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Introduction

The type of problems that we have to solve are:

• Solve the system: A · x = B, where

A =


a11 · · · · · · a1N

a12 a2N
...

...

a1N · · · · · · aNN

 x =


x1

x2
...

xN

 B =


b1

b2
...

bN


• To find A−1 (inverse of a matrix)

• The determinant of a matrix A

• The eigenvalues and eigenvectors of a matrix A
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Gauss Method i

Let assume that we have to solve the linear system A · x = B with det (A) 6= 0.

a11x1 + a12x2 + a13x3 + ...+ a1NxN = b1

a21x1 + a22x2 + a23x3 + ...+ a2NxN = b2
... (1)

aN1x1 + aN2x2 + aN3x3 + ...+ aNNxN = bN

We will try to transform it into an upper-triangular linear system. The steps

are the following:
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Gauss Method ii

STEP 1

Multiply the 1st equation with a21/a11 and substract it from the 2nd.

Similarly, multiply the 1st equation with a31/a11 and substract it from the 3rd

etc

a11x1 + a12x2 + a13x3 + · · ·+ a1NxN = b1

0 + a
(1)
22 x2 + a

(1)
23 x3 + · · ·+ a

(1)
2NxN = b

(1)
2

...
... (2)

0 + a
(1)
N2x2 + a

(1)
N3x3 + · · ·+ a

(1)
NNxN = b

(1)
N

where, for example, we set:

a
(1)
22 =

a12a21
a11

− a22

.
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Gauss Method iii

STEP 2

The 1st row and the 1st column remain unchanged and we multiply the 2nd

equation with a
(1)
32 /a

(1)
22 and substract it from the 3rd and so on.

Thus after n − 1 operations we get

a11x1 + a12x2 + a13x3 + · · ·+ a1NxN = b1

0 + a
(1)
22 x2 + a

(1)
23 x3 + · · ·+ a

(1)
2NxN = b

(1)
2

0 + 0 + a
(2)
33 x3 + · · ·+ a

(2)
3NxN = b

(2)
3

...
... (3)

0 + 0 + a
(2)
N3x3 + · · ·+ a

(2)
NNxN = b

(2)
N

Where for example we have set:

a
(2)
33 =

a
(1)
32 a

(1)
33

a
(1)
22

− a
(1)
33

.
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Gauss Method iv

STEP N − 1

After N − 1 steps we get the following upper-triangular system:

a11x1 + a12x2 + a13x3 + · · · + a1N−1xN−1 + a1NxN = b1

a
(1)
22 x2 + a

(1)
23 x3 + · · · + a

(1)
2N−1xN−1 + a

(1)
2NxN = b

(1)
2

a
(2)
33 x3 + · · · + a

(2)
3N−1xN−1 + a

(2)
3NxN = b

(2)
3

... (4)

a
(N−2)
N−1N−1xN−1 + a

(N−2)
N−1NxN = b

(N−2)
N−1

a
(N−1)
NN xN = b

(N−1)
N
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Gauss Method v

The solution of this system is obvious:

• For the Nth equation of the previous upper-triangular system (4) we get :

xN =
b
(N−1)
N

a
(N−1)
NN

for a
(N−1)
NN 6= 0 (5)

• while the rest of the values can be calculated via the relation:

xi =

b
(i−1)
i −

N∑
k=i+1

a
(i−1)
ik xk

a
(i−1)
ii

for a
(i−1)
ii 6= 0 (6)

The number of arithmetic operations needed is:

1

6

(
4N3 + 9N2 − 7N

)
≈ 2

3
N3 .
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Determinant

If a matrix is transformed into an upper-triangular or lower-triangular or

diagonal form then

detA = a11 · a(1)22 · a
(2)
33 · · · a

(N−1)
NN =

N∏
i=1

a
(i−1)
ii (7)
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Pivoting i

DEFINITION: The number aii in the position (i , i) that is used to eliminate xi

in rows i + 1, i + 2, ... ,N is called the ith pivotal element and the ith row is

called the pivotal row.

• Pivoting to avoid a
(i−1)
ii = 0 : If a

(i−1)
ii = 0, row i cannot be used to

eliminate, the elements in column i below the diagonal. It is neccesary to find a

row j , where a
(i−1)
ji 6= 0 and j > i and then interchange row i and j so that a

nonzero pivot element is obtained.

