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Numerical Solution of PDEs



Introduction i

• A differential equation involving more than one independent variable is called

a partial differential equations (PDEs) For example, a PDE for the function

u(x , y , z) may look like:

F

(
x , y , z ; u;

∂u

∂x
,
∂u

∂y
,
∂u

∂z
;
∂2u

∂x∂x
,
∂2u

∂x∂y
, . . . ,

∂2u

∂z∂z
; . . .

)
= 0 (1)

• Many problems in applied science, physics and engineering are modeled

mathematically with PDE.

• Here we will study finite-difference methods in solving numerically PDEs,

which are based on formulas for approximating the 1st and the 2nd derivatives

of a function.
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Introduction ii

The 2nd order linear PDEs (are of direct importance for physics) and are

classified with terminology borrowed from the conic sections.

For a 2nd-degree polynomial in x and y

Ax2 + 2Bxy + Cy 2 + · · · = 0 (2)

the graph is a quadratic curve, and when

• B2 − 4AC = 0 the curve is a parabola,

• B2 − 4AC < 0 the curve is an ellipse,

• B2 − 4AC > 0 the curve is a hyperbola
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Introduction iii

Now if one replaces x with ∂x , y with ∂y ... 1 converts equation (2) into a

PDE of the form:

A
∂2u

∂x2
+ B

∂2u

∂x∂y
+ C

∂2u

∂y 2
+ D

(
x , y , u,

∂u

∂x
,
∂u

∂x

)
= 0 (3)

where A, B and C are constants, is called quasilinear. There are 3 types of

quasilinear equations:

• If B2 − 4AC = 0, the equation is called parabolic,

• If B2 − 4AC < 0, the equation is called elliptic,

• If B2 − 4AC > 0, the equation is called hyperbolic
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Introduction iv

The heat equation

α2 ∂
2u

∂x2
− ∂u

∂t
= 0 for 0 < x < L (4)

assuming that the initial temperature distribution at t = 0 is

• u(x , 0) = f (x) for t = 0 and 0 ≤ x ≤ L

and the boundary conditions at the ends of the rod are

• u(x , t) = c1 for x = 0 and 0 ≤ t ≤ ∞

• u(L, t) = c2 for x = L and 0 ≤ t ≤ ∞

is an example of parabolic PDE.
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Introduction v

Two classic examples of PDEs are the 2-D Laplace and Poisson eqns:

∇2u =
∂2u

∂x2
+
∂2u

∂y 2
= 0 , or (5)

∇2u =
∂2u

∂x2
+
∂2u

∂y 2
= g(x , y) (6)

with boundary conditions:

• u(x , 0) = f1(x) for y = 0 and 0 ≤ x ≤ L1

• u(x , L2) = f2(x) for y = L2 and 0 ≤ x ≤ L1

• u(0, y) = g1(y) for x = 0 and 0 ≤ y ≤ L2

• u(L1, y) = g2(y) for x = L1 and 0 ≤ y ≤ L2

for which B = 0, A = C = 1 and thus they are elliptic PDEs.
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Introduction vi

The wave equation

∂2u

∂x2
− 1

c2

∂2u

∂t2
= 0 for 0 < x < L and 0 < t <∞ (7)

with a given initial position and velocity functions

• u(x , 0) = f (x) for t = 0 and 0 ≤ x ≤ L

• ut(x , 0) = g(x) for t = 0 and 0 ≤ x ≤ L

is a classic example of hyperbolic PDE.

1Formally via a Fourier transform
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Elliptic PDEs (numerical solution) i

We will try to solve the Laplace equation in 2-dimensions

uxx + uyy = 0 for 0 < x < 1 and 0 < y < 1 (8)

with boundary conditions:

• u(x , 0) = f1(x) for y = 0 and 0 ≤ x ≤ 1

• u(x , 0) = f2(x) for y = 1 and 0 ≤ x ≤ 1

• u(x , 0) = f3(x) for x = 0 and 0 ≤ y ≤ 1

• u(x , 0) = f4(x) for x = 1 and 0 ≤ y ≤ 1
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Elliptic PDEs (numerical solution) ii

since

u′′(x) =
u(x + h)− 2u(x) + u(x − h)

h2
+ O(h2)

This means that uxx at the point (xi , yj) will be

[uxx ]i,j =
ui−1,j − 2ui,j + ui+1,j

h2
(9)

and uyy will be written as:

[uyy ]i,j =
ui,j−1 − 2ui,j + ui,j+1

h2
(10)

Thus Laplace’s equation can be approximately written as

∇2u ≈ ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j
h2

= 0 (11)

where i = 2, ..., n − 1 & j = 2, ...,m − 1.
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Elliptic PDEs (numerical solution) iii

This is the 5-point difference formula

for Laplace’s equation and relates the

function value ui,j to its 4 neighbouring

values ui−1,j , ui+1,j , ui,j−1 and ui,j+1.

Which leads to the following Laplacian computational formula:

ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j = 0 (12)
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Elliptic PDEs (numerical solution) iv

Assume that the values of u(x , y) are

known at the following boundary grid

points:

u(x1, yj) = u1,j for 2 ≤ j ≤ m − 1

u(xi , y1) = ui,1 for 2 ≤ i ≤ n − 1

u(xn, yj) = un,j for 2 ≤ j ≤ m − 1

u(xi , ym) = ui,m for 2 ≤ i ≤ n − 1

Then we can estimate the values of the

function u(x , y) at the interior grid points

by solving a system of (n − 2)× (n − 2)

equations for (n − 2)2 unknowns.
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Elliptic PDEs (numerical solution) v

For the above 5× 5 grid the solution of the Laplacian equation will be given by

the following linear system:

−4u2,2 +u3,2 +u2,3 = −u2,1 − u1,2
u2,2 −4u3,2 +u4,2 +u3,3 = −u3,1

u3,2 −4u4,2 +u4,3 = −u4,1 − u5,2
u2,2 −4u2,3 +u3,3 +u2,4 = −u1,3

u3,2 +u2,3 −4u3,3 +u4,3 +u3,4 = 0

u4,2 +u3,3 −4u4,3 +u4,4 = −u5,3
u2,3 −4u2,4 +u3,4 = −u2,5 − u1,4

u3,3 +u2,4 −4u3,4 +u4,4 = −u3,5
u4,3 +u3,4 −4u4,4 = −u4,5 − u5,4

(13)
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Elliptic PDEs (numerical solution) vi

EXAMPLE 1

If the rectangle has dimensions 0 ≤ x ≤ 4 and 0 ≤ y ≤ 4 with boundary

conditions

u(x , 0) = 20 and u(x , 4) = 180 for 0 < x < 4

u(0, y) = 80 and u(4, x) = 0 for 0 < y < 4

we create the following grid

−4u2,2 +u3,2 +u2,3 = −100

u2,2 −4u3,2 +u4,2 +u3,3 = −20

u3,2 −4u4,2 +u4,3 = −20

u2,2 −4u2,3 +u3,3 +u2,4 = −80

u3,2 +u2,3 −4u3,3 +u4,3 +u3,4 = 0

u4,2 +u3,3 −4u4,3 +u4,4 = 0

u2,3 −4u2,4 +u3,4 = −260

u3,3 +u2,4 −4u3,4 +u4,4 = −180

u4,3 +u3,4 −4u4,4 = −180
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Elliptic PDEs (numerical solution) vii

which admits the solution:

u2,4 = 112.857, u3,4 = 111.786, u4,4 = 84.2857

u2,3 = 79.6429, u3,3 = 70.000, u4,3 = 45.3571,

u2,2 = 55.7143, u3,2 = 43.2143, u4,2 = 27.1429.

