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Introduction

In many cases we know the values of a function f (x) at a set of points x1, x2,

..., xN , but we don’t have the analytic expression of the function that lets us

calculate its value at an arbitrary point. We will try to estimate f (x) for

arbitrary x by “drawing” a curve through the xi and sometimes beyond them.

The procedure of estimating the value of f (x) for x ∈ [x1, xN ] is called

interpolation while if the value is for points x /∈ [x1, xN ] extrapolation.

The form of the function that approximates the set of points should be a

convenient one and should be applicable to a general class of problems. 2



Polynomial Approximations

Polynomial functions are the most common ones while rational and

trigonometric functions are used quite frequently.

We will study the following methods for polynomial approximations:

• Lagrange’s Polynomial

• Hermite Polynomial

• Taylor Polynomial

• Cubic Splines
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Lagrange Polynomial i

Let’s assume the following set of data:

x0 x1 x2 x3

x 3.2 2.7 1.0 4.8

f (x) 22.0 17.8 14.2 38.3

f0 f1 f2 f3

Then the interpolating polynomial will be of 4th order i.e.

ax3 + bx2 + cx + d = P(x). This leads to 4 equations for the 4 unknown

coefficients and by solving this system we get a = −0.5275, b = 6.4952,

c = −16.117 and d = 24.3499 and the polynomial is:

P(x) = −0.5275x3 + 6.4952x2 − 16.117x + 24.3499
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Lagrange Polynomial ii

It is obvious that this procedure is quite laboureous and Lagrange developed a

direct way to find the polynomial

Pn(x) = f0L0(x) + f1L1(x) + ....+ fnLn(x) =
n∑

i=0

fiLi (x) (1)

where Li (x) are the Lagrange coefficient polynomials

Lj(x) =
(x − x0)(x − x1)...(x − xj−1)(x − xj+1)...(x − xn)

(xj − x0)(xj − x1)...(xj − xj−1)(xj − xj+1)...(xj − xn)
(2)

and obviously:

Lj(xk) = δjk =

{
0 if j 6= k

1 if j = k

where δjk is Kronecker’s symbol.

5



Lagrange Polynomial iii

ERRORS

The error when the Lagrange polynomial is used to approximate a continuous

function f (x) is :

E(x) = (x − x0)(x − x1)....(x − xn)
f (n+1)(ξ)

(n + 1)!
where ξ ∈ [x0, xN ] (3)

NOTE

• Lagrange polynomial applies for evenly and unevenly spaced points.

• If the points are evenly spaced then it reduces to a much simpler form.
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Lagrange Polynomial : Example i

EXAMPLE: Find the Lagrange polynomial that

approximates the function y = cos(πx).

We create the table

i 1 2 3

xi 0 0.5 1

fi 1 0.0 -1

The Lagrange coeffiecient polynomials are:

L1(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
=

(x − 0.5)(x − 1)

(0− 0.5)(0− 1)
= 2x2 − 3x + 1 ,

L2(x) =
(x − x1) (x − x3)

(x2 − x1)(x2 − x3)
=

(x − 0)(x − 1)

(0.5− 0)(0.5− 1)
= −4x(x − 1)

L3(x) =
(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
=

(x − 0)(x − 0.5)

(1− 0)(1− 0.5)
= 2x2 − x
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Lagrange Polynomial : Example ii

thus

P(x) = f1 · L1(x) + f2 · L2(x) + f3 · L3(x)

= 1 · (2x2 − 3x + 1)− 0 · 4x(x − 1) + (−1) · (2x2 − x)

= −2x + 1

The error will be:

E(x) = x · (x − 0.5) · (x − 1)
π3 sin(πξ)

3!

e.g. for x = 0.25 is E(0.25) ≤ 0.24.
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Newton Polynomial i

Forward Newton-Gregory

Pn(xs) = f0 + s ·∆f0 +
s(s − 1)

2!
·∆2f0 +

s(s − 1)(s − 2)

3!
·∆3f0 + ...

= f0 +

(
s

1

)
·∆f0 +

(
s

2

)
·∆2f0 +

(
s

3

)
·∆3f0 + ...