• Pivoting to reduce error : If there is more than one nonzero element in

column i that lies on or below the diagonal, there is a choice to determine

which rows to interchange.

Because, the computer uses fixed-precision arithmetic, it is possible that a

small error is introduced each time an arithmetic operation is performed. One

should check the magnitude of all the elements in column i that lie on below

the diagonal, and locate a row j in which the element has the largest absolute
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Pivoting ii

value, that is |aji | = max{|aii |, |ai+1 i |, . . . , |aN−1 i |, |aN i |}, and then switch row i

with row j if j > i .

Usually, the larger pivot element will result in a smaller error being propagated.

EXAMPLE

Let’s assume that after a number of operations the last two equations of an

N × N system are:

0xN−1 + xN = 1

2xN−1 + xN = 3

The obvious solution is xN−1 = xN = 1.

But due to accumulation of numerical errors the system will be:

εxN−1 + xN = 1

2xN−1 + xN = 3

εxN−1 + xN = 1

0 +

(
1− 2

ε

)
xN = 3− 2

ε
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Pivoting iii

Leading to

xN =
3− 2/ε

1− 2/ε
≈ 1 correct, but xN−1 =

1− xN
ε

!!!

I.e. xN−1 is the ratio of two small numbers with questionable accuracy.

Then this erroneous term will be used for the estimation of xN−2, . . . , x1 via

eqns (6) with disastrous results.

With pivoting, the system will be written as:

2xN−1 + xN = 3

εxN−1 + xN = 1

2xN−1 + xN = 3(
1− ε

2

)
xN = 1− 3ε

2

then xN ≈ 1.0 and xN−1 = 3−xN
2
≈ 1.0 .
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Gauss - Jordan Method i

It is a variation of Gauss’s method. Here instead of transforming the original

system into an upper-triangular one, we transform it into a pure diagonal one

and then the solution is obvious. 1

The method follows the steps of Gauss’s method with parallel elimination of

the elements over the diagonal.

Thus after the 1st step of Gaussian elimination we multiply the 2nd equation

with a12/a
(1)
22 and substract it from the 1st.

Thus the system becomes:

a11x1 + 0 + a
(2)
13 x3 + . . .+ a

(2)
1NxN = b

(2)
1

0 + a
(1)
22 x2 + a

(1)
23 x3 + . . .+ a

(1)
2NxN = b

(1)
2

0 + 0 + a
(2)
33 x3 + . . .+ a

(2)
3NxN = b

(2)
3

... (8)

0 + 0 + a
(2)
N3x3 + . . .+ a

(2)
NNxN = b

(2)
N
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Gauss - Jordan Method ii

and in the next step we eliminate the terms with coefficients a
(2)
13 and a

(1)
23 .

Thus after N − 1 steps we get the system

a11x1 = b
(N−1)
1

a
(1)
22 x2 = b

(N−1)
2

... (9)

a
(N−1)
NN xN = b

(N−1)
N

with obvious solution

xi =
b
(N−1)
i

a
(i−1)
ii

for i = 1, . . . ,N (10)

1Some special cases of the method - albeit presented without proof - were known to

Chinese mathematicians as early as circa 179 AD. (Wikipedia)
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The Jacobi Method (iterative) i

It is a generalization of the method x = g (x) presented in the previous section.

Let’s assume the following system of N linear equations with N unknowns:

f1(x1, x2, ..., xN) = 0

f2(x1, x2, ..., xN) = 0

..... (11)

fN(x1, x2, ..., xN) = 0

this can be easily written in the form:

x1 = g1(x2, x3, ..., xN)

x2 = g2(x1, x3, ..., xN)

... (12)

xN = gN(x1, x2, ..., xN−1)
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The Jacobi Method (iterative) ii

or in a close form:

xi =
bi
aii
− 1

aii

N∑
j=1 , j 6=i

aijxj for i = 1, . . . ,N (13)

Then by giving N initial values x
(0)
1 , x

(0)
2 , . . . , x

(0)
N , we create the recurrence

(with respect to k) relation

x
(k+1)
i = gi (x

(k)
1 , ..., x

(k)
N ) for i = 1, . . . ,N (14)

which will converge to the solution of the system if:

|aii | >
N∑

j=1 , j 6=i

|aij | (15)

independent on the choice of the initial values x
(0)
1 , x

(0)
2 , . . . , x

(0)
N .
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The Jacobi Method (iterative) iii

The recurrence relation can be written in a matrix form as:

x(k+1) = D−1B−D−1Cx(k)

where A = D + C i.e. the matrix D includes only the diagonal elements of A

and the matrix C all the rest.

