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Gravitational radiation from the oscillations of a rotating disk of dust
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A recently found analytic first-post-Newtonian-order solution to the problem of the relativistic
oscillatory motion of a rotating disk of dust is applied to the determination of the gravitational-
wave emission and radiation damping. The secular changes of the oscillation period and of the
minimal rotation frequency at the rim of the disk are shown graphically. Gravitational waveforms
are presented which take into account the damping of the disk through gravitational-wave emission.
The implications for two merging white dwarfs are discussed.
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I. INTRODUCTION

Gravitational-wave emission by relativistic astrophys-
ical objects is of major interest for future gravitational-
wave astronomy (see, e.g., Ref. [1]). However, solu-
tions to Einstein’s field equations under those conditions
are difficult to obtain, even numerically. In addition to
the inspiraling and coalescence of compact stars (white
dwarfs, neutron stars) or black holes, the collapse of stars
and the formation of black holes are the most important
astrophysical sources of gravitational waves. Oscillating
and collapsing rotating disks of dust might be a reason-
able first model to study the gravitational-wave emission
of possible formation processes to supernovas or black
holes [2].

In a previous paper [3] (from now on paper I), the au-
thors succeeded in finding an analytic solution for the
first post-Newtonian motion of an oscillating and rotat-
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where G, ¢, and R denote the Newtonian gravitational
constant, the velocity of light, and the source-observer
distance, respectively. The indices ¢ and j are running
over 1,2,3 and refer to Cartesian coordinates in asymp-
totic three-space. Ti? ZIm and ng’lm are the so-called
pure-spin tensor-spherical harmonics of electric [parity
(—1)!) and magnetic [parity (—1)'*'] type. The harmon-
ics are orthonormal on the unit sphere (coordinates 6
and ¢) and under complex conjugation they behave as
TE/B2im» — (_1)ymTE/B%l-m  The spherical radiative
mass I'™ and current S'™ multipole moments depend on
retarded time (¢ — R/c). The upper prefix (I) at the mo-
ments denotes the number of time derivatives (! times).
Complex conjugation results in I'™* = (—1)™I*~™ and
Slm" — (_l)msl—m.

In axisymmetric situations only the multipole mo-
ments with m = 0 can be different from zero (if the
multipole decomposition has been adapted to the axis
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ing disk of dust. In this paper, this solution will be
utilized to derive the corresponding gravitational-wave
emission and radiation damping. The paper treats an-
alytically one of the simplest models which fits into the
framework of post-Newtonian hydrodynamics and post-
Newtonian gravitational-wave generation of continuously
extended bodies [4]. A mathematically somewhat re-
lated situation, namely the gravitational-wave emission
and damping of a binary system, has already been dealt
with in the past [5,6].

II. GRAVITATIONAL RADIATION OF
AXISYMMETRIC SOURCES

In suitable radiative coordinates the gravitational radi-
ation field of an isolated source at rest can be represented
asymptotically in the form [7)

-1
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of the body). If, additionally, the body has a maximal
discrete symmetry with respect to the origin of the coor-
dinate system, the mass moments with ! = uneven and
the current moments with ! = even vanish. Thus, the
radiation field of a rotating disk of dust, at the first post-
Newtonian approximation, can be written in the simple
form (see also [8])

G

d __ 2) r20mE2,20 1 3) @30 B2,30
Wy = o @ 2o +c—2< ) s%0T;

1
1 (49) ya0pE2,40
+c2 I°T; . 2)

The remaining harmonics read

g220 1 {1\  , o o . .
T =zl sin“0(6 ® 6 — ¢ ® ¢), (3)
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TE2,40 _ 5 (;) sin%6 (1 - gsin20> (026—-9®4e).

(5)

The loss of energy by gravitational radiation, in the case
of an infinitely thin axisymmetric disk treated in the first
post-Newtonian approximation, takes the form (7]

dE

dt 321rc5
where angular brackets denote averaging over time. It is
easily seen that there is no loss of angular momentum as
only the multipole moments with m = 0 are nonvanish-
ing. Additionally, the linear momentum stays unchanged
and, of course, the baryonic mass of the system is con-

(13, (6)

L= [ &zp 1+E(UZ+U) zlig? 4 1 d*
b c? 14¢2 dt?

Jijk = /dszg:c<izjek)“b:c“vb,

L = /dazgz(imjmkx‘),

where ¢ and v* denote the proper baryonic mass density
and the velocity three-vector field of the dust, respec-
tively. U is the absolute value of the Newtonian gravi-
tational potential. The angular brackets around the in-
dices means taking the symmetric and trace-free part of
the enclosed tensor.

