sity was reduced by a factor of two and four. Results indicated
that disks with reduced surface density show similar density evo-
lution as those shown by the top panel of Fig. 3, but only scaled
down by an appropriate factor. This identical density evolution
can be attributed to the fact that in an isothermal disk with an
α-type viscosity and no self-gravity, the surface density of the
disk is scaled out of the normalized equations of state making
the disk evolution independent of the actual density.
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Fig. 14. The evolution of the semi-major axis of a planet embedded
in an isothermal disk for different locations of the disk inner boundary.
The graph in red corresponds to the standard model with an open in-
ner boundary at 0.25 AU. The graph in blue represents a model with a
closed inner boundary at 0.25 AU, and the graph in green is for a disk
with an open inner boundary at 0.22 AU.

In a disk with a smaller mass and surface density, the inward
migration of the planet will be slower. Fig. 13 shows the evo-
lution of a planet in an isothermal disk with different masses.
The red line in this figure represents the inward migration of a
planet started at a0 = 1.0 AU in our standard disk model. The
blue line corresponds to the migration of the same planet in a
disk with half the mass of our standard model. As shown here
and as expected, the inward migration is about two times slower
than in the standard case. We started our third simulations (green
line) with a quarter of the disk mass and to save computational
time, continued it from the 2nd mode (blue line) at time 4300.
The planet migration rate is again reduced by a factor of two.
As pointed out, for instance, by Pierens & Nelson (2013) when
analyzing the system of Kepler-16, in a system with a slower
rate of migration, a capture in higher order MMRs is more ex-
pected. These authors found that Kepler-16b could have under-
gone a temporary capture in a 6:1 MMR with the central binary.
In our simulations, the planet is always captured in a 5:1 reso-
nance and in the same configuration, where only Φ2 librates. The
eccentricity of the disk also reaches the same value in all three
cases.

3.4.3. Planets in disks with different inner boundary
conditions at rmin

To test the sensitivity of our simulations to the choice of the disk
boundary conditions at rmin, we ran three different models. In
two models we considered rmin = 0.25 AU and once we assumed
the inner boundary to be closed to mass in-flow, and once we
considered it to be open (see model 2 in section 3.2). We also
ran a third model for which we moved rmin to a different inner
radius at 0.22 AU (see model 3 in section 3.3). Fig. 14 shows the
evolution of the planet’s semi-major axis for these three cases.
The planet was started at a0 = 1.0 AU in an already relaxed
disk in all three cases. See Figs. 5 and 6 for the density and
eccentricity distribution of models 2 and 3.

Due to the higher density in the simulation with a closed
inner boundary (shown in blue), the planet migrates inward at
a much faster speed. Similar to the previous simulations, in
this case the planet is captured in a 5:1 MMR with the binary.
At this state, the planet’s resonance angle Φ2 began to librate
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Fig. 15. The evolution of the semi-major axis of the binary in a system
with an isothermal disk for different values of the disk mass. The graphs
uses the same models and colors as in Fig. 13 for the evolution of the
planets.

around zero and its other resonance angles start circulating. In
contrast to the previous simulations, the fast inward migration
of the planet causes its orbital eccentricity to be slightly higher
(ep = 0.25) than in the case when the disk had an open inner
boundary. This larger value of eccentricity leads to orbital in-
stability as a result of which the planet leaves the resonance at
time t ≈ 2300 and is scattered out into an orbit with much larger
semi-major axis and very high eccentricity.

In the simulations where the open inner boundary has been
shifted to rmin = 0.22AU, the planet migrates inward at a re-
duced speed and reaches ap = 0.47 AU at the end of the simula-
tion. This is in an excellent agreement with the observed orbit of
Kepler-38b. The eccentricity of the planet at this state oscillates
between 0.01 and 0.06 with an average around 0.03. These re-
sults confirm the expectation that the final position of the planet
is determined by the location of the outer edge of the central
cavity.