=
n∑

i=0

(
s

i

)
·∆i f0 (4)

where xs = x0 + s · h and

∆fi = fi+1 − fi (5)

∆2fi = fi+2 − 2fi+1 + fi (6)

∆3fi = fi+3 − 3fi+2 + 3fi+1 − fi (7)

∆nfi = fi+n − nfi+n−1 +
n(n − 1)

2!
fi+n−2 −

n(n − 1)(n − 2)

3!
fi+n−3 + · · ·(8)
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Newton Polynomial ii
x f (x) ∆f (x) ∆2 f (x) ∆3 f (x) ∆4 f (x) ∆5 f (x)

0.0 0.000

0.203

0.2 0.203 0.017

0.220 0.024

0.4 0.423 0.041 0.020

0.261 0.044 0.032

0.6 0.684 0.085 0.052

0.246 0.096

0.8 1.030 0.181

0.527

1.0 1.557

Table 1: Example of a difference matrix

ERROR The error is the same with the Lagrange polynomial :

E(x) = (x − x0)(x − x1)....(x − xn)
f (n+1)(ξ)

(n + 1)!
where ξ ∈ [x0, xN ] (9)

and since xs = x0 + s · h, it can be written as:

En(xs) = s(s − 1)(s − 2)...(s − n)hn+1 f
(n+1)(ξ)

(n + 1)!
where ξ ∈ [x0, xN ] (10)
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Newton Polynomial iii

Backward Newton-Gregory

Pn(x) = f0 +

(
s

1

)
·∆f−1 +

(
s + 1

2

)
·∆2f−2 + ...+

(
s + n − 1

n

)
·∆nf−n

(11)

x F (x) ∆f (x) ∆2 f (x) ∆3 f (x) ∆4 f (x) ∆5 f (x)

0.2 1.06894

0.11242

0.5 1.18136 0.01183

0.12425 0.00123

0.8 1.30561 0.01306 0.00015

0.13731 0.00138 0.000001

1.1 1.44292 0.01444 0.00014

0.15175 0.0152

1.4 1.59467 0.01596

0.16771

1.7 1.76238
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Newton Polynomial iv

EXAMPLE: Newton-Gregory forward with x0 = 0.5:

P3(x) = 1.18136 + 0.12425 s + 0.01306

(
s

2

)
+ 0.00138

(
s

3

)
= 1.18136 + 0.12425 s + 0.01306 s (s − 1)/2 + 0.00138 s (s − 1) (s − 2)/6

= 0.9996 + 0.3354 x + 0.052 x2 + 0.085 x3

EXAMPLE: Newton-Gregory backwards with x0 = 1.1:

P3(x) = 1.44292 + 0.13731 s + 0.01306

(
s + 1

2

)
+ 0.00123

(
s + 2

3

)
= 1.44292 + 0.13731 s + 0.01306 s (s + 1)/2 + 0.00123 s (s + 1) (s + 2)/6

= 0.99996 + 0.33374 x + 0.05433 x2 + 0.007593 x3
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Newton Polynomial v

EXAMPLE:

Prove that the Lagrange polynomial is reduced Newton Gregory if the points

are equally spaced (try a 2nd order polynomial i.e. only 3 points)

P(x) = L1f1 + L2f2 + L3f3 (12)

where

L1(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
=

(x − x2)(x − x3)

2h2
=

(s − 1)(s − 2)

2

L2(x) =
(x − x1) (x − x3)

(x2 − x1)(x2 − x3)
=

(x − x1)(x − x3)

−h2
= −s(s − 2)

L3(x) =
(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
=

(x − x1)(x − x2)

2h2
=

s(s − 1)

2

Here we used that :

s =
x − x1

h
and x − x1 = sh , x − x2 = h(s − 1) , x − x3 = h(s − 2) (13)
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Newton Polynomial vi

Thus the Lagrange polynomial will be

P2(x) =
(s − 1)(s − 2)

2
f1 − s(s − 2)f2 +

s(s − 1)

2
f3 (14)

while the Newton-Gregory formula gives:

P2(xs) = f1 + s ·∆f1 +
s(s − 1)

2
·∆2f1

= f1 + s (f2 − f1) +
s(s − 1)

2
(f2 − 2f2 + f1)

= . . . (15)
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Hermite Polynomial i

This applies when we have information not only for the values of f (x) but also

on its derivative f ′(x)

P2n−1(x) =
n∑

i=1

Ai (x)fi +
n∑

i=1

Bi (x)f ′i (16)

where

Ai (x) =
[
1− 2(x − xi )L

′
i (xi )

]
· [Li (x)]2 (17)

Bi (x) = (x − xi ) · [Li (x)]2 (18)

and Li (x) are the Lagrange coefficients.

