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At the first post-Newtonian approximation to general relativity, analytic solutions are presented
for the motions of generalized MacLaurin disks of dust. The main result consists in the solution
for a rotating and oscillating disk. This disk has the remarkable property that, in contrast with
its Newtonian analogue, it is rotating nonuniformly. Even in the stationary limit of a vanishing
oscillation amplitude, the rotation law does not become rigid. On the other hand, by imposing
initially uniform rotation and nonoscillatory motion, the motion is found in agreement with earlier
results by Bardeen and Wagoner. The solution of the collapsing generalized MacLaurin disk without

rotation is presented also.

PACS number(s): 04.25.Nx, 04.40.—b

I. INTRODUCTION

Thin disks consisting of an ensemble of noninteract-
ing dust particles are, apart from spherical symmetric
cases, among the simplest axisymmetric systems that in-
corporate the essential new features of general relativity
beyond Newtonian physics. Evolving disks emit grav-
itational radiation and the formation of black holes is
possible under certain conditions. Consequently, gen-
eral relativistic disks of dust have recently enjoyed a re-
newed interest and are presently an active topic of re-
search. Bardeen and Wagoner [1] were the first to begin
with the study of relativistic stationary rotating disks.
They obtained a solution for rigid rotation in the form
of a series expansion. However, terms beyond the sec-
ond post-Newtonian approximation are only given nu-
merically. Recently, Neugebauer and Meinel [2], using
an inverse method, were able to obtain the exact solu-
tion for the rigidly rotating stationary disk of dust in full
general relativity.

The aforementioned solutions only treat the rigidly ro-
tating stationary case. However, evolving disks might
be important for a better understanding of black-hole
formation and accretion processes. As they are sources
of gravitational radiation, nonstationary disks are also
of interest for future gravitational-wave astronomy. The
general-relativistic problem of the internal motion of ex-
tended, nonspherically symmetric bodies is intrinsically
very difficult and analytic treatments are known only for
stationary situations. Before referring to extensive nu-
merical calculations in general relativity it is very in-
structive to investigate the solution space in the vicin-
ity of the Newtonian solutions. These so-called post-
Newtonian approximations have been widely employed
in the study of binary stars. After the discovery of the
Hulse-Taylor binary pulsar PSR1913+416 in 1974, much
effort has been devoted to understanding the relativistic
motion of compact binary systems. Presently, the mo-
tion of binary star systems with pointlike components
is known analytically up to the second post-Newtonian
approximation to general relativity [3].
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Here we treat the oscillations of an infinitely thin disk
in the first post-Newtonian approximation. We consider
so-called MacLaurin disks, which are obtained as a lim-
iting case of the well-known MacLaurin spheroids. The
solution extends the known self-similar oscillating New-
tonian case (see Hunter [4], and more recently [5]) into
the weakly relativistic regime. At this level of approxi-
mation the problem can be solved fully analytically, and
the solution resembles closely the one obtained for a bi-
nary system as given by Damour and Deruelle [6]. A
word of caution is appropriate here. It is well known that
Newtonian pressureless, cold dusty disks are dynamically
unstable to ring formation (e.g., [7]), a result which most
likely carries over to general relativistic disks [8]. As in
the Newtonian case we assume a solution exists, and by
using an appropriate ansatz, we transform the problem
into a set of ordinary differential equations. The intro-
duction of a surface pressure, i.e., heating the disk, will
stabilize it. The analytical zero pressure solution pre-
sented may be considered as modeling such a situation,
and can serve, for example, as a test case for fully rel-
ativistic calculations of thin disks. For the case of zero
net angular momentum, Abrahams et al. [8] have followed
the evolution of (counter)rotating thin disks numerically
in full general relativity using a particle method.

In Sec. IT we review briefly the Newtonian motion, os-
cillation, and collapse of the disk. In Sec. III we present
the post-Newtonian solution, and analyze in Sec. IV the
oscillating rotating disk. In Sec. V, the special cases
of the nonrotating collapsing disk and the rigidly rotat-
ing stationary case are discussed. Finally, in Sec. VI we
present our conclusions.