In summary, in the model in which the outer edge of the cen-
tral cavity is at a farther distance and has the unrealistic bound-
ary condition of being closed to mass in-flow, the planet crosses
the 5:1 MMR and eventually becomes unstable. When the outer
edge of the central cavity is at a closer distance (e.g., 0.22 AU)
and has the more realistic boundary condition of being open to
mass in-flow, the planet stops its inward migration outside of the
5:1 MMR and maintain its orbital stability for a long time. We
will return to this point when we discuss radiative models in the
next section.

3.4.4. The orbital elements of the binary

As mentioned earlier in the description of our models and their
setups, the motions of all objects (including the stars of the bi-
nary) are affected by the gravity of the disk. As a result, the orbit
of the central binary will change in time as it interacts with the
disk and the planet. In Fig. 15, we plot the evolution of the semi-
major axis of the central binary in three systems with disks with
masses as in Fig. 13. One can see from this figure that during
the evolution of the system, the semi-major axis of the binary re-
duces with time. This can be explained noting that while the disk
interacts with the binary, angular momentum is transferred from
the binary to the disk material causing the orbit of the binary to
shrink. As expected, disks with smaller masses lead to a slower
decline in the orbit of the binary. At the point where the planet
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Fig. 16. Graphs of the surface density (in g/cm2, top panel), tempera-
ture (in K, middle panel) and eccentricity (bottom panel) of a radiative
disk in the initial model (red), an isothermal case with H/r = 0.05
(model 1, blue), and a quasi-equilibrium state (green).

is captured into resonance, the binary loses angular momentum
more rapidly.

4. The radiative case

As mentioned earlier, although the study of a locally isothermal
disk can portray a general picture of the evolution of the sys-
tem and its planet, it does not present a realistic model. For
instance, in an isothermal disk, despite the strong heating action
of the spiral waves that are induced by the binary star, the tem-
perature does not vary and is held constant. However, because
the migration of the planet and the evolution of its eccentricity
depend on the disk temperature (Ward 1988), a more realistic
model should allow the disk temperature to vary, as well. In this
section, we consider the latter. Because the evolved quantity in
the simulations is the midplane temperature, the inclusion of an
energy equation with viscous dissipation, radiative cooling from
the disk surfaces, and diffusion in the disk’s midplane will result
in a self-consistent temperature determination in the disk, and
make the models much more realistic.

Similar to the case of isothermal disks, we first study the evo-
lution of the disk without a planet, and then evolve the planet in
the disk. The models are generally started from the same initial
conditions as in the isothermal ones. They are then evolved to
an equilibrium state which now takes about 1500 years to reach.
We have compared the results to models which were started from
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the equilibrated isothermal states and found that they both reach
to identical final configurations. There was no gain in compu-
tational time when started from an equilibrium isothermal disk
because the timescale for the disk adjustment was identical as it
is determined by the radiative and viscous diffusion timescale.

4.1. Disk structure

Fig. 16 shows a comparison between the density and tempera-
ture of a radiative disk and that of an isothermal model after they
have reached their corresponding equilibrium states. The bound-
ary conditions for the disk density are the same in both models.
That means, the density near the outer boundary is relaxed to
the initial value which is held constant. This implies that the
density for both models is identical near the outer boundary at
r = 2.0AU. In the inner parts of the disk, however, the radiative
model has a higher density throughout (top panel in Fig. 16).
This high value of density may be due to the larger eccentricity
of the disk (bottom panel in Fig. 16), similar to the evolution
of an isothermal disk with the closed inner boundary. The to-
tal mass of the radiative model in the computational domain is
approximately 18% higher than that in isothermal cases. The os-
cillations in the disk mass in the quasi-equilibrium state reach
∼ 1.5% which is about 10 times larger than those in the isother-
mal models (see Fig. 1). These larger variations are caused by
the larger disk eccentricity in the radiative models, which results
in large variations in the mass flow rate through the disk, with an
equilibrium value of Ṁdisk ≈ 1.2×10−6M�/yr. Because of higher
temperatures in the disk, in these models, the inner edge of the
disk is slightly closer to the binary, compared to the isothermal
cases.