1 2 3 4 5
1

2

3

4

5
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Elliptic PDEs : S.O.R. i

The solution of the linear systems that derived earlier can be found according

to the methods discussed in Section 2. For the 3-diagonal systems that we

have here the iterative methods are the best choice.

Assuming some initial values for the internal unknown grid points ui,j we can

use the following iterative scheme:

ui,j
(N+1) =

1

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1)(N) (14)

A fasted approach is to use the following successive over relaxation (S.O.R)

scheme

ui,j
(N+1) = ui,j

(N) +
ω

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4ui,j)

(N)

= ui,j
(N) + ωri,j

(N) (15)

This procedure will be repeated until |ri,j |(N) < ε. The optimal value for the

overrelaxation factor ω is not always predictable.
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Elliptic PDEs : S.O.R. ii

For rectangular regions with Dirichlet boundary conditions there is a formula

for the optimal ω which is the root of the quadratic equation[
cos

(
π

n − 1

)
+ cos

(
π

m − 1

)]2

ω2 − 16ω + 16 = 0 (16)

EXAMPLE 2

• Solve EXAMPLE 1 using S.O.R. method for different values of ω check if

your numerical findings agree with the outcome of the previous relation.

• Test the speed of the method in comparison to the standard method - for

reliable comparison increase the grid points in each side by 100 times.
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Hyperbolic PDEs i

A typical example of hyperbolic equation is the wave equation

∂2u(x , t)

∂t2
= c2 ∂

2u(x , t)

∂x2
for 0 < x < a and 0 < t < b (17)

with the boundary

u(0, t) = 0 and u(a, t) = 0 for 0 ≤ t ≤ b (18)

and initial conditions
u(x , 0) = f (x) for 0 ≤ x ≤ a (19)

ut(x , 0) = g(x) for 0 < x < a

This equation typically describes 1D-waves propagating on a string with velocity

c2 =
T

ρA
(20)

where T is the force (tension) in the string, ρ is the density of the string

material, and A is the cross-sectional area of the string.
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Hyperbolic PDEs ii

Furthermore, for longitudinal vibration of a bar u(t, x) represents the

longitudinal displacement with

c2 =
E

ρ
(21)

where E is the modulus of elasticity and ρ the density of the bar.

For the 2D case of transverse vibrations of a membrane u(t, x , y) is the

transverse displacement of the membrane with

c2 =
T

ρ∆h
=

T

m
(22)

where T is the tension per unit length, ρ the density and ∆h the membrane

thickness, m = ρ∆h os the mass per unit area.
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Hyperbolic PDEs iii

Derivation of Difference Equation

Partition the rectangle R = (x , t) : 0 ≤ x ≤ a , 0 ≤ t ≤ b into a grid consisting

of (n − 1) by (m − 1) rectangles with sides ∆x = h and ∆t = k.
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Hyperbolic PDEs iv

Then the central difference formulas will be:

utt(x , t) =
u(x , t + ∆t)− 2u(x ,∆t) + u(x , t −∆t)

∆t2
+ O(∆t2) (23)

uxx(x , t) =
u(x + ∆x , t)− 2u(x , t) + u(x −∆x , t)

∆x2
+ O(∆x2) (24)

Because xi+1 = xi + ∆x and tj+1 = tj + ∆t we can write

ui,j+1 − 2ui,j + ui,j−1

∆t2
= c2 ui+1,j − 2ui,j + ui−1,j

∆x2
(25)

and if for simplicity we get r = c∆t/∆x then

ui,j+1 − 2ui,j + ui,j−1 = r 2 (ui+1,j − 2ui,j + ui−1,j) . (26)

which finally becomes

ui,j+1 = 2(1− r 2)ui,j + r 2 (ui+1,j + ui−1,j)− ui,j−1 (27)
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Hyperbolic PDEs : Starting values

Two starting values corresponding to j = 1 and j = 2 must be supplied in order

to use formula (27) to compute the 3rd row.

Since, the values of the 2nd row usually are not known we estimate them

numerically from the information that we have for ut(x , 0).

The value of u(xi ,∆t) satisfies

u(xi ,∆t) = u(xi , 0) + ∆t ut(xi , 0) + O(∆t2) (28)

But since u(xi , 0) = f (xi ) = fi and ut(xi , 0) = g(xi ) = gi the above relation will

be written:

ui,2 = fi + ∆t gi for i = 2, 3, ..., n − 1. (29)
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Hyperbolic PDEs : Stability

Numerical methods suffer from instabilities which grow as we evolve the

equation in time.

For the hyperbolic equation, under discussion, there exists a sufficient criterion

which ensures the stability of the evolution is r = c∆t/∆x ≤ 1.

This is called Courant-Friedrichs-Lewy (CFL).

In practice the CFL criterion demands

|c| ≤ ∆x

∆t
(30)

That is the propagation speed of the waves c to be smaller that the speed of

propagation of the information in our grid.

The condition can be viewed as a sort of discrete

“light cone” condition, namely that the time step

must be kept small enough so that information

has enough time to propagate through the space

discretization.
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Hyperbolic PDEs : Nonreflecting Boundaries i

The 1-dimension wave equation utt = c2uxx might not always have reflective

boundaries i.e. u(x0) = u(xn) = 0 but instead one or both boundaries might

“absorb” and not reflect the waves.

The d’Alembert solution will be written as:

u(x , t) = FA(x − ct) + FR(x + ct) (31)

FA is the wave advancing towards the boundary and FR the reflecting wave. 2

Here FR = 0 and thus ux = F ′A and ut = −cF ′A which means that we get the

wave equation representing waves traveling in one only direction ut = −cux .

Figure 1: Finite Difference Mesh at

non-reflecting boundary

The central difference approximation for the

non-reflecting boundary will be

c
ui+1,j − ui−1,j

2∆x
= −ui,j+1 − ui,j−1

2∆t
⇒

r (ui+1,j − ui−1,j) = − (ui,j+1 − ui,j−1) (32)
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Hyperbolic PDEs : Nonreflecting Boundaries ii

So

ui+1,j = ui−1,j − r−1 (ui,j+1 − ui,j−1) (33)

We may substitute (35) into equation (27)

ui,j+1 = 2(1− r 2)ui,j + r 2 (ui+1,j + ui−1,j)− ui,j−1 (34)

in order to eliminate the point ui+1,j and we get:

(1 + r)ui,j+1 = 2r 2ui−1,j + 2(1− r 2)ui,j − (1− r)ui,j−1 (35)

If we assume r = 1 then we get the extremely simple form

ui,j+1 = ui−1,j (36)

At the initial time step the last term will be evaluating using (29).
2NOTE: The wave equation can be written as

(∂t − c∂x ) (∂t + c∂x ) u = 0
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Parabolic PDEs (numerical solution) i

We will consider the 1D heat equation as an example of parabolic PDE

∂u

∂t
= α2 ∂

2u

∂x2
(37)

for 0 ≤ x ≤ 1 and 0 ≤ t <∞

with boundary conditions:

u(0, t) = c1, u(1, t) = c2 for 0 ≤ t <∞ (38)

and initial conditions : u(x , 0) = f (x), for 0 ≤ x ≤ 1 .