II. NEWTONIAN MOTION

The Newtonian motion of MacLaurin disks has been
treated for example by Hunter [4] and recently by Shapiro
and Teukolsky [5]. In order to elucidate the post-
Newtonian extension, we review first the nonrelativistic
Newtonian treatment. In Eulerian form the axisymmet-
ric pressureless hydrodynamic equations, in cylindrical
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coordinates (7, ¢, z), for a motion confined to the plane
z =0 are
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where ¥ is the surface density, v,, v, are the radial and
azimuthal velocity, and U is the gravitational potential.
To solve these equations for a disk, one seeks a self-similar
solution and makes the following ansatz for ¥, v,, and
V!

S(rt) = o(t)4/1 - (r;(t))z, (4)

vp(r,t) = =7 f(2), (5)
ve(r,t) =7 Q(t). (6)

The surface density has the profile of a MacLaurin disk
with o(t) being the central surface density and r4(t) being
the maximum disk radius; both are functions of time.
The disk is rigidly rotating at all times with the angular
velocity Q(t). For this density distribution the potential
in all space is calculated from Poisson’s equation

AU = —4nGX(r)é(z),

and within the disk (z = 0,7 < rg) it has the form

a(

Substituting the ansatz (4)—(6) and (7) into the evolution
equations (1)—(3), and collecting terms of equal powers
r/rq yields four ordinary differential equations for the
unknowns o, 74, f, and Q:

2 r 2
U(r,t) = Go(t)ra(t) % {2 - (r_ﬁ) } . (7)

7 -2f =, ®)
g+f=m 9)
—f+f2+G%2%—92=0, (10)
o -2f=0, (11)

where the overdot represents differentiation with respect
to time. These evolution equations are integrated apply-
ing the initial conditions f(0) = 0 and r4(0) = Rgq. The
first two equations can be combined and solved to yield

My = 2 o(0r3), (12)

where the constant of integration, My, is the total con-
served (Newtonian) mass of the disk. With Qo and R4
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denoting the initial values of £2(t) and r4(t), respectively,
Eq. (11) yields

Q(t)ri(t) = QoRE, (13)

stating the conservation of angular momentum. By in-
troducing the dimensionless radius X through

ra(t) = Ra X (8), (14)
we obtain from Eq. (10) a second-order differential equa-
tion for X:

. 20 (1 £

X+R—3(X§—F =0, (15)

where £y is defined through

20¢2
Q5 = M (16)
0 Rz

and the constant C is given by

_ 3nGMy m2GaoR}

C b
8 4

(17)

where oo denotes the initial central surface density ¢ (0).
Equation (15) resembles closely the equation for the ra-
dial motion of a binary system with total angular mo-
mentum [ = v/2CRz€N. Hence £ is the fraction of the
specific equilibrium angular momentum of the disk (see,
e.g., [5]). Since the disk motion is self-similar, we can
write for all radii r < 74 an identical equation of mo-
tion (14). The solution of (15) with the initial conditions
X =1and X = 0att = 0 can be written in parametrized
form as

2 .
73—t:u~esmu—7r,

X = a(l —ecosu), (18)
where, in the equivalent two-body problem, a is the rela-

tive semimajor axis, e the eccentricity, and P the period.
Here the constants are given by (see, e.g., [4,5])

1
o= —7p,
2 €3
e=1-¢%, (19)
a’R3 1/2
P=2 d .
(%)

For the time dependences of radial and rotational velocity
one obtains

_ 2
£2(8) = %1_5(_3{ [1—%(1+X)], (20)
EnV2C Ry

The limiting case {5 = 1 leads to a stationary nonoscil-
lating equilibrium disk, where centrifugal forces balance
gravity exactly. On the other hand, {5 = 0 describes
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a case with no rotation, i.e., zero angular momentum.
There the whole disk collapses homologeously, and all
parts reach the center simultaneously after the finite time

1( Ry \2
=== . 22
tc 2 (GO’ 0) ( )
The scaled radius X (t) is then obtained from

X (t) = cos> B(t), where B(t)+ %sin[Zﬁ(t)] = g{t;
(23)

In this parametrization the solution of the disk collapse
resembles very closely that of a collapsing homogeneous
J
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sphere considered by Hunter [4]. The parameter S is

related to u through

1
B = E(u—r).

For intermediate cases 0 < £ < 1 the disk oscillates
according to (18), rotating always rigidly.

