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Abstract. We study the dynamical evolution of the gravitational-wave driven instability of
the f -mode in rapidly rotating relativistic stars with a polytropic equation of state. We use
linear perturbation theory to describe the evolution of the mode amplitude and follow the
trajectory of a newborn neutron star through its instability window. An unstable f -mode with
a saturation energy of about 10−6M�c

2 may generate a gravitational-wave signal which can be
detected by the Einstein Telescope detector from the Virgo cluster. The effects of the magnetic
field on the evolution and the detectability of the gravitational radiation are relevant when its
strength is higher than 1012 G, while an unstable r-mode becomes dominant it reaches the
maximum saturation value allowed by non-linear mode couplings. From the thermal evolution
we find also that the heat generated by shear viscosity during the saturation phase completely
balances the neutrinos’ cooling and prevents the star from entering the regime of mutual friction.
The evolution time of the instability is therefore longer and the star loses significantly larger
amounts of angular momentum via gravitational waves.

1. Introduction
Rapidly rotating neutron stars born in a core collapse may develop non-axisymmetric instabilities
and radiate a significant amount of gravitational waves [1]. A dissipative process, as
gravitational radiation, may actually drive unstable non-axisymmetric modes via the well-known
Chandrasekhar-Friedman-Schutz (CFS) mechanism [2, 3, 4]. This instability occurs when a mode
which is counter-rotating with respect to the star is seen co-rotating by an inertial observer. The
angular momentum radiated by gravitational waves induces an increasingly negative angular
momentum of the mode which thus becomes unstable and grows up to a finite amplitude where
it is saturated by some dissipative processes. In realistic neutron stars the f -mode instability
may be limited by bulk and shear viscosity, non-linear interaction with other modes, superfluid
effects, etc. The parameter space of the instability is therefore reduced with respect to an
inviscid system and is typically described by an instability window in a temperature/star’s
rotation plane.

The gravitational wave signal generated during the instability can be potentially observed by
the current and next generation of Earth based laser interferometers, and the identification of
the oscillation modes from the spectrum will help us to unveil the properties of the dense matter
at super-nuclear densities and clarify the neutron star physics by using Astereoseismology [5, 6].

In this contribution we outline our work on the evolution of the gravitational-wave driven
f -mode instability [7], in which we use perturbation theory to determine a system of ordinary



differential equations to describe the mode’s amplitude, the star’s rotation and the thermal
evolution. In this formalism we incorporate the effects of viscosity and magnetic field, and the
impact of an unstable r-mode on the f-mode instability.

2. Evolution of the f-mode instability
In a realistic star, an oscillation mode approximately evolves as eiωt−t/τ , where ω is the mode’s
frequency and τ the damping/growth timescale. A way to determine τ is to calculate the
variation in time of the mode’s energy given in the rotating frame E by [8]

dE

dt
= −2E

τ
, (1)

where the global timescale τ of equation (1) results from the individual dissipative mechanisms
that act on the mode. For stars in which only gravitational waves, shear and bulk viscosity
dissipate energy, we have [8]:
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where τgw is the gravitational radiation time scale, while τs and τb are, respectively, the damping
time due to shear and bulk viscosity. These quantities can be determined by using appropriate
volume integrals where we need to insert the f -mode frequency and eigenfunctions [9, 10]. We
determine the mode’s properties by studying the time evolution of the linearised equations of
rapidly rotating and relativistic stellar models. In particular, we consider uniformly rotating
stars with a polytropic equations of state (EoS).

To study the evolution of the f -mode instability we can derive a system of equations for
the mode amplitude and stellar rotation by using equation (1) and the evolution of the angular
momentum:

dJ

dt
=
dJgw
dt

+
dJmag
dt

, (3)

where J = Js+Jc is the total angular momentum, which consists of the star’s angular momentum
Js and the canonical angular momentum of the mode Jc. The latter one can be related to the
mode energy by the well known equation Jc = −mE/ω [11], where m is the azimuthal number
and ω the mode frequency measured in the rotating frame. The dissipative terms in equation (3)
are the gravitational radiation torque,

dJgw
dt

= −2Jc
τgw

(4)

and the magnetic torque dJmag/dt. This quantity for a standard orthogonal rotator model in
vacuum with a dipolar magnetic field is given by [12]

dJmag
dt

= −R
6

6c3
B2
pΩ3 , (5)

where Ω and R are, respectively, the star’s angular velocity and radius, and Bp is the magnetic
field at the magnetic pole. This formula provides a magnetic spin-down comparable to that of
a standard pulsar model with magnetosphere [12, 13].