ERROR: the accuracy is similar to that of Lagrange polynomial of order 2n!

y(x)− p(x) =
y (2n+1)(ξ)

(2n + 1)!
[(x − x1)(x − x2) . . . (x − xn)]2 (19)
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Hermite Polynomial ii

Example

Fit a Hermite polynomial to the data of the table:

k xk yk y ′k
0 0 0 0

1 4 2 0

The Lagrange coefficients are:

L0(x) =
x − x1

x0 − x1
=

x − 4

0− 4
= −x − 4

4

L1(x) =
x − x0

x1 − x0
=

x

4

L′0(x) =
1

x0 − x1
= −1

4

L′1(x) =
1

x1 − x0
=

1

4
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Hermite Polynomial iii

Thus

A0(x) =
[
1− 2 · L′0(x − x0)

]
· L2

0 =

[
1− 2 ·

(
−1

4

)
(x − 0)

]
·
(
x − 4

4

)2

A1(x) =
[
1− 2 · L′0(x − x1)

]
· L2

1 =

[
1− 2 · 1

4
(x − 4)

]
·
(x

4

)2

=
(

3− x

2

)
·
(x

4

)2

B0(x) = (x − 0) ·
(
x − 4

4

)2

= x

(
x − 4

4

)2

B1(x) = (x − 4) ·
(x

4

)2

And the Hermite polynomial is:

P(x) =
1

16
(6− x)x2.
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Taylor Polynomial i

It is an alternative way of approximating functions with polynomials. In the

previous two cases we found the polynomial P(x) that gets the same value with

a function f (x) at N points or the polynomial that agrees with a function and

its derivative at N points. Taylor polynomial has the same value x0 with the

function but agrees also up to the Nth derivative with the given function. That

is:

P(i)(x0) = f (i)(x0) and i = 0, 1, ..., n

and the Taylor polynomial has the well known form from Calculus

P(x) =
N∑
i=0

f (i)(x)

i !
(x − x0)i (20)

ERROR: was also estimated in calculus

EN(x) = (x − x0)N+1 f
(N+1)(ξ)

(N + 1)!
(21)
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Taylor Polynomial ii

Example

We will show that for the calculation of e = 2.718281828459... with 13-digit

approximation we need 15 terms of the Taylor expansion.

All the derivatives at x = 1 are:

y0 = y
(1)
0 = y

(2)
0 = ... = y

(n)
0 = 1

thus

p(x) =
n∑

i=1

1

i !
xn = 1 + x +

x2

2
+ ...+

1

n!
xn

and the error will be

|En| = xn+1 eξ

(n + 1)!
=

eξ

16!
<

3

16!
= 1.433× 10−13
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Interpolation with Cubic Splines

In some cases the typical polynomial

approximation cannot smoothly fit certain sets

of data. Consider the function

f (x) =

 0 −1 ≤ x ≤ −0.2

1− 5|x | −0.2 < x < 0.2

0 0.2 ≤ x ≤ 1.0

We can easily verify that we cannot fit the

above data with any polynomial degree!

P(x) = 1− 26x2 + 25x4

The answer to the problem is given by the spline fitting. That is we pass a set

of cubic polynomials (cubic splines) through the points, using a new cubic for

each interval. But we require that the slope and the curvature be the same for

the pair of cubics that join at each point.
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Interpolation with Cubic Splines
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Interpolation with Cubic Splines

Let the cubic for the ith interval, which lies between the points (xi , yi ) and

(xi+1, yi+1) has the form:

y(x) = ai · (x − xi )
3 + bi · (x − xi )

2 + ci · (x − xi ) + di (22)

Since it fits at the two endpoints of the interval:

yi = y(xi ) = ai · (xi − xi )
3 + bi · (xi − xi )

2 + ci · (xi − xi ) + di

= di

yi+1 = y(xi+1) = ai · (xi+1 − xi )
3 + bi · (xi+1 − xi )

2 + ci · (xi+1 − xi ) + di

= aih
3
i + bih

2
i + cihi + di

where hi = xi+1 − xi .

We need the 1st and 2nd derivatives of the polynomial to relate the slopes and

curvatures of the joining polynomials, by differentiation we get

y ′(x) = 3ai · (x − xi )
2 + 2bi · (x − xi ) + ci

y ′′(x) = 6ai · (x − xi ) + 2bi
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The procedure is simplified if we write the equations in terms of the 2nd

derivatives of the interpolating cubics.