III. POST-NEWTONIAN MOTION

To study the evolution of the disk in the post-
Newtonian approximation we start out from a formula-
tion of the hydrodynamic equations by Chandrasekhar
[9] which read for the pressureless case

dva OU _1[ ., du,, 20U 9Us 1 8 (8%
Gt pa. — @ |V G W g e — S o \ B
+25‘92 + 4% — (lvz + 3U)] (24)

dp v, pd

c?dt

dt "oz, ~

( + 3U) (25)

To study the above one-dimensional disk case we define the two-dimensional surface density ¥ through

¥4(z)
vV =9zz )

(26)

Note that the space-time signature in Ref. [9] is —2. Then we obtain, for the continuity equation and the equations

of motion,
%§—+UT?B§+§(9(;:T = —%di (—v +2U) (27)
and
?g—t"i +v,%%—“i -+ % = clz [gd(ift]“’) —w% (1 2+3U)} (29)

The left hand sides of these equations have the standard Newtonian form and the right hand sides are proportional
to 1/c? and represent the first post-Newtonian extension. The additional “potentials” x, U,, and & are defined as

solutions of the equations

Ax = -2U, AU; = —4nGX(2)v;, (i=r,9), AP = —47GLi(2)9, (30)

where
¢p=v*+U. (31)

To solve Egs. (27)—(29) we can substitute the known
Newtonian solution of the previous section into the cor-
rection terms of the right hand side and look for solutions
of the now post-Newtonian density ¥ and velocities v,
and v,. For later convenience let us define the distance
in units of the maximum disk radius

a(r,t) = (32)

'I”d(t) ’

In the Newtonian case the total (Lagrangian) time
derivative of a vanishes (@ = 0), a consequence of the
self-similarity of the collapse. In the post-Newtonian case
this is not necessarily true. Substituting the Newtonian
solution (to be noted with a superscript N where neces-
sary) into the right hand side of the continuity equation
(27) we find

d (1, U .. f
dt( +2U)_v,ar+2U—4Cr—d (33)

and the continuity equation becomes
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0% 0% Td(rw) __,C TN
ot " ar ty r Or c2 ¥ (34)

To evaluate the equations of motion we shall first cal-
culate the additional potentials by using Poisson integrals
over the area D of the disk. Let us start with

' !
&= G/ ¢(r', o) B(r', ') r'dr'dy’

|r =1/

(35)

Using the definition for ¢ (31) and a (32) we obtain
® =2GoC 1, + Go [(f2 +Q%)r3 - C’] I, (36)
where I; and I, are the integrals

m V1= zz'de'dy’
Ii(a) = 5 , (37)
o (a% — 2az’ cos ¢’ + x'2)1/2

V1—2?z?2'dx'dy’
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formally unchanged and we obtain
27 Tmax
I(a) = / VY dzdop,
o Jo
2m Tmax
I(a) = / VY (z? — 2az cos ¢ + a?) dzdy,
o Jo
where we used
Y =1—a?+ 2azxcosp — z2, (39)

and where the integration limit & ay is

Tmax(p) = acosp + /1 — a?sin?p . (40)

The occurring integrals of the type I; and I; can be in-
tegrated analytically consisting of the parts