III. OSCILLATORY MOTION OF A ROTATING
DISK OF DUST

For later reference we briefly summarize the solution
of the motion of a dusty disk in the first post-Newtonian
approximation. The disk is assumed to be located in
the plane 2 = 0 and the metric of three-space is taken
in isotropic form. The planar polar coordinates shall be
denoted by r and ¢.

The surface density ¥ and the radial and azimuthal
velocities v, and v, respectively, can be represented as
(see paper I)

(r,t) = o(t)V1 — a2[1 + 1k(t)a?], (13)
vr(r,t) = —r[f(t) + A(t)a?], (14)
v (7, t) = r[Q(t) + w(t)a?). (15)

Here a(r,t) is defined as r/rq, where r4(t) denotes the
radius of the disk. X is related to p through p =
\/_-léa—sé (z®)T (space-time signature —2), where gs3 is the
z3-coordinate metric component in isotropic Cartesian

space coordinates.
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served too.

At the first post-Newtonian approximation only the
symmetric and trace-free multipole moments have been
related to the matter variables in a mathematically sound
manner [9]. In terms of the symmetric and trace-free
multipole moments our spherical multipole moments are

given by
120 _4<3;’) 2 Iss, (7)
S§30 = 2 (%) . J333, (8)
%0 = %(5@1/213333. 9)

For a perfect fluid with vanishing pressure (incoherent
matter or dust) the symmetric trace-free multipole mo-
ments can be written as (also see, e.g., [4])

: 20 d
d*zoxc?clic?) — 51e? d drovtelici (10)
(11)
(12)

The explicit expressions for the purely time-dependent
functions have been obtained in paper I in the case of an
oscillating and vibrating disk. Introducing the normal-
ized radial extension of the disk, X (t) = r4(t)/Rq4, where
R, denotes the maximal radius of the disk [in the fol-
lowing we choose the origin of time such that X (0) = 1],
then the functions o, &, f = f+ A, @ = Q+w (rotational
angular frequency at the rim of the disk), A, and w are

given by

K(t) = %—R—; [-;Z—f) - 128< - %)] .
f(t) = _%’ (18)
- i ) o
At) = —i—i%d %%, (20)

“() = 4 2323?(02@) (Xl(t) + ;2 51,) (21)

In the equations above the initial conditions oo = o(0),

Qo = 2(0), and R4 = 74(0) can be specified freely. The
2 2

two constants C and £%, are defined as C = ﬁ?_& and

Q"'R"‘
& =
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Finally, the solution for X (¢), in parametric form with

running parameter u, reads

1 —e,cosu
X(t) = —=2% 22
0 =T (22)
2T .
?—t =u — esinu —, (23)
where
ar 4 (-5E\*? 1455 E 24)
P - 37|'GMO Mo 14 l‘l()c2 ’
t Mo 37I'GM3 7 M062
165 F
14 Mo’ (25)
5 5E ( 10L \? 565 E
=1+ (—2) (1-22
" Mo 37I’GM3 56 M()C2
425 FE
~56 Moc? (26)

P is the oscillation period, i.e., the time difference be-
tween two consecutive maximal extensions of the disk, as
measured far away from the system; the “eccentricities”
e; and e, serve as two constant parameters.

The radius Ry of the disk is given by

Ry =a.(1+e,), (27)
3TGM? 437 E

p= 0 =2 ). 28

. 20E ( 112 Mocz) (28)

My, E, and L denote the baryonic mass, the binding
energy, and the angular momentum of the system. All
three are dynamical constants of motion. We point out
again the similarity of our solution for X(t) with the
corresponding solution for a binary system [10].

In terms of My, L, which are both constants in the

case of radiation damping, and R4, 09, and o are given
by

37TGMO
480c2 Ry

(]

3M, [

= k2 (229 + 88{,2\,)] , (29)

< 5L 371G M, 2 585 1
Qo = 1- 28 + 21€% — — =
°~ 2M,R? [ 140R4c? ( 218N ~ 756 glzv)] ’
(30)
with

2 25L2%
e = 3tGMZR, (31)

Defining £ = 1 — e,, in the Newtonian limit ¢2 — ¢
and €2 — €% tend to zero. Obviously, for e, = 0 the
oscillations vanish. However, in this limit the disk is not
rotating rigidly beyond the Newtonian dynamics. The
minimal angular frequency at the center of the disk, Qo,
is related to the corresponding angular frequency at the
rim of the disk, €, by

6229

o —Q _ 9GM, (1 13 1 ) (32)

Q  32R4c? 3242

In the limit of vanishing oscillations, Ezzv = 1, this expres-
sion is still different from zero (see also paper I).
IV. GRAVITATIONAL RADIATION DAMPING
A. Leading-order damping

Let us start with the leading-order damping, i.e., the
Newtonian damping. For this we need to know )

(1 — ecosu)?