The thermal evolution of a neutron star can be studied with a global energy balance between
the relevant radiative and viscous processes [12]:

Cv
dT

dt
= −Lν +Hs , (6)



where Cv is the total heat capacity at constant volume, Lν is the neutrino’s luminosity produced
by the modified Urca processes that operate in the background star, see [7], and Hs is the heating
rate generated by shear viscosity:

Hs =
2E

τs
. (7)

Now, we may regard the mode energy as a function of the mode amplitude α and the stellar
rotation rate Ω, i.e. we can write it as E = αẼ (Ω). From equations (1) and (3) we can therefore
derive a system of ordinary differential equations:

dα

dt
= − 2α

τgw
− 2α

τv
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D

α
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, (8)
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2F

D

(
α

τv
− 1

τmag

)
, (9)

where the total viscous damping time is defined as 1/τv = 1/τs + 1/τb, τmag is the timescale due
to the magnetic torque, while D,F, P and Q are functions of the background stars (see [7] for
their definitions).

In the non-linear study of the secular bar-mode instability [14, 15, 16, 17], it is reasonable to
discern two dynamical phases of the f -mode instability, namely the mode’s exponential growth
and its non-linear saturation [9]. As the star cools down and enters the instability window,
the mode grows exponentially while the star slowly spins down on viscous timescales. This
behaviour is well described by equations (8)-(9). This initial growth phase ends either when
non-linear dynamics or dissipative processes saturate the mode amplitude at a finite value. After
this point, the mode amplitude is nearly constant while the star loses angular momentum via
gravitational radiation [16, 17]. We can therefore approximate this evolution phase by assuming
that dα/dt = 0, which allows us to recast equations (8)-(9) into a single relation,

dΩ

dt
= − 2F

1 + αQ

(
α

τgw
+

1

τmag

)
. (10)

The star is then spun down by gravitational radiation and magnetic torque. Eventually, the star
will leave the instability window and the f -mode will be damped by gravitational radiation.

We normalise the mode amplitude as E = αErot, where Erot is the stellar rotational energy.
For our polytropic models an α = 1 corresponds to E ∼ 10−2M�c

2. Note that with this
definition the fluid variables and the gravitational-wave strain scale as α1/2.

3. Stellar Models
We model the compact objects as relativistic neutron stars which obey a polytropic EoS,

p = Kρ1+1/N (11)

where p is the fluid pressure, K is the polytropic constant and N is the polytropic index. The
rest-mass density ρ is related to the fluid energy density ε via the relation ε = ρ+Np.

We consider two sequences of uniformly rotating stars up to the mass shedding limit ΩK.
The first model represents a “standard” neutron star with gravitational mass M = 1.4M� and
polytropic index N = 1. The non-rotating member of this sequence has a circumferential radius
of R = 14.15 km, while the maximum rotation rate is νK = ΩK/2π = 673.1 Hz. The second
model is a polytrope with N = 2/3, and baryonic mass Mb = 1.6M� and a Kepler limit of
νK = ΩK/2π = 1783 Hz. This model is used to widen the parameter space of the instability, as
it describes a supramassive star, i.e. an object that does not have a stable configuration in the
static limit [18, 19, 20].
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Figure 1. Evolution of the l = m = 4 f -mode instability for a relativistic polytrope with
N = 2/3, baryonic mass of Mb = 1.6M� and Bp = 1011 G. The star enters the instability
window at different spins (see right panel) and correspondingly the left panel depicts the time-
evolution of the stellar rotation rate (top left panel) and mode amplitude (bottom left panel),
where the initial amplitude α = 10−6 saturates at αsat = 10−4. The shaded region in the right
panel represents the temperature range where the neutrons and protons of the core are expected
to be in a superfluid/superconducting state in accordance with recent models for the observed
cooling of Cassiopeia A [21, 22].

4. Results
We study now the dynamical evolution of the f -mode and consider how the magnetic field and
a simultaneous presence of an unstable r-mode affect the instability.