2w
27T pZTmax 2
I ™
2(e) = / / (a2 — 2az’ cos ¢! + z'2)1/2° (38) / VY dzdp = T (2—-a?), (41)
o Jo
27 pTmax
Thf.:se integrals are ea_.sily solved by first perforn}ing a co- / VY z cos odzdp = 7"_2 @ (1 _ laz . (42)
ordinate transformation (z’,¢’') — (z, ) that is equiva- o Jo 4 4
lent to shifting the origin of the coordinate system to the 2% Tmex 2 1.
. cq s . 2 n 2 4
point a where the potential is to be evaluated. Specifi- / VY z? dedp = 5 (1 +a® — 3® ) .
; o Jo
cally the transformation reads
(43)
z'? = 2% — 2az cos p + a?, 27 Tmax
2? = 2% — 2az’ cos @' + a’. /0 | VY zsinpdzdp = 0. (44)
This coordinate transformation leaves the area element For the potential & we obtain finally
]
c? (7 5, 9 2 1, 9 4
=—(=-—= - — . 45
2 (2 5%+ 76% )+Crd(f + Q?) +2a 6° (45)
The potential x turns out to be
X = —G/ (', ') v —¢| r'dr'dy’
D
2w Tmax 1 1
= —GUTZ/ VY 2?2 dzdp = —=Cryg (1 +a? - —a4) . (46)
0 0 2 8
With
v, = —v] cos ¢’ + v, sing’ = (zcosp —a)f(t) + Qt)zsing, (47)
v, = —v).sing’ — v, cosp’ = f(t Yz sinp + (a — z cos p)A(t) , (48)
we find, for the velocity potentials,
U, = G/ (', 0" ) v (r!, ') r'dr' dy’
[r — x|
= Garda/ VY [(zcosp — a)f(t) + Q(t)x sin ] dzdp
o Jo
3 o
=-Cf(t)a|1l— 7% (49)

and
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—G/ B(r', @) vo(r', ') r'dr'dy’
|r— /|

= Garda.A ozm-x VY [f(t)zsing + (a — z cos p)(2)] dzdp

— CQt)a (1 - gaz) . (50)

Using now
% (3 (-39 30
Sl S (L)
P e () *

and Eq. (10) we find, for the momentum equations,

dv, &, U vi Ca 7,\C 2\ £2 5 23 ,\ 2
—_—— =" -1+ - - -~ 4+ = 4
6t+v'6r 5y 2 [( 1+4a r3+(1+3a)f+ 5+t 3¢ Q4, (54)
) ) . 2C
DL v SE + 20 =~ £0(1 4+ a?). (55)

The post-Newtonian corrections to the evolution equation show a polynomial behavior in terms of a. Thus, to solve
the system (34), (54), and (55) we make the ansatz

Z(r,t) = o(t)v/1 —a? (1 + %n(t) a2) , (56)
vp(r,t) = —r [f(t) + A(t) @®], (57)
v,(r,t) =7 [Q(t) + w(t) a?]. (58)

These are the Newtonian expressions plus correction terms x(t), A(t), and w(t) which are O(c~2) small. Note that a
is time as well as radius dependent. Using the density ansatz (56), we find, for the (post-Newtonian) gravitational
potential,

— pl2 2 / /
U= Gard/ vi—=z (1+ SKT )( ) dz'dy’

(a? — 2az’ cos ' + .'1:’2)1/2

2r z
max 2C 1 2C
= Gard/ / [1 - 22— + = 3 ( K+ %) (z® — 2azcosp + az)] dzdyp

_Gar,,T [(1—022—0) (2- 2)+Z (n+c—22%) (1+a2——§a4)]. (59)

Substituting all expansions into the equations of motion (34), (54), and (55) and comparing equal powers of a, we
obtain finally

g C df1
s Y= ara (Y) ’ (60)
X
f+f+,\=0, (61)
& — 10X =0, (62)
: G 1 202 2 (7

; 9C 2C? [23 & (1
—A+20f -2 = 2 _ex-—S5N(Z_3x2
+ 20 f — 2w) + 8R3X3n FRAX [4 6 X (8 3X )] s (64)
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. 209Qf
N-2fQ=——~+=— 65
f ZR.X (65)
200 f
S 9w — _ 2095
w fw —2)Q FRX’ (66)
[
where the first three equations result from the continuity Integration then yields
equation (34), and the latter four from the momentum ~
equations (54) and (55). The first three equations can Q) = 2o 1 — C (1 1 70
easily be combined and integrated. Noting that X (0) = ¢ 2Ry \ X ’ (70)