EXAMPLE

Let’s assume the system:

4x − y + z = 7

−4x + 8y − z = 21

−2x + y + 5z = 15

with solutions x = 2, y = 4, z = 3
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The Jacobi Method (iterative) iv

We can create the recurrence relations:

x (k+1) =
7 + y (k) − z (k)

4

y (k+1) =
21 + 4x (k) + z (k)

8

z (k+1) =
15 + 2x (k) − y (k)

5

Then assuming (1, 2, 2) we get the following sequence of solutions

(1, 2, 2) → (1.75, 3.375, 3) → (1.844, 3.875, 3.025)

→ (1.963, 3.925, 2.963) → (1.991, 3.977, 3.0)

→ (1.994, 3.995, 3.001) → · · ·

I.e. with 5 iterations we reached the solution with 3 digits accuracy.
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Gauss - Seidel Method i

Gauss - Seidel method is a variation of Jacobi’s method.

Let’s assume a trial solution x
(0)
1 , x

(0)
2 , . . . , x

(0)
N .

Then from the 1st equation we estimate x
(1)
1 and in the 2nd equation we use

the following set of trial values (x
(1)
1 , x

(0)
2 , x

(0)
3 , ..., x

(0)
N ) to estimate x

(1)
2 .

Then we use the trial values (x
(1)
1 , x

(1)
2 , x

(0)
3 , ..., x

(0)
N ) to estimate x

(1)
3 and so on.

The recurrence relations will be:

x
(k+1)
1 =

1

a11

(
b1 −

N∑
j=2

a1jx
(k)
j

)

x
(k+1)
2 =

1

a22

(
b2 − a21x

(k+1)
1 −

N∑
j=3

a2jx
(k)
j

)
· · ·

x
(k+1)
i =

1

aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

N∑
j=i+1

aijx
(k)
j

)
(16)
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Gauss - Seidel Method ii

The method will converge if:

|aii | >
N∑

j=1 , j 6=i

|aij | i = 1, 2, . . . ,N (17)

This procedure in a “matrix form” will be written as:

x(k+1) = D−1
(
B − Lx(k+1) −Ux(k)

)
(18)

where

A = L
lower

+ D
diagonal

+ U
upper

.

The matrix L has the elements of below the diagonal A,

the matrix D only the diagonal elements of A and finally

the matrix U the elements of matrix A over the diagonal.
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Gauss - Seidel Method iii

EXAMPLE

The recurrence relations for the previous example are the same i.e.

x (k+1) =
7 + y (k) − z (k)

4

y (k+1) =
21 + 4x (k+1) + z (k)

8

z (k+1) =
15 + 2x (k+1) − y (k+1)

5

But with Gauss - Seidel method we get the following sequence of approximate

solutions:

(1, 2, 2) → (1.75, 3.75, 2, 95)

→ (1.95, 3.97, 2.99)

→ (1.996, 3.996, 2.999)

i.e. here we need only 3 iterations to find the solution while with Jacobi’s

method we need 5 iterations.
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Overrelaxation

The typical Gauss-Seidel iteration scheme has the following form:

x
(k+1)
i =

1

aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

N∑
j=i+1

aijx
(k)
j

)
(19)

we may re-write it as follows:

x
(k+1)
i = xi

(k) +
1

aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

N∑
j=i

aijx
(k)
j

)
(20)

because xi
(k) is added and subtracted from the right side.