(1+e)?
and readily find (notice e; = e, = e in the Newtonian
limit)

5 2\ 10
dE 64 ¢ (31rGM0) (1 232

1 2
I33 = —5 /d3.’1!1‘29 = —EMoRg (33)

dt 337572 G \ 10Lc

X (1 + iez) , (34)

where the time average has been taken over the period
P. The Newtonian energy E can be written as

—5E  (37GM2\?
7 =( 10L°) (1-¢€?). (35)

Differentiating the last equation with respect to time,
taking into account that L and M, are constants, and
combining with the equation before results in a simple

differential equation for z := e2:

dZ _ 1 3/2
o = INZ (1 + Zz) (1 —2)%%, (36)
where
64 * (3nGMZ\°
= 37
W= §75n2 GM0< 10Lc ) (37)

For two initial values of z the time derivative of z van-
ishes, z = 0 and z = 1. In the first case there are no
oscillations, and in the second case there is purely ra-
dial collapse. Obviously, for z unequal to zero or one,
z is monotonically decreasing, approaching zero expo-
nentially as e~ 7V%; i.e., yn is the asymptotic damping
constant.

The changes in time of the period P and the radius Ry
are most easily obtained, knowing the solution for 2, by
use of the relations

or 4 (3xGMZ\° 33/2
P~ 37GM, ( 10L ) (1= (38)

and

4Ry 10L (39)

3rGM, 3rGMZ\>
il L. ( al 0) (1-ce).
B. Higher-order damping

For the post-Newtonian radiation damping we need to
evaluate
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1 2 1 & 4 d
Jag = — = d3 2 1 “ 2 U = d3 4 _- = 3.3 .
33 3/ o g( 2 (P +U)) - paga [ Perlet gra g [ Ferten

A straightforward calculation yields

2 1 — e,cosu)? L? 819 — 640e2 + 1157e,cosu — 1336e2cos?u
Iz = _—MoRﬁ( rCOSU)” _ rt = r . (40)
15 (1+e,)? Myc? 2352(1 — e2)
The post-Newtonian energy loss is obtained after a longer calculation from Eq. (6) in the form
dE 64 c5al® 1 4283 + 4069¢2 — %2l
ek _ _ O e2(1—e2)32 |1+ ~e? —a? r 8% (41)
dt 337572 G 4 392
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FIG. 1. (Continued).
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(26) with respect to time and taking into account the energy loss (41) yields the following
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where
412
Y= ( - Eaz) , (44)
with, as above,
64 c3ab
= — —. 45
N = 67572 GM, (45)

Apparently the higher-order correction reduces the
asymptotic damping constant. The changes in time of
all the other quantities are easily obtained from the time
variation of z. The appropriate representation of, e.g.,
the energy, reads

—5E

Moc? (46)

1
=a?(1-2) [1 - E(28 - 113z)a2} .
A useful quantity is Py, the oscillation period divided by
the damping time, which gives a measure of how much
damping occurs per oscillation period. As function of z
it reads

32

1
= 2 af(1-2)"%2 |1 - —— 29892)a?| .
Py 295 (1-=2) 1 ) (5388 + z)a

(47)

To demonstrate the long-term evolution of the physical
parameters we consider a model system consisting of a
cold gaseous disk after a merging process of two massive
white dwarfs. Let us assume that the formed disk has
a total baryonic mass of 2.5 Mg spread within a radius
of 200 km. This size of the disk is somewhat smaller
than the initial white dwarf radii and may represent a
disk formed by a merger but which has already evolved
further. Since in a ‘merging process the baryonic mass,
the angular momentum, and energy of the system re-
main approximately unchanged, the formed disk will os-
cillate around an equilibrium state [nonoscillation would
need e, = e; = 0, implying a particular relation between
My, L, and E; see Egs. (25) and (26)]. For the initial
amplitude we assume a value of 0.5 for the ratio of the
minimum to the maximum extension of the disk, which
corresponds to £ = 0.8. This situation makes the disk
just weakly relativistic and the present analysis is ideally
suited.

To illustrate the effects, we integrated Eqs. (36) and
(43) numerically, taking the same values for My, L, and
as well for P(0). In Fig. 1 the obtained time variations
of the e,, P, and E are plotted. In each case we compare
the leading-order term, labeled by NN, and the higher-
order term, labeled by PN. The time axis is scaled with
respect to the initial period of the disk, which is about
1.3 x 102 sec. According to Eq. (46), the energies go
asymptotically to the same value since the eccentricity
J

16 1
@2 = __—157E(1-—
15 4 1 — e,cosu + 147Myc?

(3)g30 _ ~(40)2 /21 L (-E 82 ¢ sinu
T (21)2V 7 GMp \ M (1 — epcosu)3’

V157 E? (4
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approaches zero [Fig. 1(a)]. The post-Newtonian damp-
ing occurs on longer time scales. We are aware, however,
that in realistic cases viscous damping is very likely to
dominate the gravitational damping.