Let’s name Si = y ′′(xi ) the 2nd derivative at the point (xi , yi ) then we can

easily get:

bi =
Si

2
, ai =

Si+1 − Si

6hi
(23)

which means

yi+1 =
Si+1 − Si

6hi
h3
i +

Si

2
h2
i + cihi + yi

and finally

ci =
yi+1 − yi

hi
− 2hiSi + hiSi+1

6
(24)

Now we invoke the condition that the slopes of the two cubics joining at

(xi , yi ) are the same:

y ′i = 3ai · (xi − xi )
2 + 2bi · (xi − xi ) + ci = ci for the i interval

y ′i = 3ai−1 · (xi − xi−1)2 + 2bi−1 · (xi − xi−1) + ci−1

= 3ai−1h
2
i−1 + 2bi−1hi−1 + ci−1 for the i − 1 interval
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By equating these and substituting a, b, c and d we get:

y ′i =
yi+1 − yi

hi
− 2hiSi + hiSi+1

6

= 3

(
Si − Si−1

6hi−1

)
h2
i−1 + 2

Si−1

2
hi−1 +

yi − yi−1

hi−1
− 2hi−1Si−1 + hi−1Si

6

and by simplifying we get:

hi−1Si−1 + 2 (hi−1 + hi ) Si + hiSi+1 = 6

(
yi+1 − yi

hi
− yi − yi−1

hi−1

)
(25)

If we have n + 1 points the above relation can be applied to the n − 1 internal

points.

Thus we create a system of n − 1 equations for the n + 1 unknown Si .

This system can be solved if we specify the values of S0 and Sn.
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The system of n − 1 equations with n + 1 unknown will be written as:
.......

h0 2(h0 + h1) h1
h1 2(h1 + h2) h2

h2 2(h2 + h3) h3
....... .......

hn−2 2(hn−2 + hn−1) hn−1




S0
S1
S2
:

Sn−2
Sn−1
Sn



= 6



....
y2−y1
h1
− y1−y0

h0
y3−y2
h2
− y2−y1

h1

....
yn−yn−1

hn−1
− yn−1−yn−2

hn−2

....


≡ ~Y

From the solution of this linear systems we get the coefficients ai , bi , ci and di

via the relations:

ai =
Si+1 − Si

6hi
, bi =

Si

2
(26)

ci =
yi+1 − yi

hi
− 2hiSi + hiSi+1

6
(27)

di = yi (28)
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• Choice I Take, S0 = 0 and Sn = 0 this will lead to the solution of the

following (n − 1)× (n − 1) linear system:
2(h0 + h1) h1

h1 2(h1 + h2) h2

h2 2(h2 + h3) h3

....

hn−2 2(hn−2 + hn−1)

 ·


S1

S2

S3

Sn−1

 = ~Y

• Choice II Take, S0 = S1 and Sn = Sn−1 this will lead to the solution of the
following (n − 1)× (n − 1) linear system:


3h0 + 2h1 h1
h1 2(h1 + h2) h2

h2 2(h2 + h3) h3
... ...

hn−2 2hn−2 + 3hn−1




S1
S2
S3

Sn−1

 = ~Y
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• Choice III Use linear extrapolation

S1 − S0

h0
=

S2 − S1

h1
⇒ S0 =

(h0 + h1)S1 − h0S2

h1

Sn − Sn−1

hn−1
=

Sn−1 − Sn−2

hn−2
⇒ sn =

(hn−2 + hn−1)Sn−1 − hn−1Sn−2

hn−2

this will lead to the solution of the following (n − 1)× (n − 1) linear system:



(h0+h1)(h0+2h1)
h1

h2
1−h2

0
h1

h1 2(h1 + h2) h2
h2 2(h2 + h3) h3

.... ....

h2
n−2−h2

n−1
hn−2

(hn−1+hn−2)(hn−1+2hn−2)

hn−2


·


S1
S2
S3

Sn−1

 = ~Y
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• Choice IV Force the slopes at the end points to assume certain values. If

f ′(x0) = A and f ′(xn) = B then

2h0S0 + h1S1 = 6

(
y1 − y0

h0
− A

)
hn−1Sn−1 + 2hnSn = 6

(
B − yn − yn−1

hn−1

)