1, and expanding the occurring exponential we obtain,
for the central surface density,

with Qg = Q(O) Let us define the two dimensionless
functions K (t) and W (t) through

0= 352 {1- 25 |5 — 1| - 5 16t — o
7= Xy 2Ry | X(t) 5 ol 10C K (t) C Qn(t)W(t)
K(t) = — ——= and w(t) = ———%. (71)
(67) c? T‘d(t) c? Td(t)
where 0y and K¢ denote the initial values of o(t) and k() From Eq. (62) we then find
at t = 0, respectively. The Newtonian expression (12) is Cd /K
corrected by the small terms in the curly brackets on the A= 2% (r) . (72)
d

right hand side. Defining

Using this in combination with Eq. (66), we get, after

_ _ X . .
Q=Q+w and f=f+r=-—=, (68) integration,
X w K 1
we find upon combining Egs. (65) and (66), X Wo =2 [(3(_ B KO) - (-)? B 1)] ’ (73)
G- 2f0 = — acQf (69)  With Wo = W(0) and Ko = K(0). Combination with Eq.
2R4X’ (64) yields

—R3X3K+Q+K(§Z+§fl)—2§§, [WO+2<5~KO)—2(i—1)] =3—z—6X—£—12v—(1—3X2). (74)

2C 8 8 X X

For the corrections to the density and angular velocity
K and W we make the ansatz

8 X \8

member X (0) = 1 and X (0) = 0]

. 2B C’ D
2 _ L~y 2
K(t) = k1 + k2X(¢) and W(t) = w, + w2 X(t), (75) X=d+5x+5= 5 (79)
where k; and w; are constants and Ko = k; + k; and where the coefficients are given by
Wo = w; +we. Equating now equal powers of X we find, 2Go 25
for the coefficients, B = ° 4+ Pe | 12 + 2ky + — ko — 4{12\, s
2R, 8
11 16 &, ~ 55 9
ki=—, hky=-—(1-3N), 76 "= (2 _22 4 T g2
=5 k=2 (1-4 (76) ¢ =< pe (- + gk -8k ),
D = +p. Eéfv,
3 39 4
Wi Wi g (77) A=—-(2B+C' +D). (80)

Substituting (75) and the solution for 2 and combining
Egs. (63) and (64) we get a second-order ordinary differ-
ential equation for X which has the form

X+22 422,38 .

Xz X3 Xt (78)

Multiplying with X this can be integrated to yield [re-

Here p. is a small quantity denoting the O(c™2) correc-
tions to the otherwise Newtonian parts:

(81)

207 (SwGMN ) 2
DPe = =2

2R} 8cR?

Equation (79) has the same structure as the post-
Newtonian equation for the orbiting binary star problem.
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IV. GENERAL OSCILLATING SOLUTION
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binding energy E, as stated in the Appendix. We then
find

Before we state the general solution of (79) it is in- 2 A4 2B + g + é (82)
structive to restore the dimensional version and express Ta = re rz 3’
the coefficients in terms of the globally conserved quan-
tities, baryonic mass My, angular momentum L, and the =~ where the coefficients are given by
J
- 5E 5E/c? 113 ) . 2 )
=1 - ——F2 | —-101 — ——k; — 25k, — T9€3 + 40N + 80K — 24W,
A Mo{ 56 Mo (&2, — 2)2 [ 5 *1 2 &N 135 0N 0w
i, = |12 b o8}
+ 13+ €% + 5Ko)| ¢, (83)
Mo(€% - 2) v )
- 3tGM, 5E/c? 22 2 9
= —(2 - -k s 84
- 25L2 5E/c? 58 26, In2G2ME [ 55 9 2
=— ~2 _2e2 _ 6K, + 3W, T 022 Cky —8e% ], 85
o} Ve {1+ MoE~2) | 5 5 35 o +3Wo o+ —o5 + T gk 8N (85)
[
R
and a=> d . (95)
) 23257GL? (86) —¢
T 128¢2M, In the equivalent two-body problem P is the time of re-