The heat equation models the temperature in an insulated rod with ends held

at constant temperatures c1 and c2.
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Parabolic PDEs (numerical solution) ii

We assume that the rectangle R = {(x , t) : 0 ≤ x ≤ 1, 0 ≤ t < b} is

subdivided into n − 1 by m − 1 rectangles with sides ∆x = h and ∆t = k.
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Parabolic PDEs (numerical solution) iii

Then the finite difference formulas will be:

ut(x , t) =
u(x , t + ∆t)− u(x , t)

∆t
+ O(∆t) (39)

uxx(x , t) =
u(x + ∆x , t)− 2u(x , t) + u(x −∆x , t)

h2
+ O(∆x2) (40)

and the difference equation becomes

ui,j+1 − ui,j
∆t

= α2 ui−1,j − 2ui,j + ui+1,j

h2
(41)

by setting r = α2∆t/∆x2 we get

ui,j+1 = (1− 2r) ui,j + r (ui−1,j + ui+1,j) (42)
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Parabolic PDEs : Stability

• The simplicity of eqn (42) makes it appealing to use. However, it is

important to use numerical techniques that are stable.

• If any error made at one stage of the calculation is eventually damped

out, the method is called stable

• The explicit forward-difference equation (42) is stable if and only if

0 ≤ r ≤ 1

2
or ∆t ≤ ∆x2

2α2
(43)

If this condition is not fulfilled, errors, committed at one row might be

magnified in subsequent rows.

• The difference eqn (42) has accuracy of the order O(∆t) + O(∆x2)

• If we choose r = 1/2 the difference eqn (42) becomes even simpler:

ui,j+1 =
ui−1,j + ui+1,j

2
(44)
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Parabolic PDEs : Implicit methods (Crank - Nicholson) i

The implicit method of Crank - Nicholson is based on using the spatial

derivative on both the point (i , j) and (i , j + 1). That is:

ui,j+1 − ui,j
k

=
1

2
α2

(
ui−1,j − 2ui,j + ui+1,j

h2
+

ui−1,j+1 − 2ui,j+1 + ui+1,j+1

h2

)
which after rearrangement leads to:

−rui−1,j+1 + 2(1 + r)ui,j+1 − rui+1,j+1 = 2(1− r)ui,j + r (ui−1,j + ui+1,j) (45)

which for r = 1 leads to

−ui−1,j+1 + 4ui,j+1 − ui+1,j+1 = ui−1,j + ui+1,j (46)
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Parabolic PDEs : Implicit methods (Crank - Nicholson) ii

The previous relation leads to the solution of the following linear system of

equations

4 −1 0 0 0 0 0

−1 4 −1 0 0 0 0

0 0 ... 0 0 0 0

0 0 −1 4 −1 0 0

0 0 0 0 ... 0 0

0 0 0 0 −1 4 −1

0 0 0 0 0 −1 4





u2,j+1

u3,j+1

...

uk,j+1

...

un−2,j+1

un−1,j+1


=



2c1 + u3,j

u2,j + u4,j

...

uk−1,j + uk+1,j

...

un−3,j + un−1,j

un−2,j + 2c2


It is obvious that this procedure has to be repeated in every time step, but the

advandage is that it is stable for every value of r .
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Convergence i

The finite difference schemes are used because their solutions approximate the

solutions to certain PDEs.

The solution of the difference equations can be made to approximate the

solution of the PDE to any desired accuracy.

Definition I:

A finite difference scheme (FDS) Ln
ku

n
k = Gnk approximating the PDE Lv = F is

a convergent scheme of order (p, q) if for any x and t, as (k∆x , (n + 1)∆t)

converges to (x , t), un,k converges to v(x , t) as ∆x and ∆t converge to 0.

EXAMPLE

Let’s consider the scheme used for the parabolic equations

un,k+1 − un,k

∆t
= α

2 un−1,k − 2un,k + un+1,k

∆x2
(47)

which can be written as:

un,k+1 = (1− 2r) un,k + r (un−1,k + un+1,k ) with uk,0 = f (k∆x) (48)
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Convergence ii

we will show that converges to the solution of the initial value problem

vt = α
2vxx , x ∈ R and t > 0 (49)

v(x, 0) = f (x) , x ∈ R (50)

SOLUTION

We will denote the exact solution of the initial value problem (49)-(50) as v = v(x, t) and we will

set

v (k∆x, n∆t) = un,k − zn,k . (51)

If we insert v into the following equation

vt (k∆x, n∆t) − α
2vxx (k∆x, n∆t) =

vn+1,k − vn,k

∆t

−
α2

∆x2
(vn,k+1 − 2vn,k + vn,k−1) +O(∆t) +O(∆x2) (52)

and multiply with ∆t then the left hand side will be zero, we see that vn,k = v (k∆x, n∆t)

satisfies the equation

vn,k+1 = (1− 2r) vn,k + r (vn−1,k + vn+1,k ) +O(∆t2) +O(∆t∆x2) (53)
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Convergence iii

Then by substracting (53) from (48), we see that zn,k satisfies

zn,k+1 = (1− 2r) zn,k + r (zn−1,k + zn+1,k ) +O(∆t2) +O(∆t∆x2) (54)

for 0 < r ≤ 1/2 the coefficients on the right hand side are non-negative and

|zn,k+1| ≤ (1− 2r) |zn,k | + r (|zn−1,k | + |zn+1,k |) +A
(

∆t2 + ∆t∆x2
)

≤ Zn +A
(

∆t2 + ∆t∆x2
)

where Zn = supk{|zn,k |}

or

Zn+1 ≤ Zn +A
(

∆t2 + ∆t∆x2
)

(55)

If we assume that the term A
(

∆t2 + ∆t∆x2
)

is approximately constant, se can generate the

sequence

Zn+1 ≤ Zn +A
(

∆t2 + ∆t∆x2
)

≤ Zn−1 + 2A
(

∆t2 + ∆t∆x2
)

...

≤ Z0 + (n + 1)A
(

∆t2 + ∆t∆x2
)
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Convergence iv

Since Z0 = 0, |un+1,k − v(k∆x, (n + 1)∆t)| ≤ Zn+1 and (n + 1)∆t → t we get

|un+1,k − v(k∆x, (n + 1)∆t)| ≤ (n + 1)∆tA(∆t + ∆x2)

→ 0 as ∆t ,∆x → 0 (56)

Definition II

A finite difference scheme (FDS) Ln
ku

n
k = Gnk approximating the PDE Lv = F is

a convergent scheme at time t if as (n + 1)∆t → t,

||un+1 − vn+1|| = O(∆xp) +O(∆tq) (57)

as ∆x → 0 and ∆t → 0.
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Convergence (ODE)

Lets assume an ODE of the form

dy

dx
= Ay (58)

which has an obvious solution of the form y = eAx .