2h0 h1

h0 2(h0 + h1) h1

h1 2(h1 + h2) h2

....

hn−2 2hn−1

 ·


S1

S2

S3

Sn−1

 = ~Y
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Interpolation with Cubic Splines : Example

Fit a cubic spline in the data (y = x3 − 8):

x 0 1 2 3 4

y -8 -7 0 19 56

Depending on the condition at the end we get the following solutions:

• Condition I : S0 = 0, S4 = 0 4 1 0

1 4 1

0 1 4

 ·
 S1

S2

S3

 =

 36

72

108

⇒ S1 = 6.4285

S2 = 10.2857

S3 = 24.4285

• Condition II : S0 = S1, S4 = S3 5 1 0

1 4 1

0 1 5

 ·
 S1

S2

S3

 =

 36

72

108

⇒ S1 = S0 = 4.8

S2 = 12

S3 = 19.2 = S4
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• Condition III : 6 0 0

1 4 1

0 0 6

 ·
 S1

S2

S3

 =

 36

72

108

⇒ S0 = 0 S1 = 6

S2 = 12 S3 = 18

S4 = 24

• Condition IV :


2 1 0 0 0

1 4 1 0 0

0 1 4 1 0

0 0 1 4 1

0 0 0 1 2

 ·


S0

S1

S2

S3

S4

 =


6

36

72

108

66


S0 = 0

S1 = 6

S2 = 12

S3 = 18

S4 = 24
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Interpolation with Cubic Splines : Problems

1. The following data are from astronomical observations and represent
variations of the apparent magnitude of a type of variable stars called
Cepheids

Time 0.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0

Apparent mag-

nitude

0.302 0.185 0.106 0.093 0.24 0.579 0.561 0.468 0.302

Use splines to create a new table for the apparent magnitude for intervals

of time of 0.5.
2. From the following table find the acceleration of gravity at Tübingen (48o

31’) and the distance between two points with angular separation of 1’ of
a degree.

Latitude Length of 1’ of arc

on the parallel

local acceleration

of gravity g

00 1855.4 m 9.7805 m/sec2

150 1792.0 m 9.7839 m/sec2

300 1608.2 m 9.7934 m/sec2

450 1314.2 m 9.8063 m/sec2

600 930.0 m 9.8192 m/sec2

750 481.7 m 9.8287 m/sec2

900 0.0 m 9.8322 m/sec2
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Rational function approximations

Here we introduce the notion of rational approximations for functions.

We will constrain our discussion to the so called Padé approximation.

A rational approximation of f (x) on [a, b], is the quotient of two polynomials

Pn(x) and Qm(x) with degrees n and m1

f (x) = RN(x) ≡ Pn(x)

Qm(x)
=

a0 + a1x + a2x
2 + ...+ anx

n

1 + b1x + b2x2 + ...+ bmxm
, N = n + m

i.e. there are N + 1 = n + m + 1 constants to be determined.

The method of Padé requires that f (x) and its derivatives are continuous at

x = 0. This choice makes the manipulation simpler and a change of variable

can be used to shift, if needed, the calculations over to an interval that

contains zero.

We begin with the Maclaurin series for f (x) (up to the term xN), this can be

written as :

f (x) ≈ c0 + c1x + ...+ cNx
N

where ci = f (i)(0)/(i !).
1Sometimes we write RN(x) ≡ Rn,m(x).
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Padé approximation

Then we create the difference

f (x) − RN (x) ≈
(
c0 + c1x + ... + cN xN

)
−

a0 + a1x + ... + anx
n

1 + b1x + ... + bmxm

=

(
c0 + c1x + ... + cN xN

) (
1 + b1x + ... + bmxm

)
−
(
a0 + a1x + ... + anx

n)
1 + b1x + ... + bmxm

If f (0) = RN(0) then c0 − a0 = 0.