The general solution of (82) is now given by, e.g., Damour
and Deruelle [6], and can be written in a parametrized
form very similar to the Newtonian solution (18) of an
orbiting binary star system:

E;t =u—esinu—m, (87)
rq = a(l — e, cosu), (88)
with
_A\3/2
2r _ (_4__)___, (89)
P B
i 8p\]"”
e = 11— — C~' - = 3 (90)
B2 Co
B D
= —= + —= 91
YTTAT 26, o)
AD
e, =14+ —= et 92
( ZBCO> ' ®2)
where Cj is the first term of €,
=~ = 25L%
= —(2RY= -2 93

To stress the similarity with the Newtonian solution of
Sec. II we define the post-Newtonian £ through

e, =1—¢%, (94)

and obtain

turn to the periastron, i.e., the orbital period. The pa-
rameter u is an “eccentric” anomaly and e; and e, are a
“time” and “relative” eccentricity, respectively [6]. The
post-Newtonian approximation breaks down if the cor-
rection terms are of order 1. In the present situation, the
conditions

10|E| 3rGM2\ >
Moz <1 2nd ( e ) <1 (96)

must hold, which follow from Egs. (92) and (A3). Hav-
ing calculated the solution for X (t), the solutions for £(t)
and w(t) follow directly from the definitions (71), and
o(t) and § are obtained from (67) and (70), respectively.
Finally, A(t) and f(t) can be calculated from (62) and
(61). This completes the general post-Newtonian oscil-
lating solution of a pressureless dusty disk.

The question arises as to how to observationally deter-
mine the degree of “post-Newtoness” of a rotating disk.
To answer this, let us assume that an observer is able
to measure the gravitational mass Mg, the total angu-
lar momentum L, and the period P of the oscillations
of the system. These three quantities determine the mo-
tion completely and are given by Egs. (A7), (A3), and
(89). Now Newtonian and post-Newtonian oscillations
of different systems with identical L, P, Mg can be com-
pared by monitoring, for example, the time variations
of the orbital period €2 at the outer disk radius, as seen
by an observer at infinity. The ratio of the maximum
and minimum values then displays most clearly the post-
Newtonian deviations from the nonrelativistic case. To
illustrate the post-Newtonian influence on the motion we
generated a sequence of test cases in which the parameter



WILHELM KLEY AND GERHARD SCHAFER S0

6224
5 | T T T T T
45
4
Y -3 S
g
[
(=]
£
S 3t
K
4
£
© a5t
2 -
15 F
.

FIG. 1. The angular velocity at the outer
edge of the disk, as seen by an observer at in-
finity, normalized to the initial value versus
time normalized to the orbital period. Plot-
ted are curves for models with identical &n
and Ry and varying mass M¢. The individ-
ual curves are labeled by the dimensionless
parameter |E|/(Moc?®), and the Newtonian
limit is given by the solid line.

0.6 .
Time/P

&N and Ry are held fixed and the gravitational mass Mg
is varied. In Fig. 1 we plot the rotational period at the
outer rim of the disk () versus time for such a sequence
with £5 = 0.8. The individual curves are labeled with
the dimensionless parameter €. = |E|/(Moc?). The mini-
mum occurs always at the maximum extension of the disk
and the maximum at the disk’s minimum radius. Since
we normalized the ordinate to the initial rotation 2(0)
and the abscissa to the rotational period P, the New-
tonian curve is identical in all instances and given by
the solid line labeled “Newton.” Small e, < 10~2 cases
are very nonrelativistic and show only little differences
between post-Newtonian and Newtonian evolution. The
trend is obviously a reduced ratio Qmax/Smin for more
relativistic situations, and in the limit of the approxima-
tion, for €. ~ 0.025, the deviation has reached 20%.

