Migration and growth of giant planets in self-gravitating disks with varied thermodynamics

Tübingen, March 5 2009

Laure Fouchet, Physikalisches Institut, Bern,

(formerly ETH Zurich)

Lucio Mayer, ETH/University Zurich

Planetary formation

- 2 scenarii:
 - Core accretion
 - Gravitational instability
- In both cases, impossible to form planets very close to the star (few AU)
- Observations:
 - Hot Jupiters (at a few fractions of AU)
 - Potential signatures of planets at large distances (100 AU) that create structures in the debris disks.
- => Planets migrate

Migration of a Jovian planet (standard hypotheses)

- $M_P = 1 M_J$, $a_{PO} = 5 AU$, circular orbit
- 2D, locally isothermal disk
- Simulations: fixed orbit, migration rate computed thanks to the torques exerted by the disk.
- Result: Type II Migration not as fast as type I but still shorter timescale than disk lifetime.
- Question: How comes we observe planets, then ?????

Our Simulations Parameters

- 3D SPH Code (GASOLINE, Wadsley et al. 2004), Standard Monaghan (most commonly used and most stable) α_{SPH}=1, β_{SPH} = 2, mean alpha_SS
 =0.01 (see MRI predictions and observations)
- 1MJ Planet initially at 5 AU
- 2 different sets of GLOBAL DISK sims:
 - 0.004 Msol Disk between 2 and 20 AU (MMSN)
 - 0.01 Msol Disk between 1 and 25 AU
- initially $\Sigma = \Sigma_0 r^{-3/2}$, $T = T_0 r^{-1/2}$; 10⁵ to 10⁶ gas particles
- 2 collisionless particles : Planet and star. Fully dynamical: Move freely under the action of the disk and of each other.
- Planet already formed at the beginning but no gap initially.
- No "sinks" => mass accumulates in the Hill radius

Our Simulations Originality

- 3D
- Different equations of state
 - locally isothermal (extreme: very efficient cooling)
 - adiabatic with shock heating (extreme: no radiative cooling)
 - radiative transfer in the diffusion approximation with flux limiter (more realistic)
- Planet moves really, Star also not fixed.
- Self-gravity of the disk included

Our Simulations Limits

- SPH not ideal to capture gap formation
 - explicit numerical viscosity (to prevent particles interpenetration), but we use the Balsara switch to decrease the viscosity in shear flows.
 - poor resolution in low density regions because few particles
- → Correct shape but shallower gap as compared to grid code simulations (De Val-Borro et al. 2006)
- Same bias for different equations of state

Our Simulations Why Tree-SPH then????

- Tree-SPH is known to properly handle self-gravity thanks to the accuracy of the tree-based gravity solver (GASOLINE: up to hexadecapole term in the multipole expansion).
- SPH has no problems with advection and is galilean invariant (see Springel 2009).
- Lagrangian nature of SPH => suited to global simulations. No issues with preferential geometry, no need for specific boundary conditions.

Results Comparison transfer/isothermal (density)

Deeper gap in the isothermal case

Results Comparison transfer/isothermal (density)

 Average scaleheight larger in the case with transfer. (Interplay between cooling and heating timescales)

Surface density

- Viscous disk => Gap shallower than in the inviscid case.
- => Coupling between planet and disk stronger than in inviscid calculation for Jupiter mass planets.

Results Surface density (after ~ 20 orbits)

 Gap deeper in the isothermal case than in the transfer one. Inexisting in the adiabatic case.

Results

Comparison transfer/isothermal (temperature)

Transfer, 17.5 orbits

Isothermal, 20 orbits

• Cs and spiral arm opening

Results Migration rates

- Isothermal migration : timescale: 3 10⁴ yrs compared to 8 10⁴ yrs for non SG inviscid with fixed planet (Papaloizou et al. 2007, PPV)
- Adiabatic : migration strongly slown down
- Radiative Transfer : sligthly slower 30% effect

Results Migration rates

- In the transfer and adiabatic cases
 - gas heated by shocks
 - gas scaleheight increases at the location of the planet → more difficult to open a gap
 - adiabatic case, surface density drop →slow down of migration
 - Entropy related torque (Paardekooper & Mellema 2008)
 - Resolution effects : at low resolution, the shock heating is amplified because it is "spread" over larger distances. Important in adiabatic case (extreme), less important for transfer or isothermal.

Results Mass feeding Maps

Results Mass feeding Maps

Mass stops at the scale comparable to the gravitational softening of the planet

Results Accretion on the planet : softening

Large softening : 1 R

Small softening : 0.2 R

• Importance of resolution. Formation of a circumplanetary disk.

Results

Accretion on the planet : equation of state

 No disk but a buble in the adiabatic case even with the small softening

Results

Accretion on the planet : equation of state

Isothermal

nill

Adiabatic

- Isothermal : keplerian velocity field
- Adiabatic : subkeplerian velocity field

Perspectives Formation of planetary satellites

- Next step : particle splitting at the location of the planet, resolution eq 10⁷ particles to study accretion
- According to Klahr Kley (2006)
 - 3D, AMR, radiative transfer, low resolution simulations.
 - No circumplanetary disk but rather spherical envelope.
 - Strongly sub-keplerian velocity field
 rain down of solid particles at the surface of the planet.
 - \rightarrow Impossible to form satellites (at this moment).

Conclusions

- Planetary migration very well studied in a defined frame: 2D, locally isothermal, inviscid, fixed mass of the planet, fixed orbit.
- Lots of variations when one plays with these parameters.
- BUT, the overall migration rate is within a factor 2 to 4 of "standard" studies.
- The "problem" of the too fast migration of protoplanetary cores is certainly only theoretical.