In the same way , in order for the first N derivatives of f (x) and RN(x) to be

equal at x = 0 the coefficients of the powers of x up to xN in the numerator

must be zero also.
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This gives additionally N equations for the a’s and b’s

b1c0 + c1 − a1 = 0

b2c0 + b1c1 + c2 − a2 = 0

b3c0 + b2c1 + b1c2 + c3 − a3 = 0

...

bmcn−m + bm−1cn−m+1 + ...+ cn − an = 0

bmcn−m+1 + bm−1cn−m+2 + ...+ cn+1 = 0 (29)

bmcn−m+2 + bm−1cn−m+3 + ...+ cn+2 = 0

...

bmcN−m + bm−1cN−m+1 + ...+ cN = 0

Notice that in each of the above equations, the sum of subscripts on the

factors of each product is the same, and is equal to the exponent of the x-term

in the numerator.
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Padé approximation : Example

For the R9(x) or R5,4(x) Padé approximation for the function tan−1 (x) we
calculate the Maclaurin series of tan−1(x):

tan−1 (x) = x −
1

3
x3 +

1

5
x5 −

1

7
x7 +

1

9
x9

and then

f (x) − R9 (x) =

(
x − 1

3
x3 + 1

5
x5 − 1

7
x7 + 1

9
x9
) (

1 + b1x + b2x
2 + b3x

3 + b4x
4
)

−
(
a0 + a1x + a2x

2 + ... + a5x
5
)

1 + b1x + b2x
2 + b3x

3 + b4x
4

and the coefficients will be found by the following system of equations:

a0 = 0, a1 = 1, a2 = b1, a3 = −
1

3
+ b2 , a4 = −

1

3
b1 + b3 , a5 =

1

5
−

1

3
b2 + b4

1

5
b1 −

1

2
b3 = 0, −

1

7
+

1

5
b2 −

1

3
b4 = 0 , −

1

7
b1 +

1

5
b3 = 0,

1

9
−

1

7
b2 +

1

5
b4 = 0 (30)

from which we get

a0 = 0, a1 = 1, a2 = 0, a3 = 7
9
, a4 = 0, a5 = 64

945
, b1 = 0, b2 = 10

9
, b3 = 0, b4 = 5

21
.

tan−1 x ≈ R9(x) =
x + 7

9
x3 + 64

945
x5

1 + 10
9
x2 + 5

21
x4

For x = 1 , exact 0.7854, R9(1) = 0.78558 while from the Maclaurin series we

get 0.8349!
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Rational approximation for sets of data

If instead of the analytic form of a function f (x) we have a set of k points

(xi , f (xi )) in order to find a rational function RN(x) such that for every xi we

will get f (xi ) = RN(xi ) i.e.

RN(xi ) =
a0 + a1xi + a2x

2
i + ...+ anx

n
i

1 + b1xi + b2x2
i + ...+ bmxm

i

= f (xi )

we will follow the approach used in constructing the approximate polynomial.

In other words the problem will be solved by finding the solution of the

following system of k ≥ m + n + 1 equations:

a0 + a1x1 + ...+ anx
n
1 − (f1x1) b1 − ...− (f1x

m
1 ) bm = f1

::

a0 + a1xi + ...+ anx
n
i − (fixi ) b1 − ...− (fix

m
i ) bm = fi

::

a0 + a1xk + ...+ anx
n
k − (fkxk) b1 − ...− (fkx

m
k ) bm = fk

i.e. we get k equations for the k unknowns a0,a1, ..., an and b1, b2, ..., bm.
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Rational approximation for sets of data : Example

We will find the rational function approximations for the following set of data

(-1,1), (0,2) and (1,-1).

It is obvious that the sum of degrees of the polynomials in the nominator and

denominator must be (n + m + 1 ≤ 3). Thus we can write:

R1,1 (x) =
a0 + a1x

1 + b1x

which leads to the following system

a0 + (−1) a1 − (−1) b1 = 1

a0 + 0 · a1 − 0 · b1 = 2

a0 + 1 · a1 − (−1) b1 = −1

 ⇒
a0 = 2

a1 = −1

b1 = −2

and the rational fuction will be:

R1,1 (x) =
2− x

1− 2x
.

Alternatively, one may derive the following rational function:

R0,1 (x) =
a0

1 + b1x + b2x
⇒ R (x) =

2

1− 2x − x2
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Rational approximation: Problems

1. Find the Padé approximation R3,3(x) for the function y = ex . Compare

with the Maclaurin series for x = 1.

2. Find the Padé approximation R3,5(x) for the functions y = cos(x) and

y = sin(x). Compare with the Maclaurin series for x = 1.

3. Find the Padé approximation R4,6(x). for the function y = 1/x sin(x).

Compare with the Maclaurin series for x = 1.

4. Find the rational approximation for the following set of points:

0 1 2 4

0.83 1.06 1.25 4.15
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