Euler’s method gives the approximate solution via the recurrence relation:

yn+1 = yn + hAyn = (1 + hA)yn for n = 0, 1, 2, ... (59)

Thus if we use this relation n-times we will get:

yn+1 = (1 + hA)n+1y0 for n = 0, 1, 2, ... (60)

But for small h we know that 1 + hA ≈ ehA thus

yn+1 = (1 + hA)n+1y0 ≈ e(n+1)hAy0 = e(xn+1−x0)Ay0 = eAxn+1 (61)

where h = (xn+1 − x0)/(n + 1).

This means that the numerical solution for small h converges to the analytic

solution: y = eAx .
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Consistency i

Given a PDE Lv = F and a FDS Ln
ku

n
k = Gnk , we say that the FDS is

consistent with the PDE if for any smooth function φ(x , t)

Lφ− Lφ → 0 as ∆t ∆x → 0 (62)

Lax Equivalence Theorem For consistent schemes (in linear problems)

convergence is equivalent to stability

Consider the wave equation defined by the operator L = ∂
∂t

+ a ∂
∂x

i.e.

Lu = ut + aux

We will evaluate the FDS - FSFT

Lu =
un+1
i − un

i

∆t
+ a

un
i+1 − un

i

∆x
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Consistency ii

By using Taylor expansion we get

un+1
i = un

i + ut∆t +
1

2
utt∆t2 + O(∆t3) (63)

un
i+1 = un

i + ux∆x +
1

2
uxx∆x2 + O(∆x3) (64)

This leads to

Lu = Lu +
1

2
(∆t · utt + ∆x · uxx) + O(∆t2) + O(∆x2)

Thus

Lu−Lu =
1

2
(∆t · utt + ∆x · uxx)+O(∆t2)+O(∆x2) → 0 as (∆x ,∆t) → 0
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Stability - Initial Value Problems i

One interpretation of stability of difference scheme is that for a stable difference

scheme small errors in the initial conditions cause small errors in the solution.

This definition allows the errors to grow, but limits them to grow no faster

than exponential.

A difference scheme for solving a given (two level) initial-value problem is of

the form

un+1 = Qun , n ≥ 0 . (65)

Definition The difference scheme (65) is said to be stable if there exist positive

constants ∆x0 and ∆t0, and non-negative constants K and β so that

||un+1|| ≤ Keβt ||u0|| (66)

for 0 ≤ t = (n + 1)∆t, 0 < ∆x ≤ ∆x0 and 0 < ∆t ≤ ∆t0.
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Stability - Initial Value Problems ii

Another, more common, definition that is used is one that does not allow for

exponential growth. Inequality (66) is replaced by

||un+1|| ≤ K ||u0|| (67)

which implies (66).

Where we define the Euclidean norm

||u||2 =

√√√√ N∑
k=1

|uk |2 . (68)

||u||2,∆x =

√√√√ N∑
k=1

|uk |2∆x . (69)

and the sup-norm

||u||∞ = sup |uk | for 1 ≤ k ≤ N (70)
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Stability - Initial Value Problems iii

Preposition The difference scheme (65) is stable if and only if there exist

positive constants ∆x0 and ∆t0, and non-negative constants K and β so that

||Qn+1|| ≤ Keβt (71)

for 0 ≤ t = (n + 1)∆t, 0 < ∆x ≤ ∆x0 and 0 < ∆t ≤ ∆t0.

Proof:

un+1 = Qun = Q
(
Qun−1

)
= Q2un−1 = ... = Qn+1u0

expression (66) can be written as

||un+1|| = ||Qn+1u0|| ≤ Keβt ||u0||

or
||Qn+1u0||
||u0|| ≤ Keβt

by taking the supremum over both sides over all non-zero vectors u0 we get

(71).
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Stability - Initial Value Problems iv

Example Show that following difference scheme is stable with respect to the

sup-norm.

un+1
k = (1− 2r) un

k + r (un
k+1 + un

k−1) (72)

Solution We note that if r ≤ 1/2

|un+1
k | ≤ (1− 2r)|un

k |+ r |un
k+1|+ r |un

k−1| ≤ ||un||∞

If we take the supremum over both sides (with respect to k), we get

||un+1||∞ ≤ ||un||∞

Hence the inequality (67) is satisfied with K = 1, or inequality (66) is satisfied

with K = 1 and β = 0.

NOTES: For the stability of the scheme (72) we have required that r ≤ 1/2.

In this case we say that the scheme is conditionally stable.

In the case where no-restrictions on the relationship between ∆t and ∆x are

needed for stability, we say the scheme is unconditionally stable.
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Stability - Initial Value Problems v

When solving initial-value problems a common analytical tool is to use the

Fourier transform. For example, consider the problem:

vt = vxx , with v(x , 0) = f (x) . (73)

If we define the Fourier transform of v to be

v̂(ω, t) =
1√
2π

∫ ∞
−∞

e−iωxv(x , t)dx (74)

and take the Fourier transform of PDE (73) we get

v̂t(ω, t) =
1√
2π

∫ ∞
−∞

e−iωxvt(x , t)dx =
1√
2π

∫ ∞
−∞

e−iωxvxx(x , t)dx

= −ω2 1√
2π

∫ ∞
−∞

e−iωxv(x , t)dx = −ω2v̂(ω, t). (75)

Here we integrated by parts twice.

Hence we see that the Fourier transform reduces the PDE to an ODE in

transform space.
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Stability - Initial Value Problems vi

The technique then is to solve the ODE in transformed space and return

our solution space.

We can return to our solution by using the inverse Fourier transform

v(x , t) =
1√
2π

∫ ∞
−∞

e iωx v̂(ω, t)dω (76)

The discrete Fourier transform can be written as:

v̂(ξ) =
1√
2π

∞∑
k=−∞

e−ikξvk (77)

for ξ ∈ [−π, π].

Parseval’s identity says that the norms of the function and its transform are

equal in their respective spaces:

||v ||2 = ||v̂ ||2 (78)
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Stability - Initial Value Problems vii

In a stability analysis we will use the Fourier transform and Perseval’s Identity.

Recall that for the definition of stability we have used the inequality

||un+1||2,∆x ≤ Keβ(n+1)∆t ||u0||2,∆x (79)

which can be now written as (||u||2,∆x =
√

∆x ||u||2 =
√

∆x ||û||2)

||ûn+1||2 ≤ Keβ(n+1)∆t ||û0||2 (80)

then the same K and β will also satisfy (74).

When inequality (80) holds, we say that the sequence {ûn} is stable in the

transform space and this applies also to sequence {un}.
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Stability - Initial Value Problems - Example (****)

Analyze the stability of the difference scheme

un+1
k = run

k−1 + (1− 2r)un
k + run

k+1, −∞ < k <∞ (81)

where r = v∆t/∆x2.