V. SPECIAL CASES

In addition to the oscillating rotating disk solution,
it is illuminating to discuss the solution of the post-
Newtonian motion for the dusty disk in the limiting cases
of the nonrotating collapsing disk and the rigidly rotat-
ing stationary disk. We shall discuss these limits now in
turn.

A. Rigidly rotating stationary disk

The oscillating solution as presented above displays
the surprising and interesting property that by setting
& = 1, one obtains a stationary post-Newtonian solution
with X = Xy = 1 which is not rigidly rotating, although
the Newtonian limit is. This can most easily be seen by
noticing that the constant Wy, or w(0), is nonzero even
when the limit of vanishing amplitude of the oscillation is
taken. It is possible, however, starting directly from the
stationary equations, to construct a solution that rotates
rigidly, i.e., has w = 0. Equations (60)—(66) reduce in the

w2 Go 1 c?
- = _Z -2 = - —_
4 Ry (2 2") 2Ry’ (07)
2
w4 -2 C (98)

8R§llc vy 2Ry’

Since we are interested in rigid rotation, we have to set
w = 0, and substitute the ansatz for x (71) and (75).
From (98) we obtain

7
K=—
15 (99)

and from (97) can calculate Q:

2 2
2 mGo C B
Q° = SR, + —c2R§(1 5K).

Let us expand the conserved quantities My, L, and E of
this stationary case in terms of v, the absolute value of
the central potential of the disk at » = 0. In the post-
Newtonian approximation [9], v, is given by

U. 29,

Ve = — VR
c? c?

where the ®. and U, are the values of U and ® at a = 0.
We then find for the rotational velocity at the disk’s outer
radius
Q2R3
o2

=v.(1-2v,.). (100)

The total conserved mass, angular momentum, and en-
ergy can be written as

(101)
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= 8c? R3(ve)¥2 (1 +v.), (102)
157G
and
4c*Ry 2 1
= “v. ). 103
E=—T5rc ) (1 + oY ) (103)

We note in passing that this solution is identical to the
series expansion given by Bardeen and Wagoner [1] if only
the first (post-Newtonian) correction is included. This
can be seen most easily be expressing their expansion
parameter vy, which is related to the central redshift as
seen by an observer at infinity, through the expansion
parameter v, as defined above. The parameter + is given
by
y=1—e"".

Note that Bardeen and Wagoner use v with the opposite
sign. By noting further that their radial coordinate p is
identical to 7 used here, the identity of the two solutions
is established.

B. Nonrotating collapsing disk

At the other extreme, it is interesting to study the evo-
lution of an initially nonrotating disk £ = 0. In the New-
tonian case the solution is given by the parametric so-
lution in Sec. II. Surprisingly, again the post-Newtonian
case cannot be obtained directly from the oscillatory so-
lution be setting £ = 0 and W = 0, but instead one has
to start from Eq. (74) and then set £ = 0 and W = 0.
Upon equating once again equal powers of X in the dif-
ferential equation for K one finds, for the coefficients of
K,

46 16
2 k= 104
37 2 (104)

k1= —Ig

Thus, the constants k; and k; which determine the mass
distribution are not identical with those obtained in the

oscillatory case. The constants in the equation of motion
then read

7I'2G0'o

B =
2R,

25
+ pe (12 + 2k + —S—kz) ,

55 9
24 %%
pc( 4 + 8 1) )

A=—-(2B+C).

C' =
(105)

Using now the solution of the full case (89)—(92), and
noticing that e; = e, = e, we can cast the solution for
the collapsing nonrotating disk in parametrized form as

mt 457 C

1
= =0+ (1-22 = )i i
2z, P+3 < 37 Rdcz) sin(26) (106)
The collapse time is given by
- 1637 C
te =t —_—
e c(1+ 1l Rdcz), (107)
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where t. is given by Eq. (22). The radius can then be
calculated from

457 C

— 2 -
ra(t) = Rgcos® B(t) |1+ 74 R

tan® ﬂ(t)} . (108)

These relations directly extend the Newtonian collapse
solution of Sec. II. The solutions for x(t) and o(t) follow
from (71) and (67). As above, A(t) and f(t) are obtained
from (62) and (61), respectively. The collapse time . is
larger compared to the Newtonian value t.. The condi-
tions for the validity of the post-Newtonian approxima-
tion are now given by

457 C <1 and 457 C
37 Rgc? 74 Rgc?

tan? B(t) < 1.