As shown in the middle panel of Fig. 16, the viscously heated
disk is much hotter in the regions outside the inner cavity than
an isothermal disk with the same initial profile. The increased
temperature of the disk results in a larger vertical height of
H/r ≈ 0.06 to 0.075 within the main part of the disk, compared
to H/r = 0.05 for the locally isothermal disk. Inside the cavity
in the radiative model, the temperature becomes very low be-
cause the reduced density leads to optically thin disks that can
cool more efficiently. Also, the diffusion of radiation in the mid-
plane of the disk leads to additional loss of energy through the
open inner boundary (stellar irradiation was not included in these
models).

While the disk eccentricity in isothermal models was small,
we find that in radiative models, the disk eccentricity becomes
considerably large (see bottom panel of Fig 16). This large ec-
centricity is caused by the higher disk temperature in the radia-
tive case. For disks with less mass, the radiative models have
smaller temperatures and lower eccentricities, (see Sect. 4.3 be-
low). The high eccentricity of the disk in radiative models is in
agreement with the results of Pierens & Nelson (2013), who also
consistently find higher disk eccentricities for larger H/r. Sur-
prisingly, this behaviour is in contrast to the case where the disk
surrounds one star of a binary. In those cases, disks with smaller
H/r tend to have larger eccentricities (Müller & Kley 2012). We
do not have a full explanation for this behaviour, but we suspect
that the tidal truncation of the disk in this case, along with the ec-
centricity of the binary may play a role. In circumbinary disks,
there is no outer radius that may handicap the growth of large
eccentric modes.
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Fig. 17. Evolution of the semi-major axis and eccentricity of an em-
bedded planet in a radiative disk. The planet was started at a0 = 1.0 AU
(red curve). In the two other models shown in green and blue, simula-
tions were continued at specified times with slightly different numerical
parameter (see text for details).

4.2. Planets in radiative disks

Similar to the isothermal case, after the radiative disk has
reached thermal and dynamical quasi-static equilibrium, we
place a mp = 0.34MJup planet in the disk and follow its evolution.
Because in previous models, the final outcome did not depend on
the planet’s initial condition, and also because the evolution of
the planet is driven by dissipative processes, we expect that in the
radiative case, the final outcome will also be independent of the
initial condition, and we place the planets in a circular orbit with
a semi-major axis of a0 = 1.0AU. This choice of semi-major
axis will allows us to save considerable computer time.

Fig. 17 shows the evolution of the semi-major axis and ec-
centricity of the planet. As shown here, because of the higher
disk density in the radiative case, the planet migrates inward at
a faster pace than in the corresponding isothermal model (see
Fig. 7). Similar to the isothermal case, the inward migration
slows down when the planet reaches the central cavity with
the positive density slope. In the radiative case, this occurs at
t ≈ 500 years. After this time, the migration continues and
the planet reaches the location of 5:1 MMR with the binary at
t ≈ 1400 years where it is captured in that orbit. As expected,
upon reaching the resonance, the planet eccentricity increases
sharply (bottom panel). Shortly after capture in resonance at
about t = 1500 year, the planet’s orbit becomes unstable and the
planet is scattered into a high eccentric orbit with a much larger
semi-major axis.
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To examine the effects of the numerics on the results, we
changed two numerical parameters that can influence the calcu-
lations of the gravitational force between planet and the disk,
namely the gravitational smoothing parameter ε (from 0.6 as in
the isothermal case to 0.7) and the force truncation parameter p
(from 0.6 to 0.8). We then carried out simulations for the evolu-
tion of the disk and planet. The two runs with these new parame-
ters were continued from the first model at t = 1150 and t = 1270
years (green and blue lines in Fig. 17), respectively, shortly be-
fore instability set in. In both models, the planet is temporarily
captured in a 5:1 resonance with the binary. As shown by the
blue and green curves in Fig. 17, at this state (the evolutionary
times of 1700 and 1900 years), the semi-major axis of the planet
remains constant and its eccentricity increases. Subsequently,
the planet leaves the resonance migrating further inward until
its reaches an orbit with a semi-major axis of a ≈ 0.415 AU
between the 5:1 and 4:1 resonances where it then becomes sta-
ble. At this state, the planet’s eccentricity reduces to an averaged
value of e ≈ 0.03. Compared to the semi-major axis and eccen-
tricity of Kepler-38b (see Table 1), the planet in the radiative
disk model is closer to the binary, however, its eccentricity is in
a similar range. This mismatch between the observed value of
the planet’s semi-major axis and that obtained from our simula-
tions may be due to a too high a disk mass.