If we take the discrete Fourier transform of both sides of equation (81)

ûn+1(ξ) =
1
√

2π

∞∑
k=−∞

e−ikξun+1
k

=
1
√

2π

∞∑
k=−∞

e−ikξ [run
k−1 + (1− 2r)un

k + run
k+1

]
= r

1
√

2π

∞∑
k=−∞

e−ikξun
k−1 + (1− 2r)

1
√

2π

∞∑
k=−∞

e−ikξun
k

+r
1
√

2π

∞∑
k=−∞

e−ikξun
k+1

= r
1
√

2π

∞∑
k=−∞

e−ikξun
k−1 + (1− 2r)ûn(ξ) + r

1
√

2π

∞∑
k=−∞

e−ikξun
k+1
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By making the change of variables m = k ± 1 we get,

1√
2π

∞∑
k=−∞

e−ikξun
k±1 =

1√
2π

∞∑
m=−∞

e−i(m∓1)ξun
m (82)

= e±iξ 1√
2π

∞∑
m=−∞

e−imξun
m = e±iξû(ξ).

Then we get

ûn+1(ξ) = re−iξûn(ξ) + (1− 2r)ûn(ξ) + re iξûn(ξ)

=
[
re−iξ + (1− 2r) + re iξ

]
ûn(ξ)

= [2r cos ξ + (1− 2r)] ûn(ξ)

=
[
1− 4r sin2(ξ/2)

]
ûn(ξ) (83)

The term

ρ(ξ) = 1− 4r sin2 ξ

2
(84)

is called the symbol of the difference scheme (81).
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Thus by taking the discrete Fourier transform, we get rid of the x derivatives

and simplify the equation.

If we apply the result (83) n + 1 times, we get

ûn+1(ξ) =
(

1− 4r sin2(ξ/2)
)n+1

û0(ξ) (85)

Thus if we restrict r so that

|1− 4r sin2(ξ/2)| ≤ 1 (86)

Then we can choose K = 1 and β = 0 and satisfy inequality (67).

Thus our scheme will be stable if

−1 ≤ 1− 4r sin2(ξ/2) ≤ 1 (87)

or

4r sin2(ξ/2) ≤ 2 (88)

which is true for r ≤ 1/2.

This is the necessary and sufficient condition for convergence of the

scheme (81).
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Stability - Initial Value Problems - Examples

For the hyperbolic PDE

ut + aux = 0 (89)

study the stability of the following schemes (|R| = |a|∆t/∆x ≤ 1)

un+1
k = un

k − R (un
k+1 − un

k ) (FTFS) (90)

un+1
k = un

k − R (un
k − un

k−1) (FTBS) (91)

un+1
k = un

k −
R

2
(un

k+1 − un
k−1) (FTCS) (92)

The following abbreviations might be used later:

δ+uk = uk+1 − uk (93)

δ−uk = uk − uk−1 (94)

δ0uk = uk+1 − uk−1 (95)

δ2uk = uk+1 − 2uk + uk−1 (96)
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Stability : Example I

For the hyperbolic PDE

ut + aux = 0, with a < 0 (97)

study the stability of the following scheme (FTFS) (|R| = |a|∆t/∆x ≤ 1)

un+1
k = (1 + R)un

k − Run
k+1 (98)

We begin by taking the discrete Fourier transform of the scheme

ûn+1 = (1 + R)ûn − Re iξûn

= [(1 + R)− R(cos ξ + i sin ξ)] ûn (99)

Then because the symbol is complex and is given by

ρ(ξ) = (1 + R)− R cos ξ − iR sin ξ (100)

we must bound the magnitude of ρ by 1 to satisfy the inequality (80) (with

K = 1 and β = 0). Thus we calculate

|ρ(ξ)|2 = (1 + R)2 − 2R(1 + R) cos ξ + R2
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Then we determine the maximum and minimum value of |ρ(ξ)|2 for ξ ∈ [−π, π]

and we find that we have a potential maximum at ξ = 0 and ξ = ±π.

If we evaluate |ρ(ξ)| at these values, we see that

|ρ(0)| = 1 and |ρ(±π)| = |1 + 2R|

To bound |ρ(±π)| by 1, we require that R satisfies −1 ≤ 1 + 2R ≤ 1.

Then since 1 + 2R ≤ 1 since R < 0 we see that the scheme is conditionally

stable with condition R ≥ −1.
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Stability : Example II

For the hyperbolic PDE

ut + aux = 0, with a < 0 (101)

study the stability of the following scheme (FTCS) (|R| = |a|∆t/∆x ≤ 1)

un+1
k = un

k −
R

2
δ0u

n
k (102)

We begin by taking the discrete Fourier transform of the scheme

ûn+1 = ûn − R

2

(
e iξ − e−iξ

)
ûn = [1− iR sin ξ] ûn (103)

Thus the symbol is

|ρ|2 = 1 + R2 sin ξ2 ≥ 1

So the difference scheme (102) is unstable for all R 6= 0.

52



Lax-Wendroff Scheme i

For the PDE ut + aux = 0 we can write:

utt = (−aux)t = −auxt = −a(ut)x = −a(−aux)x = a2uxx (104)

Thus since

un+1
k = un

k + (ut)
n
k ∆t + (utt)

n
k

∆t2

2
+ O

(
∆t3

)
= un

k + (−aux)nk ∆t + (a2uxx)nk
∆t2

2
+ O

(
∆t3

)
= un

k − a

(
un
k+1 − un

k−1

2∆x
+ O(∆x2)

)
∆t

+a2

(
un
k+1 − 2un

k + un
k−1

∆x2
+ O(∆x2)

)
∆t2

2
+ O

(
∆t3

)
i.e. we approximate the PDE ut + aux = 0 with the difference scheme

un+1
k = un

k −
R

2
δ0u

n
k +

R2

2
δ2un

k with R = a∆t/∆x . (105)
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Lax-Wendroff Scheme ii

The Lax-Wendorff scheme is O(∆t2) + O(∆x2) and its symbol is (why?)

ρ(ξ) = 1− 2R2 sin2(ξ/2)− iR sin ξ (106)

Since

|ρ(ξ)|2 = 1− 4R2 sin4(ξ/2) + 4R4 sin4(ξ/2) (107)

if we differentiate with respect to ξ we can find the critical values at ξ = ±π
and 0. For which we get that

|ρ(0)|2 = 1 and |ρ(±π)|2 = |ρ(π)|2 = (1− 2R2)2. (108)

Then for R2 ≤ 1 we get (1− 2R2)2 ≤ 1 and thus the Lax-Wendroff scheme is

conditionally stable for

|R| = |a|∆t

∆x
≤ 1 . (109)

and it is 2nd order in both time and space.

• Notice that the stability condition is independent of the sign of a.
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Lax-Friedrichs Scheme

It can be derived from the unstable FTCS O(Dt,Dx2) scheme:

un+1
k = un

k −
R

2
(un

k+1 − un
k−1) (110)

by replacing un
k with its spatial average: un

k = (un
k+1 + un

k−1)/2.

un+1
k =

1

2
(un

k+1 + un
k−1)− R

2
(un

k+1 − un
k−1) (111)

which is stable for |R| ≤ 1 (WHY?).