The procedure maybe optimized by using the correct overrelaxation factor

x
(k+1)
i = xi

(k) +
w

aii

(
bi −

i−1∑
j=1

aijx
(k+1)
j −

N∑
j=i

aijx
(k)
j

)
(21)

Typically, 1 ≤ w < 2.
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Inverse of a matrix i

If we are seeking the inverse of the matrix

A =

(
a b

c d

)
there will be another matrix

B =

(
x y

z w

)
with the following property:

A · B =

(
a b

c d

)
·

(
x y

z w

)
=

(
1 0

0 1

)
= I

In order to find the elements (x , y , z ,w) of the inverse matrix we must solve

two linear systems:(
a b

c d

)
·

(
x

z

)
=

(
1

0

)
and

(
a b

c d

)
·

(
y

w

)
=

(
0

1

)
22



Inverse of a matrix ii

This means that the inverse of a matrix cannot help in the solution of a linear

system since one needs to solve the system to find it.

• Notice that in order to solve both of the above systems we need to

diagonalize (with the Gauss - Jordan procedure) the same matrix A.

• The only difference between the two systems is the vector on the right

hand side which corresponds to different column of the unit matrix.

We then construct the following scheme:

a11 a12 ... a1N

a21 a22 ... a2N

aN1 aN2 ... aNN

∣∣∣∣∣∣∣∣∣
1 0 ... 0

0 1 ... 0

0 0 ... 1

A I

(22)
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Inverse of a matrix iii

and whatever transformation we do in the left side (matrix A) exactly the same

we do on the right hand side (matrix I).

1 0 ... 0

0 1 ... 0

0 0 ... 1

∣∣∣∣∣∣∣∣∣
ã11 ã12 ... ã1N

ã21 ã22 ... ã2N

ãN1 ãN2 ... ãNN

(23)

Thanks to the Gauss-Jordan method on the left hand side we reduce to the

unit matrix matrix I and on the right hand side on the inverse ãij = A−1.

24



Eigenvalues and Eigenvectors i

If A is a N × N matrix then the scalars λ for which there exists a non-zero

vector ~u such that

A · ~u = λ~u (24)

will be called e-values of the matrix A and the vectors ~u e-vectors.

In the following example: 1 2 3

−1 3 1

2 0 1

 ·
 2

1

−2

 = −1 ·

 2

1

−2


A ~u1 λ1 ~u1

the vector ~u1 = (2, 1,−2)> is the e-vector and λ1 = −1 the corresponding

e-value of A.

Equation (24) is equivalent to:

det (A− λI) = 0
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Eigenvalues and Eigenvectors ii

that is

det

∣∣∣∣∣∣∣
1− λ 2 3

−1 3− λ 1

2 0 1− λ

∣∣∣∣∣∣∣ = λ3 − 5λ2 + 3λ+ 9 = 0 (25)

and the e-values will be the roots of the characteristic polynomial (here

λi = −1, 3 and 3).
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Eigenvalues and Eigenvectors : The power method i

For a matrix A there will always be a dominant e-value λ1 (this means that λ1

is absolutely larger than any other e-value)

|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λN | (26)

i.e.,

A~u(i) = λi~u
(i) (1 ≤ i ≤ N) (27)

Also any vector ~x can be written as a linear combination of the N e-vectors{
~u(1), ~u(2), . . . , ~u(N)

}
i.e.,

~x = a1~u
(1) + a2~u

(2) + · · ·+ aN~u
(N) (28)

If we multiply both sides of (28) with the matrix A, we get:

A~x ≡ ~x (1) = a1λ1~u
(1) + a2λ2~u

(2) + · · ·+ aNλN~u
(N) (29)
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Eigenvalues and Eigenvectors : The power method ii

If we multiply k times eqn (29) with the matrix A we get:

Akx ≡ x(k) = a1λ
k
1u

(1) + a2λ
k
2u

(2) + · · ·+ aNλ
k
Nu

(N)

= λk
1

[
a1u

(1) + a2

(
λ2

λ1

)k

u(2) + · · ·+ aN

(
λN

λ1

)k

u(N)

]
(30)

Since λ1 is the absolute larger e-value (eqn 26), we will get:

(λj/λ1)k → 0 ask →∞ .