4.3. Planets in radiative disks with reduced mass and lower
viscosity

As indicated by the results of our simulations, the final location
of a planet in a circumbinary disk depends on the location of the
disk’s inner edge. In the radiative model with the standard disk
mass, the inner edge of the disk was quite close to the binary
star. As a result, the planet was able to cross the 5:1 resonance,
or became unstable after being temporarily captured in that res-
onance. A survey of the currently known circumbinary planets
indicates that in contrast to these results, all the observed planets
are in orbits outside the 5:1 resonance. To ensure that the final
location of the planet in our simulations will be farther away, we
need to develop a disk model with a large inner cavity such that
the inner edge of the disk will be at a large distance from the
binary star. Two effects will be able to accommodate such a disk
model; a reduced temperature, and a lower viscosity.

In a radiative model, the midplane temperature of the disk
is determined by the disk opacity, which can be easily adjusted
by the mass-content of the disk. To simulate the evolution of
the disk and its embedded planet for lower values of the disk
temperature, we, therefore, consider a model with a smaller disk
mass. Additionally, we reduce the value of the disk viscosity.
Specifically, we consider a disk with a quarter of the mass (i.e.
a model in which the surface density at the outer boundary was
set to a quarter of the original value), and a smaller viscosity pa-
rameter, α = 0.004. This value of α may be more realistic for
protoplanetary disks in their final phases. In Fig. 18, we com-
pare the structure of this disk with that of our standard radiative
disk model. From top to bottom, the panels shows the radial
dependence of the disk surface density, its temperature, and the
disk eccentricity at the equilibrium state. The green curves cor-
respond to the quantities in Fig. 16. Because of the disk’s lower
mass, the surface density of the disk is naturally smaller. This re-
duces the disk’s optical depth and leads to a lower temperature,
which subsequently results in a smaller disk thickness H. In
agreement with previous results, a smaller H results in a smaller
eccentricity for the disk.
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Fig. 18. Graphs of the surface density (in g/cm2, top panel), tem-
perature (in K, middle panel) and eccentricity (bottom panel) of two
radiative disks with different masses. The green curve corresponds to
the same disk model as the green curve in Fig. 16 with the standard disk
mass and viscosity (α = 0.01). The orange curve shows a disk model
with a mass equal to a quarter of the mass of our standard disk model
and a lower disk viscosity of α = 0.004.

We followed our standard procedure, i.e. after allowing the
new disk (with lower mass and viscosity) to reach equilibrium,
we placed a planet in a circular orbit at a0 = 1AU. Fig. 19
shows the evolution of the semi-major axis of the planet for the
new quarter-mass model (orange line) in comparison to the pre-
vious simulations. As shown here, in both models, the planet
migrates inward and the rate of migration is initially similar in
both cases. However, despite the fact that the reduced density
would slow down the migration and the lower temperature would
speed it up, in the long run, the planet drifted inward at a much
smaller rate than in the previous simulation. In this reduced-
mass disk model with the lower temperature and viscosity, the
planet carves a deeper gap where the central density in the vicin-
ity of the planet is only about a quarter to a third of the ambient
density compared to the two-thirds in the previous model (see
Fig. 10). This deeper gap brings the planet closer to the type-II
migration regime, and eventually leads to the very slow migra-
tion rate observed in Fig. 19, in the long run. In this simulation,
the migration is so slow that we could not follow the model to
the final equilibrium state.