PROBLEM: Show that the above writing corresponds to the descritization of

the following PDE:

ut + aux =
∆x2

2∆t
uxx (112)

The last term acts as numerical dissipation.
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Implicit Schemes

For the hyperbolic PDE

ut + aux = 0 (113)

we have studied the following explicit schemes

un+1
k = un

k − R (un
k+1 − un

k ) (FTFS) (114)

un+1
k = un

k − R (un
k − un

k−1) (FTBS) (115)

un+1
k = un

k −
R

2
(un

k+1 − un
k−1) (FTCS) (116)

These schemes can be written in the following form:

(1− R)un+1
k + Run+1

k+1 = un
k (BTFS) (117)

−Run+1
k−1 + (1 + R)un+1

k = un
k (BTBS) (118)

−R

2
un+1
k−1 + un+1

k +
R

2
un+1
k+1 = un

k (BTCS) (119)
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Implicit Schemes - Stability I

We will study the stability of the BFTS scheme (117). By taking the discrete

Fourier transform we get

(1− R)ûn+1 + Re iξûn+1 = ûn (120)

Thus the symbol will be

ρ(ξ) =
1

1− R + R cos ξ + iR sin ξ
(121)

and the magnitude squared of the symbol is:

|ρ(ξ)|2 =
1

1− 4R sin2 ξ/2 + 4R2 sin2 ξ/2
(122)

Since R ≤ 0 (a < 0) implies that:

1− 4R sin2 ξ/2 + 4R2 sin2 ξ/2 = 1− 4R(1− R) sin2 ξ/2 ≥ 1 (123)

i.e. |ρ(ξ)|2 ≤ 1.

NOTE that for 0 < R < 1, the difference scheme is unstable.

Hense, we see that the difference scheme (117) is stable if and only if R ≤ 0 or

R ≥ 1.
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Implicit Schemes - Stability II

For the difference scheme (119):

−R

2
un+1
k−1 + un+1

k +
R

2
un+1
k+1 = un

k (124)

the symbol is (how?)

ρ(ξ) =
1

1 + iR sin ξ
(125)

Then since

|ρ(ξ)|2 =
1

1 + R2 sin2 ξ
≤ 1 (126)

the difference scheme (124) is unconditionally stable, even though its explicit

counterpart is unstable!

PROBLEM: Study the stability of the difference scheme (118).
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Implicit Schemes - Lax-Wendroff i

The explicit Lax - Wendroff scheme was 2nd order both in space and time for

the wave equation vt + avx = 0. We will try to examine its implicit version.The

scheme that follows serves the purpose:

−R

2
(1 + R) un+1

k−1 +
(

1 + R2
)
un+1
k +

R

2
(1− R) un+1

k+1 = un
k (127)

If we expand this equation about (k, n + 1) we see that the equation is still end

order both in space and time. By taking the Fourier transform we get the

symbol of the operator

ρ(ξ) =
1

1 + 2R2 sin2 ξ/2 + iR sin ξ
(128)

which leads to

|(ρ(ξ)|2 =
1(

1 + 2R2 sin2 ξ/2
)2

+ R2 sin2 ξ
≥ 1 (129)

which means that the implicit Lax-Wendroff scheme is unconditionally stable
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Implicit Schemes - Lax-Wendroff ii

NOTE: the stability condition is independent of the sign of a, this is a big

advantage when the sign of a, may change through out the domain. This can

happen if a is function of the independent variables of the problem or its sign

might not be known a priori.
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Implicit Schemes - Crank - Nicolson i

The implicit Crank-Nicolson scheme for the parabolic PDEs was already

presented and without proof it was mentioned that it was unconditionally

stable. Here we will study with the same implicit approach the stability of the

wave equation vt + avx = 0:

−R

4
un+1
k−1 + un+1

k +
R

4
un+1
k+1 =

R

4
un
k−1 + un

k −
R

4
un
k+1 (130)

Here as for the case of parabolic PDEs the spatial difference has been averaged

at the nth and (n + 1)st time slices.

The scheme can be considered as a half explicit step (with time step ∆t/2)

and a half implicit step (with time step ∆t/2).

If we expand the scheme about the point (k, n + 1/2), it is easy to see

(HOW?) that the scheme is of order O(∆t2) +O(∆x2). By taking the Fourier

transform we get the symbol of the operator

ρ(ξ) =
1− iR/2 sin ξ

1 + iR/2 sin ξ
⇒ |(ρ(ξ)|2 = 1 (131)
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Implicit Schemes - Crank - Nicolson ii

This is quite tricky since any small perturbation (e.g. round-off errors) can

make the magnitude greater than one and result in instability.

NOTE I: the stability condition is independent of the sign of a.

NOTE II : This is also a proof that the stability results obtained for parabolic

PDEs they cannot be transfer automatically to hyperbolic PDES.
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1D form of the wave equation i

We have studied the numerical solution of the wave equation earlier. Now we

will demonstrate how one can treat it with the schemes that we discussed

earlier. The equation is:

utt = c2uxx for 0 < x < a and 0 < t < b (132)

Then we can write it as a system of 1st order PDEs. We set:

h = c ux and f = ut (133)

and we get: ht = c fx

ft = c hx (134)

ut = f

In vector notation this can be written as:

~Ut + Q ~Ux = 0 (135)

where
Q = −

(
0 c

c 0

)
and ~U =

(
h

f

)
(136)
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1D form of the wave equation ii

Lax-Wendroff Scheme application

We can use the following system of evolution equations

hn+1
j = hn

j +
R

2

[(
f nj+1 − f nj−1

)
+ R

(
hn
j+1 − 2hn

j + hn
j−1

)]
+O

(
∆x2

)
(137)

f n+1
j = f nj +

R

2

[(
hn
j+1 − hn

j−1

)
+ R

(
f nj+1 − 2f nj + f nj−1

)]
+O

(
∆x2

)
(138)

and the ODE for u:

un+1
j = un

j +
∆t

2

(
f n+1
j + f nj

)
+O

(
∆x2

)
(139)

This is a stable scheme and can be easily extended to systems of wave

equations.
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2D Hyperbolic Equations i

Consider the PDE

ut + aux + buy = 0 (140)

with the initial condition u(x , y , 0) = f (x , y). Then a will be the speed of

propagation in the x-direction and b will be the speed of propagation in the

y -direction.