The approximation obviously breaks down before the col-
lapse time £, is reached. This is in contrast to the above
oscillatory case, where the conditions for validity are not
time dependent.

VI. CONCLUSIONS

In this paper we derived an analytic solution for a
weakly relativistic, rotating, and oscillating disk of dust
in the first post-Newtonian approximation. Although in
the nonoscillating case uniform rotation exists, in the
limit of zero oscillation amplitudes the angular velocity Q2
of the oscillating rotating disk is not uniform. This con-
trasts sharply with the Newtonian dynamics where in the
oscillating case the rotation is uniform even for finite am-
plitudes. Thus, to obtain a rigidly rotating disk the dust
has to be redistributed radially. This fact demonstrates
the generality of the class of post-Newtonian solutions, in
which additional constraints such as rigid rotation have
to be imposed to pick a specific solution. The result,
however, appears not completely unexpected if one re-
members the phenomenon of the periastron shift that
occurs in the relativistic two-body problem, where the
equal-mass case is nearest to our situation. It is worth-
while to speculate about an oscillating and rotating disk
of dust where the oscillation comes to rest by some damp-
ing mechanism and where the final rotation is a nonuni-
form one. We note that the total energy for the two
nonoscillatory cases, for the same angular momentum,
radius, and baryonic mass, is identical, as can be seen
directly from Eq. (A5). Thus the two solutions appear
to be degenerate in this case. However, most dissipative
processes are likely to destroy the limiting nonuniform
pattern of rotation. In a forthcoming paper we shall in-
vestigate how gravitational-radiation damping influences
the oscillatory and rotational motion of a relativistic disk
of dust.
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APPENDIX: CONSERVED QUANTITIES

During the collapse certain physical quantities are con-
served. The first is the total baryonic mass of the disk,

M, = /p‘da:z,

where the density p* is given by [9]

* l 12
p —p[1+c2 (zv +3U)].

Substituting for the potential and the velocity we find,
after integrating over the volume (surface) of the disk,

142.°

° 5 Csz

_ 2mooR}
3

(8+&% + 5Ko)] . (A1)

The total baryonic mass My is identical with the Newto-
nian mass My. From the linear momentum [9]

7r=pv+cl2p[v(v2+6U)—-P],

we find, for the conserved total angular momentum,

L=/x><1rd3 =e,/r7r¢d3m.

The last equal sign follows for the considered disk case
where the angular momentum vector is parallel to the 2
axis. The vector P is defined through

1 8?2
P,=4U, — ———x,
v =40k~ 3 5t0s, ¢
and in our situation it reduces to
P, = gU,, P, =4U,. (A2)
For the total angular momentum we then get
4%00QOR3 4 C 17 2
L= 1+ = — +2
15 7er\2 T &N
3
+5Ko — ZWO)] . (A3)
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The binding energy of the disk is given by

E = / Ed3z,

where the energy density £ has the form [9]

2 1 5 4 2
E = [—(‘l} —~U)+ZE —8-’0 +2’UU
5 1
—uUt- Ev,,}D,‘) (A4)

Substituting now again the potentials U, P,, velocity v,
and density ¥, we find, after integrating over the volume
(surface) of the disk,

mooR2

B=-—

{2 [szaoRd - Rgfzg]

4 C? 2, 2 4
+24£% — 69] } (A5)
In the Newtonian limit this reduces to
3r GM} 2
=———>(2- . A6
By =-3 g te—gh) (46)

Relation (A6) can be cast into the form

C _ 5By
R:  2Mn(E, - 2)

which proved to be useful in obtaining the expressions
for the constants A to D in Sec. III above. The total
gravitational mass of the disk, to the order c~2, is then
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