To overcome the issue with the slow migration, we ran an
additional model where we placed the planet initially in an or-
bit with a smaller semi-major axis of a0 = 0.5 AU. In contrast
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Fig. 19. The evolution of the semi-major axis of an embedded planet
in a radiative disk with different masses. The red and blue curves cor-
respond to the standard disk mass model (as shown in Fig. 17) and the
orange curve corresponds to a model with a quarter disk mass.
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Fig. 20. the evolution of the semi-major axis and eccentricity of a
planet embedded in a radiative disk with a mass lower than that of our
standard disk model. The orange curve corresponds to the same model
as the orange curve in Fig. 19 with the planet started at a0 = 1.0AU. The
purple curve corresponds to a system in which the planet was embedded
in the disk at a0 = 0.5 AU and it could move only under the influence of
the gravity of the binary. The light blue curve shows the same planet as
in the purple curve. Except that in this case, at time t = 1700, the effect
of the disk was also taken into account. The dashed line in the bottom
panel shows the evolution of the planet’s mean eccentricity. As shown
by this panel, the first equilibrium is reached at e ≈ 0.036. Under the
action of the disk, this value of the eccentricity exponentially decreases
to a new mean value of e ≈ 0.026 in a timespan of 600 years.

to the previous models, here we first evolve the system with-
out the gravitational back-reaction of the disk, i.e. the planet
only feels the gravitational force of the two stars. In this way,
we calculate the approximate equilibrium state of the combined
disk+planet system, to avoid initial transients. Once this equilib-
rium is reached, we include the gravitational back-reaction of the
disk to allow for possible orbital evolution of the planet. Fig. 20
shows the results. The evolution of the planet semi-major axis
is shown in the top panel and the bottom panel shows it eccen-
tricity. The orange curve refers to the previous model where the
planet was started at a0 = 1.0AU under the full action of the
disk. As shown in the figure, while the planet semi-major axis is
continuously shrinking, its eccentricity is slowly increasing. For
the model started at a0 = 0.5, the planet remains first in its orbit
while it does not feel the gravity of the disk (purple curve). At
this state, the eccentricity of the planet oscillates between 0.0 and
0.07 with an average of about 0.036. We note that these varia-
tions are solely due to the effect of the binary star and are always
present for an orbiting planet. Once the back-reaction of the disk
is included, the orbital elements of the planet begin to slowly
vary (light blue curve). The planet begins to move slightly out-
ward while its eccentricity becomes smaller due to the damping
effect of the disk. For illustration purposes, we have superim-
posed the black dashed line which in the first phase shows the
equilibrium eccentricity, and after the release of the planet, its
exponential decline with a timescale of 600yrs. After its initial
outward migration, the planet moves slowly inward and finally
reaches a stable orbit exterior to the 5:1 resonance. From the
results shown in Fig. 20, we infer that the final position of the
planet is very close to ap = 0.5AU, just slightly outside its ob-
served orbit.

5. Summary and discussion

Using 2D hydrodynamical simulations, we studied the evolution
of a planet embedded in a circumbinary disk. We carried out
our simulations for the planetary system of Kepler-38 as our
test binary. In our analysis, we adopted a two-step approach
in which we first studied the structure of a circumbinary disk
without a planet, and then included a planet in the disk and
followed its evolution. To connect to previous studies by other
authors, we began by considering a locally isothermal equation
of state in our disk models. However, in order to extended
the analysis to more realistic systems, we considered radiative
models which include viscous dissipation, vertical cooling, and
radiative diffusion. In the following, we briefly present our most
important results:

a) Inner boundary
To enable mass accretion into the inner cavity of the disk, we
used an open boundary condition for the disk inner edge. This
boundary condition allowed for free in-flow of material onto
the binary star. At the outer edge of the disk, we considered
a fixed-density boundary condition which, combined with the
open boundary at the inner edge, resulted in disk models with
constant mass-accretion rates. Compared to the disks with
closed inner boundaries or those with slow viscous in-flows, as
used for example by Pierens & Nelson (2013), our open bound-
ary condition lead to the disk models with reduced and broader
maximum densities and smaller disk eccentricities. Initially, we
considered the location of the inner edge of the computational
grid , (i.e., rmin), to be at a distance of approximately 1.7
times the binary semi-major axis. Following Pierens & Nelson
(2013), who showed that the location of the disk inner edge can
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influence the structure of the inner part of the disk, we carried
out simulations for different values of rmin and determined that
a value of rmin ≈ 1.5abin (equal to 0.22 AU for the Kepler-38
system) would be sufficient to capture all necessary physics.
A disk model with rmin = 0.20 AU also resulted in the same
gap profile. We note that from a numerical standpoint, the
largest possible value of rmin should be considered. That is
because smaller values of this quantity will lead to significantly
reduced timesteps in which case the FARGO-algorithm is no
longer applicable. Therefore, in systems where the (expected)
inner cavity is larger, a larger value of rmin is certainly preferable.