An obvious, but unfortunately unconditionally unstable scheme is:

un+1
jk = un

jk − Rx

(
un
j+1k − un

j−1k

)
− Ry

(
un
jk+1 − un

jk−1

)
= (1− Rxδx0 − Ryδy0) un

jk (141)

where Rx = a∆t/∆x and Ry = b∆t/∆y .
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2D Hyperbolic Equations ii

A conditionally stable scheme is:

un+1
jk = (1− Rxδx− − Ryδy−) un

jk (142)

STABILITY: If we take a 2-dimensional Fourier transform of eqn (142) we get:

ûn+1 =
[
1− Rx

(
1− e−iξ

)
− Ry

(
1− e−iη

)]
ûn (143)

So the symbol of the difference scheme (142) is given by

ρ(ξ, η) = 1− Rx

(
1− e−iξ

)
− Ry

(
1− e−iη

)
(144)

and

|ρ(ξ, η)|2 =
[
1− 2Rx sin2(ξ/2)− 2Ry sin2(η/2)

]2

+ [Rx sin ξ + Ry sin η]2 .
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2D Hyperbolic Equations iii

By differentiating |ρ|2 with respect to ξ and η and setting the derivatives equal

to zero, we find that there are potential maximums at (±π,±π) , (±π, 0) ,

(0,±π) and (0, 0). It is also easy to find that

|ρ(0, 0)| = 1 , |ρ(±π, 0)| = (1− 2Rx)2 , |ρ(0,±π)| = (1− 2Ry )2

and

|ρ(±π,±π)| = (1− 2Ry − 2Ry )2 .

• The condition (1− 2Rx)2 ≤ 1 requires that 0 ≤ Rx ≤ 1.

• The condition (1− 2Ry )2 ≤ 1 requires that 0 ≤ Ry ≤ 1.

• The condition (1− 2Rx − 2Ry )2 ≤ 1 requires that 0 ≤ Rx + Ry ≤ 1.

CONCLUSION: Therefore, we find that the difference scheme (142) is 1st

order accurate in space and time, and conditionally stable with condition

0 ≤ Rx + Ry ≤ 1, for Rx ≥ 0 and Ry ≥ 0.
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2D-Wave Equation: Lax-Friedrichs scheme i

The 2D Lax-Friedrichs scheme for the approximate solution of (140) is:

un+1
jk =

1

4

(
un
j+1k + un

j−1k + un
jk+1 + un

jk−1

)
− Rx

2
δx0u

n
jk −

Ry

2
δy0u

n
jk (145)

STABILITY: we compute the discrete Fourier transform to obtain the symbol

for the scheme

ρ(ξ, η) =
1

2
(cos ξ + cos η)− i (Rx sin ξ + Ry sin η) (146)

Then the expression |ρ(ξ, η)|2 can be written as

|ρ(ξ, η)|2 = 1−
(

sin2 ξ + sin2 η
) [

1/2−
(
Rx2 + R2

y

)]
− 1

4
(cos ξ − cos η)2 − (Rx sin η − Ry sin ξ)2 (147)
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2D-Wave Equation: Lax-Friedrichs scheme ii

Since the last two terms in the equation are negative, we have:

|ρ(ξ, η)|2 = 1−
(

sin2 ξ + sin2 η
) [

1/2−
(
R2
x + R2

y

)]
(148)

If
[
1/2−

(
R2
x + R2

y

)]
≥ 0, then |ρ(ξ, η)| ≤ 1.

Hence if

R2
x + R2

y ≤
1

2
(149)

the difference scheme is stable.

NOTE: The stability condition (149) is very restrictive. It is not obvious that

we can always find a scheme with stability condition the same as the CFL

condition, but at least what we should try to do.
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2D-Wave Equation: ADI Schemes

ut = Au = −aux − buy with u(x , y , 0) = f (x , y) (150)

We begin by considering a locally 1D scheme for solving the above PDE(
1 +

Rx

2
δx0

)
u
n+1/2
jk = un

jk (151)(
1 +

Ry

2
δy0

)
un+1
jk = u

n+1/2
jk (152)

STABILITY: The symbol is:

ρ(ξ, η) =
1

(1 + iRx sin ξ) (1 + iRy sin η)
(153)

Then since

|ρ(ξ, η)|2 =
1(

1 + R2
x sin2 ξ

) (
1 + R2

y sin2 η
) (154)

it is clear the 0 ≤ |ρ(ξ, η) ≤ 1 and the difference scheme (151)-(152) is

unconditionally stable and O(∆t) + O(∆x2) + O(∆y 2) order accurate.
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2D-Wave Equation: ADI Schemes - Beam-Warming i

An ADI scheme for the Crank-Nicolson can be written as HOW??:(
1 +

Rx

4
δx0

)(
1 +

Ry

4
δy0

)
un+1
jk =

(
1− Rx

4
δx0

)(
1− Ry

4
δy0

)
un
jk (155)

The above scheme is referred to as the Beam-Warming scheme and is most

often written as(
1 +

Rx

4
δx0

)
u∗jk =

(
1− Rx

4
δx0

)(
1− Ry

4
δy0

)
un
jk (156)(

1 +
Ry

4
δy0

)
un+1
jk = u∗jk (157)

The symbol of the Beam-Warming scheme is

ρ(ξ, η) =
(1− i Rx

2
sin ξ)(1− i

Ry

2
sin η)

(1 + i Rx
2

sin ξ)(1 + i
Ry

2
sin η)

(158)

Thus we see that (how?) |ρ(ξ, η)|2 = 1 for all ξ, η ∈ [−π, π] and the scheme is

unconditionally stable and 2nd order.
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2D-scheme for the wave equation

Let’s consider the equation

ut = Au = (A1 + A2) u (159)

e.g. Au = −aux − buy with A1u = −aux & A2u = −buy
By using 1st order approximation to the time derivative we get

un+1 = un + ∆t A un + O(∆t2)

= (1 + ∆t A1 + ∆t A2 )un + O(∆t2)

= (1 + ∆t A1 )(1 + ∆t A2 )un −∆t2 A1 A2 u
n + O(∆t2) (160)

by dropping terms of order ∆t2 we get the approximate scheme

un+1 = (1 + ∆t A1 )(1 + ∆t A2 )un (161)

or

un+1/2 = (1 + ∆t A2 )un (162)

un+1 = (1 + ∆t A1 )un+1/2 (163)
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2D-scheme for the wave equation (∼ Lax-Wendroff)

Let’s assume the equation

ut = Au = −aux − buy (164)

with with A1u = −aux & A2u = −buy .

If we approximate the A1 and A2 by the 1-D Lax-Wendorff scheme, we get

u
n+1/2
jk = un

jk −
Ry

2
δy0u

n
jk +

R2
y

2
δ2
yu

n
jk (165)

un+1 = u
n+1/2
jk − Rx

2
δx0u

n+1/2
jk +

R2
x

2
δ2
xu

n+1/2
jk (166)

It is obvious that the above scheme is 2nd order in time.

By following the standard analysis we can prove:

• it is conditionally stable if max{|Rx |, |Ry |} ≤ 1.

• and of order O(∆t2) + O(∆x2) + O(∆y 2).
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2D Parabolic PDEs

Let’s consider the 2-D parabolic equation:

ut = ν (uxx + uyy ) + F (x , y , t) (167)

with u(x , y , t) = g(x , y , t) on ∂R and u(x , y , 0) = f (x , y).