The Newtonian and post-Newtonian periods begin to
diverge initially and are approaching different values,
where the final post-Newtonian value is higher than
its Newtonian counterpart; see Eq. (24). The energies
[Fig. 1(c)] are approaching identical values [see Eq. (46)].
The different periods lead to a phase shift of the oscilla-
tions. This is demonstrated in Fig. 2, where the angular
velocity is plotted versus time with an offset of 70 to show
the accumulated phase shift more clearly. The obser-
vant reader may notice that the amplitude differences of
Newtonian and post-Newtonian motions are seemingly in
disagreement with paper I (Fig. 1). Note, however, that
in the present work we plot the curves corresponding to
identical baryonic mass, while in paper I the gravitional
mass was identical.

V. GRAVITATIONAL WAVEFORMS
A. Leading-order waveform

The gravitational wave in leading order is determined
by the Newtonian expression for (3120, In explicit terms,
as function of time ¢, it reads

(2)1202_16(1)1/2E PRI
15 1 — ecosu

with

(48)

2r
— esi = —t . 49
u — esinu P +m (49)

It seems worthwhile to point out the strong difference
on the time dependence of (212 in comparison to the
corresponding expression in the scalar gravity theory as
discussed in [11].

B. Higher-order waveform

In addition to I33 of Eq. (40) the following radiative
multipole moments have to be evaluated additionally to
get the higher-order waveform:

1
J333 = ~F /daim"s@’”w

I3333 = 3—35 d*zrip.

After differentiation with respect to time and use of
Egs. (7)-(9) we find for the spherical components of the
higher-order waveform the expressions

1567
1 —e,.cosu

303
(1 — epcosu)?

+ 1216(1 — €2) ) ’ (50)

(1 — ercosu)3

(51)
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The parameter u is now given by

1+}—EE——E— e,sinu = z"£t+71'
v 16 M(;.C2 T - P )

The changes in time of eccentricity and period lead to
phase shifts of the Newtonian waveform (48) and the
post-Newtonian waveform (50). This is demonstrated in
Fig. 3, where the two asymptotic wave amplitudes (2) 720
of our model system as described above are plotted, nor-
malized to }3v/157E(0). The first-order waveform (48)
is very similar to the one presented in [2, Fig. 1]; the de-
viation in amplitudes stems from the different parameter
£ used. The higher-order waveform has a reduced ampli-
tude and a phase shift. The contributions of the current-
octupole moment S*° and mass-hexadecapole moment

I*0 are at least one order of magnitude smaller than

the post-Newtonian contribution to the mass-quadrupole

moment I2°. Thus, we will not discuss them any further.

(53)

VI. CONCLUSIONS

The gravitational-wave emission and radiation damp-
ing of an oscillating and rotating post-Newtonian disk of
dust have been treated in this paper in full analytical
detail. Several plots have made transparent important
relations.

The main result of the paper can be seen in exploiting
the relation between the Newtonian and post-Newtonian
damping and emission. In [2] the wave emission has been
calculated for a counterrotating disk with vanishing net

—+

5(1 — €2) ]

(1 — epcosu)3 (52)

angular momentum. We have shown that on small time
scales the changes of the relative phase relations of the os-
cillating quantities, orbital angular frequency of the rim
of the disk, and gravitational-wave amplitude are of im-
portance, whereas on longer time scales also the changes
of the relations of their amplitudes become important.
In the following let us discuss a possible application of
our model: oscillating disks with a few hundred km ra-
dius, which may result after the merging of binary white
dwarf systems with a total of 2.5 solar masses. The os-
cillation periods are around 0.013 sec (corresponding to
a 76.9 Hz frequency), and the gravitational-wave ampli-
tudes h reach 1.5 x 1072 for such a disk located at a
distance of about 1 Mpc (extension of the Local Group).
Note that because of axisymmetry the gravitational-wave
frequency is identical to the inverse of the oscillation pe-
riod 1/P of the disk. Those waves fit nicely into the
gravitational-wave detection program on Earth [1]. How-
ever, shortly after the merging process of white dwarf
binaries, oscillating disks may occur with periods in the
regime of several seconds. The corresponding gravita-
tional waves are good candidates for detection by space
borne detectors [1]. The frequency of white dwarf merg-
ers within the Local Group can be estimated to be 1 per 5
years [12] and [13]. The application to white dwarf bina-
ries after coalescence is not the only application of impor-
tance. One may consider also the coalescence of neutron
star binaries or compact supermassive disks of about 108
solar masses located at the center of active galactic nuclei.
The related physical quantities, e.g., the gravitational-
wave amplitude, can easily be obtained from the merging
white dwarf example by rescaling mass and extension.
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