The ideal conditions for the f -mode instability to work are high temperatures and rotation
rates. At birth, the temperature of a neutron star is around T ' 1011 K and drops down rapidly
in the following few days. We therefore expect that as a rapidly rotating star cools down, it
enters the f -mode instability window from the high temperature side (see figure 1). We study
the evolution of the star from the onset of the gravitational-wave driven instability for different
initial rotation rates, and consider an initial mode amplitude of α = 10−6. This corresponds to
an energy of E ∼ 10−8M�c

2 which is a typical value for the total energy loss in gravitational
waves due to quadrupole deformations shortly after a gravitational core collapse [23, 24].

In [7], we study the l = m = 3 and 4 f -mode for the N = 1 and N = 2/3 models. Here
we report only the most promising cases. We first consider the evolution of the l = m = 4
f -mode instability in a low magnetised star (Bp ≤ 1011 G), and show in figure 1 the star’s spin,
the mode’s amplitude and the star’s trajectory through the instability window for the N = 2/3
model. At the mass shedding limit the gravitational growth time is only τgw ' 250 s in contrast
to the τgw ' 104 s for the N = 1 model, and the total evolution lasts for about 40 years. The
exponential growth of the f -mode takes about 5 minutes (14 days) for a star with an initial
Ω = ΩK (Ω = 0.93 ΩK). After the mode saturates, figure 1 (right panel) shows that the star
spins down at nearly constant temperature (T ' 109 K) as a result of the heat generated by
shear viscosity which completely balances the neutrino cooling. This effect prevents the star from
entering the superfluid transition zone and increases the duration of the instability. In fact, for
T ≤ Tcn the neutrons of the core become superfluid and mutual friction damps the f -mode very
efficiently on short timescales [25]. For the superfluid critical temperature we chose a value of
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Figure 2. The impact
of the magnetic torque on
the evolution of the l =
m = 4 f -mode instability
for the N = 2/3 model.
The two top panels display
the mode amplitude (left
panel) and the star’s evo-
lution through the insta-
bility region (right panel)
for Bp = 1012G. The same
quantities are depicted in
the two lower panels for
Bp = 1013G.

Tcn ' 5×108 K which has recently been determined from the cooling curves of Cassiopeia [21, 22].
Furthermore, figure 1 shows that when a star becomes unstable at lower rotation rates near the
minimum of the instability window, e.g. Ω ' 0.89 ΩK, the mode amplitude remains small and
the shear viscosity heating does not balance the neutron star’s cooling.

A strong magnetic field can accelerate the star’s spin-down and limit the growth of the f -
mode. In figure 2, we show the effects on the l = m = 4 f -mode for the N = 2/3 model and
two dipolar magnetic field configurations with, respectively, Bp = 1012G and Bp = 1013G. For
a magnetic field of Bp = 1012 G the total duration of the instability is shorter than a factor
of about 50 with respect to the Bp = 1011G model. In fact, the evolution lasts about 1 yr (10
yr) for the N = 2/3 (N = 1) model. In slower rotating models, the magnetic torque clearly
dominates the evolution even during the initial phase of the instability and limits considerably
the growth of the mode amplitude. This behaviour is for instance evident for a N = 2/3 model
with an initial rotation rate of Ω = 0.89 ΩK. The magnetic torque dominates completely the
evolution when Bp = 1013 G. The unstable star is quickly spun down and the mode amplitude
is strongly limited even in the more massive model.

In rapidly rotating neutron stars several modes can be driven unstable by gravitational
radiation at the same time. The most important ones are definitely the f - and r-modes, as they
have a comparatively short growth time and therefore can generate a significant gravitational
wave signal. A relevant difference between these two classes of modes is that the f -mode only
gets unstable in very rapidly rotating stars while the r-mode is CFS unstable at any rotation
rate. In addition, the growth time is typically shorter for the r-mode which consequently has
a larger instability window. It is then reasonable to think that the r-mode should dominate
the evolution of the gravitational wave driven instability. However before drawing any secure
conclusion, it is necessary to know the maximum amplitude that each mode can reach during
the instability. Non-linear perturbation calculations show that the r-mode may transfer energy
to other inertial modes through non-linear mode coupling and has a small saturation amplitude.