b) Planets in isothermal disks
We studied locally isothermal disks with a viscosity parameter
α = 0.01 and vertical scale height of H/r = 0.05. Before
embedding the planet in the disk, we allowed the disk to reach
a quasi-equilibrium state, which for our standard disk model
took approximately 2000 yrs (∼39,000 binary orbits). We
then started the planet at various distances from the binary
and showed that as expected for a dissipative viscous disk, the
planet stops its radial migration and settles in the same orbit
near the inner edge of the disk regardless of its starting point.
For the case with rmin = 0.25 AU, we found that the planet was
captured in a 5:1 resonance with the binary and remained in
that orbit until the end of the simulation. The stability of the
resonant configuration may be caused by the damping action of
the disk, because circumbinary resonances such 5:1 are known
to be unstable for planetary orbits (Dvorak 1986). Hence, we
expect unstable behaviour in this case once the disk has been
dissipated, possibly leading to encounters with the binary and
departure from a closed orbit. For a disk with rmin = 0.22 AU (a
more realistic case), the inner cavity was larger and as a result,
the planet ceased its migration slightly outside the 5:1 resonance
at a ≈ 0.47 AU, which is in a very good agreement with the
observed location of circumbinary planet Kepler-38b. The mean
eccentricity of this planet, e ≈ 0.03, also agrees with that of
Kepler-38b. Our results indicated that in the case of isothermal
disks, the disk mass does not influence the final position of the
planet because the zero-torque position only depends on the
density profile and not the absolute value, as the density scales
out of the equations.

c) Planets in radiative disks
In a final set of simulations, we developed more realistic disk
models by including viscous dissipation, radiative cooling, and
diffusion. We found that when we used the same absolute density
as in the standard isothermal disk (≈ 2100 g/cm2 at 2AU), the
viscous heating made the disk hotter compared to the isothermal
cases. This additional heating caused the disk to become more
eccentric and the inner cavity to become smaller. As a result, the
embedded planet was able to cross the 5:1 resonance and reach
its final position at a ≈ 0.415 AU (slightly outside the instability
region) with a small eccentricity of e ≈ 0.03. Such an orbit will
again be unstable upon dissipation of the disk.

A reduction of the disk density combined with a lower
viscosity lead to a wider inner cavity with a smaller disk
temperature. In this case, the disk mass becomes very small
and as a result, the migration time becomes too long to follow
the planet’s evolution to the end, as found by Pierens & Nelson
(2013) as well. To save computational effort, we started a
model with a planet initially much further in, and obtained an
equilibrium state where the planet stopped its radial migration
just inside of a ≈ 0.5 AU, again very close to the observed

location.

In agreement with previous simulations (Pierens & Nelson
2007, 2013), our study indicates that planets migrate inward in
circumbinary disks. The final position of a planet depends on the
size of the inner cavity. The results of isothermal runs suggest
that the disk height has to be around H/r = 0.05, however, no
other information on the disk mass can be inferred from these
simulations. In fully radiative simulations, the mass of the disk
will determine the temperature and hence H/r, as in these sys-
tems the cooling depends on the vertical column density. From
our simulations we infer that the required surface density is prob-
ably around a quarter of the minimum solar mass nebula.

To improve the models, the stellar irradiation from the two
stars of the binary can be included. The combined irradiation
will heat up the inner parts of the disk causing the disk’s thick-
ness to increase which itself results in an increase in the disk’s
eccentricity. What effects this may have on the final outcome
of the simulations remains to be seen. A further improvement
can be obtained with full three-dimensional simulations includ-
ing radiative transport. However, considering the necessary long
evolution time, where ten-thousands of binary orbits have to be
followed, 3D simulations are certainly still challenging.
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