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Introduction to BVPs i

• The 2nd order ODEs must have two initial conditions for their numerical

solution. Typically both conditions are given at the beginning (initial value

problems).

• This may not always be the case; the given conditions may be at different

points, usually the endpoints of the domain of interest (boundary value

problems).

Thus for an ODE of the form :

y ′′ + p(x)y(x) + q(x)y = g(x) (1)

the following combinations of boundary condition are possible (integration

x0 → x1)

1. y(x0) = y0 & y(x1) = y1

2. y ′(x0) = y0 & y ′(x1) = y1
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Introduction to BVPs ii

3. y ′(x0) = y0 & y(x1) = y1

4. y(x0) = y0 & y ′(x1) = y1

PROBLEM: Solve the BVP

y ′′ + 9y = 0 with BC y(0) = 1 and y(π/12) = 0 (2)

Solution: The general solution of the ODE is:

y(x) = A cos(3x) + B sin(3x) (3)

From the 1st BC we get:

y(0) = 1 = A cos(0) + B sin(0)→ A = 1

and from the 2nd BC:

y(π/12) = 0 = A cos(π/4) + B sin(π/4)→ (A + B)

√
2

2
= 0→ B = −1
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BVP: Shooting Method i

Solve the BVP

u′′ −
(

1− x

5

)
u = x , u(1) = 2, u(3) = −1 (4)

We can integrate the above ODE (using Runge-Kutta) by assuming for

example :

• u(1) = 2 and u′(1) = −1.5 → u(3) = 4.7876 and u′(3) = 5.1119

if we try again with

• u(1) = 2 and u′(1) = −3.0 → u(3) = 0.4360 and u′(1) = 1.6773

Finally, we assume (why?):

• u(1) = 2 and u′(1) = −3.495 → u(3) = −1.0 and u′(1) = 0.5439
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BVP: Shooting Method ii

.

Figure 1: Integration of eqn (4) for the 3 guess values of u′(x) defined earlier. The circles

correspond to u′(1) = −1.5, the stars correspond to u′(1) = −3. Finally, by

choosingu′(1) = −3.495, (continuous line) we get u(3) = −1.
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BVP: Shooting Method iii

The success in selecting the 3rd trial value was not accidental.

The ODE is linear and for the linear ones the interpolation from the first two

trials gives always the correct solution.

If

G=guess,

R=result, and

DR= desired result,

then:

G3 = G2 + (DR − R2)
G1 − G2

R1 − R2
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BVP: Shooting Method iv

NON-LINEAR ODEs

If we have to solve the nonlinear ODE

u′′ −
(

1− x

5

)
uu′ = x , u(1) = 2, u(3) = −1

We will not converge to the solution after two iterations, instead the

convergence maybe slow.

For example:

u′(1) -1.5 -3.0 -2.2137 -1.9460 -2.0215 -2.0162 -2.0161

u(3) -0.0282 -2.0705 -1.2719 -0.8932 -1.0080 -1.0002 -1.0000
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BVP: Finite Difference Method i

In this case we will write the ODE (4) as:

ui−1 − 2ui + ui+1

h2
−
(

1− xi
5

)
ui = xi

which will be written as:

ui−1 −
[
2 + h2

(
1− xi

5

)]
ui + ui+1 = h2xi

I.e. in this way we create a system of N − 2 linear equations which together

with the boundary conditions will give the unique solution to the problem, i.e.

the N − 2 values for ui .

COMMENT: In principle, this method can be implemented faster than the

shooting method but typically for the same number of points is less accurate,

because it is only O(h2) while one can used much more accurate methods in

solving the ODEs via the shooting method.

8



BVP: Finite Difference Method ii

For just 2 points in the interval (1, 3) we get two linear equations:

u0 −
[
2 + h2

(
1− x1

5

)]
u1 + u2 = h2x1 (5)

u1 −
[
2 + h2

(
1− x2

5

)]
u2 + u3 = h2x2 (6)

Then by using u0 = 2, u3 = −1, x1 = 5/3, x2 = 7/3 and h = 2/3 we get:

u1 = +0.188 exact value +0.165

u2 = −0.826 exact value -0.847

In a similar way for three interior points we get:

u1 = +0.552 exact value +0.540

u2 = −0.424 exact value -0.438

u3 = −0.964 exact value -0.974

9



BVP: Finite Difference Method iii

In a similar way for four interior points we get:

u1 = +0.7900 exact value +0.7968

u2 = −0.0997 exact value -0.0905

u3 = −0.7076 exact value -0.6992

u3 = −1.0237 exact value -1.0185
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BVP: Existence Theorem

Theorem I:

The BVP

y ′′ = f (x , y) with BCs y(0) = 0 x(1) = 0

has a unique solution if ∂f /∂y is continuous, no-negative and bounded in the

infinite strip defined by the inequalities:

0 ≤ x ≤ 1 and −∞ < y <∞

EXAMPLE Show that the 2-point BVP has a unique solution:

y ′′ = (5y + sin 3y) ex x(0) = x(1) = 0

Solution

∂f

∂y
= (5 + 3 cos 3y) ex

This is continuous in the strip 0 ≤ x ≤ 1 and −∞ < y <∞. Also it is bounded

above by 8e and it is nonnegative. Therefore, admits a unique solution.
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Characteristic - Value Problems : Introduction

Consider the homogeneous 2nd order ODE with boundary conditions:

d2u

dx2
+ k2u = 0 , u(0) = 0 , u(1) = 0, (7)

where k2 is a parameter. Then the question is what are the characteristic

values of k for which the above equation has a solution. These characteristic

values are called eigenvalues. It is obvious that for this simple wave equation

the general solution is:

u = A sin(kx) + B cos(kx)

which for the given boundary conditions leads to the following eigensolution

and eigenvalues

u = A sin(nπx), k = ±nπ, n = 1, 2, 3, . . .

The e-values are the most important information for a characteristic value

problem. In the case of a vibrating string, these give the natural frequencies of

the system which are important. To every e-value corresponds an e-vector

u(x), which determines the possible patterns of vibration for the string. Most

of the times the smallest e-value is the most important.
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Numerical solution

The following eqn can be written in its equivalent finite difference form

d2u

dx2
+ k2u = 0 , u(0) = 0 , u(1) = 0, (8)

that is N equations of the form:

ui−1 − 2ui + ui+1

h2
+ k2ui = 0

This leads to the following system of linear equations in matrix form:
2− h2k2 −1 · · · 0

−1 2− h2k2 −1 0
...

...

0 · · · −1 2− h2k2




u1

u2

...

uN

 =


0

0
...

0


or better:

(A− λI) u = 0 where λ = h2k2

which for h = 0.2 gives k = 3.09 (1.6%), k = 5.88 (6.3%), k = 8.09 (14%)and

k = 9.51 (24.3%).
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Tridiagonal Matrices

The eigenvalues-eigenvectors of N × N tridiagonal matrices

A =



b c 0 · · · 0

a b c 0 0

0 a b c 0
...

...

0 0 · · · a b


can be found analytically from the following relations:

λj = b + 2c

√
a

c
cos

jπ

N + 1
where j = 1, . . . ,N

and ~uj = (u1, u2, . . . , uk , . . . , uN)T where:

uk = 2

(√
a

c

)k

sin
kjπ

N + 1
where j = 1, . . . ,N .
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