Thus

x(k) = Ak · x ≈ λk
1 · a1 · u(1) (31)

then the ratio

r(k) ≡ x(k+1)

x(k)
=

Ak+1x

Ak~x
≈ λk+1

1 a1u
(1)

λk
1a1u

(1)
→ λ1 (32)

leads to the e-value λ1 and the vector x(k) defined in (31) is the corresponding

e-vector.
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Eigenvalues and Eigenvectors : The power method iii

EXAMPLE

The matrix

A =

 1 0 1

−1 2 2

1 0 3


has e-values:

λ1 = 3.41421356, λ2 = 2 & λ3 = 0.585786

and corresponding e-vectors :

u(1) =

 0.3694

1

0.8918

 , u(2) =

 0

1

0

 & u(2) =

 0.7735

1

−0.3204


Then if we assume a trial vector x = (1, 2, 1)>, and multiply it with the 5th

and 6th power of A

A5 =

 68 0 164

136 32 428

164 0 396

 A6 =

 232 0 560

532 64 1484

560 0 1352
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Eigenvalues and Eigenvectors : The power method iv

we get : x(5) = A5x =

 232

628

560

 & x(6) = A6x =

 792

2144

1912


This leads to

λ1 ≈
x(6)

x(5)
=

792

232
≈ 2144

628
≈ 1912

560
≈ 3.414286

and the e-vector u(1) ≈ x(6) ≈

 0.3694

1

0.8918


NOTE:

It is numerically faster to construct the vectors x(k+1) by multiplying the matrix

A with the vector x(k) i.e. x(k+1) = Ax(k) instead of calculating the kth power

of A.
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Eigenvalues and Eigenvectors : Aitken Acceleration

The elements of the vector r(k) in eqn (32) are approximations to the exact

e-value λ1 and the error will be εk = |rk − λ1| where r is any element of r(k).

Obviously for r(k+1) we get εk+1 = |rk+1 − λ1|. Since the convergence of the

method is linear:, i.e.

εk+1 = A εk (33)

we can use Aitken’s method to accelerate the convergence. That is, we will use

the formula derived in the previous section for 3 approximate values: rk , rk+1

and rk+2 to find a better approximation to the e-value i.e.

λ1 ≈
rkrk+2 − r2k+1

rk+2 − 2rk+1 + rk
. (34)

Application:

From the example of the previous slide r5 = 3.414, r4 = 3.413 and r3 = 3.407.

Then Aitken’s method gives λ1 ≈ 3.4142.
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Eigenvalues and Eigenvectors : Inverse Power Method

Theorem: If λ is an e-value of a matrix A, then λ−1 is an e-value of the A−1.

Thus if |λ1| > |λ2| ≥ · · · ≥ |λN−1| > |λN | > 0, are the e-values of A then∣∣∣λ−1
N

∣∣∣ > ∣∣∣λ−1
N−1

∣∣∣ ≥ · · · ≥ ∣∣∣λ−1
1

∣∣∣ > 0 (35)

will be the e-values of A−1. Thus λ−1
N is the largest e-value of A−1.

To find the e-value instead of calculating the inverse of the matrix A to get the

expression
(
A−1

)(k+1)
x we can solve by using Gaussian elimination the system

A · x(k+1) = x(k), where x(k) is defined as x(k) = Akx.

That is for a initial x(0), we get x(1) = A−1x(0) i.e. Ax(1) = x(0). Thus the

solution of the linear system defines the value of x(1).

With this procedure we get the vector x(k+1) and λ−1
N via

x(k+1) = A−1x(k) ⇒ Ax(k+1) = x(k) (36)
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Eigenvalues and Eigenvectors : Shifting Power Method

Theorem: If the N values λi with (i = 1, . . . ,N) are the e-values of a N × N

matrix A, then for any complex number µ the matrix A−µI (where I is the unit

matrix) will have as e-values the complex numbers (λi − µ) for (i = 1, . . .N).

Thus if in the interval (λN , λ1) we consider a point µ such that for an e-value

λk to hold 0 < |λk − µ| < ε while for all the rest we get |λi − µ| > ε; then

|λk − µ| will be the minimum e-value of A− µI.

This means that we can estimate it by using the inverse power method

Remember that you need to calculate x(k+1) by solving the system:

(A− µI) x(k+1) = x(k)

Thus if we calculate the rk , the actual e-value λi will be:

λi =
1

rk
+ µ . (37)
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