The scheme will be

un+1
jk − un

jk

∆t
=

ν

∆x2
δ2
x u

n
jk +

ν

∆y 2
δ2
y u

n
jk + F n

jk (168)

which can be written in the explicit form (rx = ν/∆x2 and ry = ν/∆y 2) :

un+1
jk = un

jk +
(
rxδ

2
x + ryδ

2
y

)
un
jk + ∆tF n

jk (169)
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2D Parabolic PDEs : Stability

The symbol for equation (169) is

ρ = 1 + 2rx (cos ξ − 1) + 2ry (cos η − 1)

= 1− 4rx sin2(ξ/2)− 4ry sin2(η/2) (170)

It is easy to see that :

The maximum of ρ = 1 occurs at (ξ, η) = (0, 0)

The minimum of ρ = 1− 4rx − 4ry occurs at (ξ, η) = (π, π)

The requirement that ρ ≥ −1 yields the stability condition

rx + ry ≤
1

2
(171)

Hence the difference scheme (169) is conditional stable.

For ∆x = ∆y the condition for stability becomes r ≤ 1/4.
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2D Parabolic PDEs : Implicit scheme

The following scheme is the 2-D Crank-Nicolson implicit scheme for

approximating the PDE (167)(
1 − rx

2
δ2
x −

ry
2
δ2
y

)
un+1
jk =

(
1 +

rx
2
δ2
x +

ry
2
δ2
y

)
unjk

+
∆t

2

(
F n
jk + F n+1

jk

)
(172)

STABILITY: The symbol for the above difference scheme will be

ρ(ξ, η) =
1 − 2rx sin2(ξ/2) − 2ry sin2(η/2)

1 + 2rx sin2(ξ/2) + 2ry sin2(η/2)
(173)

Since for any r ≥ 0 ∣∣∣∣1 − r

1 + r

∣∣∣∣ ≤ 1

the difference scheme (172) is unconditionally stable.

76



Irregular Regions & Non-Rectangular Grids i

When the uniform grid does not fit to

the boundaries, we must treat

differently the points near the boundary.

Consider 5 points with non-uniform

spacing, with distances θ1h, θ2h, θ3h,

θ4h from the central point.

Then the derivatives can be approximated as(
∂u

∂x

)
1−0

=
u0 − u1

θ1h
(174)(

∂u

∂x

)
0−3

=
u3 − u0

θ3h
(175)

77



Irregular Regions & Non-Rectangular Grids ii

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

(u3 − u0)/θ3h − (u0 − u1)/θ1h

(θ1 + θ3)h/2

=
2

h2

[
u1 − u0

θ1(θ1 + θ3)
+

u3 − u0

θ3(θ2 + θ3)

]
+ O(h) (176)

∂2u

∂y 2
=

2

h2

[
u2 − u0

θ2(θ2 + θ4)
+

u4 − u0

θ4(θ2 + θ4)

]
+ O(h) (177)

Combining we get:

∇2u =
∂2u

∂x2
+
∂2u

∂y 2

=
2

h3

[
u1

θ1(θ1 + θ3)
+

u2

θ2(θ2 + θ4)
+

u3

θ3(θ1 + θ3)
+

u4

θ4(θ2 + θ4)

]
− 2

h3

(
1

θ1θ3
+

1

θ2θ4

)
u0 (178)
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Irregular Regions & Non-Rectangular Grids iii

EXAMPLE
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Irregular Regions & Non-Rectangular Grids iv

For circular regions, one may derive a finite-difference approximation to the

Laplacian in polar coordinates.

∇2u =
∂2u

∂r 2
+

1

r

∂u

∂r
+

1

r 2

∂2u

∂θ2

=
u3 − 2u0 + u1

(∆r)2
+

1

r0

u3 − u1

2∆r
+

1

r 2
0

u2 − 2u0 + u4

(∆θ)2
(179)
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Irregular Regions & Non-Rectangular Grids v

For circular regions, one may derive a finite-difference approximation to the

Laplacian in polar coordinates.

∇2u =
1

(∆r)2

[(
1− ∆r

2r0

)
u1 +

(
1 +

∆r

2r0

)
u3 +

(
∆r

r0∆θ

)2

(u2 + u4)

]

− 2

(∆r)2

(
1 +

(
∆r

r0∆θ

)2
)
u0 = 0 (180)
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Spherical Grids
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Parabolic Eqns in Cylindrical & Spherical Polar Coordinates i

The heat conduction equation in cylindrical coordinates (r , θ, z) is:

∂u

∂t
=
∂2u

∂r 2
+

1

r

∂u

∂r
+

1

r 2

∂2u

∂θ2
+
∂2u

∂z2
(181)

For simplicity we may assume that u is independent of z i.e.

∂u

∂t
= ∇2u ≡ ∂2u

∂r 2
+

1

r

∂u

∂r
+

1

r 2

∂2u

∂θ2
(182)

At r = 0 the right hand side appears to contain singularities, which can be

approximated as follows:
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Parabolic Eqns in Cylindrical & Spherical Polar Coordinates ii

Construct a circle of radius δr as in the figure then we name the value of the

origin by u0, and we write:

∇2u =
4(um − u0)

(δr)2
+ O(δr 2) for um =

u1 + u2 + u3 + u4

4
(183)

We may rotate the axis by δθ and get another prediction for um, the best mean

value available is given by adding all values and dividing by their number.

When a 2D problem in cylindrical coordinates possesses circular symmetry
∂2u
∂θ2 = 0 we get the simpler form

∂u

∂t
=
∂2u

∂r 2
+

1

r

∂u

∂r
. (184)
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Parabolic Equations in Spherical Polar Coordinates i

A similar problem arises at r = 0 with spherical polar coordinates in which the

Laplacian operator assumes the form:

∇2u =
∂2u

∂r 2
+

2

r

∂u

∂r
+

cot θ

r

∂u

∂θ
+

1

r 2

∂2u

∂θ2
+

1

r 2 sin2 θ

∂2u

∂φ2
(185)

By the same argument the previous equation can be replaced at r = 0 by

∇2u =
∂2u

∂x2
+
∂2u

∂y 2
+
∂u2

∂z2
(186)

which can be approximated by

∇2u =
6(um − u0)

(δr)2
+ O(δr 2) (187)

where um is the mean of u over the sphere of radius δr .
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Parabolic Equations in Spherical Polar Coordinates ii

If the problem is symmetrical with respect to the origin, that is independent of

θ and φ we get the simpler form

∂u

∂t
=
∂2u

∂r 2
+

2

r

∂u

∂r
. (188)

with ∂u
∂r

= 0 at r = 0

In the case of symmetrical heat flow problems for hallow cylinders and spheres

that exclude r = 0 simpler equations than the above may be employed by

suitable changes of variable.

• The change of variable R = logr r transforms the cylindrical equation

∂u

∂t
=
∂2u

∂r 2
+

1

r

∂u

∂r
. (189)

to

e2r ∂u

∂t
=
∂2u

∂R2
. (190)
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Parabolic Equations in Spherical Polar Coordinates iii

• The change of dependent variable given by u = w/r transforms the

spherical equation

∂u

∂t
=
∂2u

∂r 2
+

2

r

∂u

∂r
. (191)

to
∂w

∂t
=
∂2w

∂r 2
. (192)
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