As the star cools down, it is expected that the r-mode gets unstable before the f -mode as
its instability window extends towards higher temperatures. The r-mode then quickly reaches
its non-liner saturation value αsatr and spins down the star. However if the r-mode growth is
limited by non-linear mode coupling, the star evolves towards the critical curve of the f -mode
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Figure 3. Characteristic strain generated by the f -mode instability for a polytrope with
Bp = 1011G. The source is located at 20 Mpc and the saturation amplitude of the f -mode
is set to αsat = 10−4. Left panel: The gravitational-wave signal emitted by the l = m = 4
f -mode for the two stellar models with N = 1 and N = 2/3. The number near the vertical lines
denotes the initial rotation rate Ω/ΩK. Right panel: The signal emitted the by l = m = 3 f -
mode for the more massive model with N = 2/3. The sensitivity curves of Advanced LIGO and
the Einstein Telescope (ET) are shown in both panels. The gravitational-wave signal generated
during the f -mode instability may be detected by ET for the most part of the instability window
of the N = 2/3 model.

and eventually also this mode is driven unstable by gravitational radiation.
We have studied several simulations with different relative saturation amplitude between

the l = m = 4 f - and l = m = 2 r-modes, and found that if the r-mode reaches the
maximum saturation amplitude predicted by the non-linear coupling calculations, it dominate
the evolution of the instability [7]. However, it is therefore crucial to know more accurately the
relative saturation amplitude between these two modes, in particular for the f -mode. This is
an interesting aspect that must be clarified in a future work.

5. Gravitational Waves
The gravitational-wave signal generated during the instability of the f -mode may be potentially
observed by the current and next generation of Earth-based laser interferometers. To evaluate
the detection we determine the characteristic strain of the gravitational waves, which is a
quantity that takes into account also the statistical amplification of the signal due to the number
of oscillations accumulated in a given frequency bandwidth. It is defined by

hlmc ≡ 〈
∣∣∣hlm−2Y

lm
∣∣∣〉√Ncyc (12)

where hlm is the strain emitted by the source, −2Y
lm is a spin-weighted spherical harmonic

and 〈. . . 〉 denotes an averaging over the angles (θ, φ). The number of oscillation cycles can be
expressed as Ncyc = ν τev, which is written in terms of the mode frequency ν = (ω −mΩ)/2π
and the time spent near a given frequency τev. Considering the signal integration time allowed
by the detector technology, we assume that a detector may integrate the signal at most for 1
year, and consequently calculate hlmc for τev ≤ 1yr. This means that in Ncyc we use the evolution
time of our simulations whenever τev < 1yr, otherwise we set τev = 1yr.
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Figure 4. The characteristic strain generated by the f -mode instability for a polytropic star
with Bp = 1012 G. The quantities and notation used in this figure are the same as in figure 3.

For the two polytropic models of this work, we calculate hlmc for several instability
evolutionary paths with different initial stellar spin. We consider first a star with a weak
magnetic fields, Bp ≤ 1011 G, and focus on the l = m = 3 and 4 f -mode. For a saturation
amplitude of αsat = 10−4, figure 3 shows that the gravitational-wave signal can be detected by
ET for the most part of the instability evolution for a N = 2/3 star located in the Virgo Cluster
at a distance of 20 Mpc. For the standard N = 1 model an unstable l = m = 4 f -mode may
generate a detectable signal only if the star rotates near the Kepler limit Ω ≥ 0.98 ΩK. From
figure 3 we see that the gravitational-wave signal is initially monochromatic during the growth
phase of the mode and evolves successively to lower frequencies as the star spins down.

A higher magnetic field may affect significantly the characteristic strain of the f -mode, as the
number of accumulated cycles Ncyc decreases. The results for the Bp = 1012 G case are shown
in figure 4 for both the N = 1 and N = 2/3 models. Although the gravitational-wave signal
is slightly weaker than in the previous Bp = 1011 G case, it is still detectable by the Einstein
Telescope (ET).

6. Conclusions
We have studied the evolution of the f -mode instability of rapidly rotating relativistic stars
and have considered the effects of viscosity, magnetic fields and unstable r-modes. We have
modelled the star with polytropic equations of state to explore the instability parameter space.
The evolution of the star through the instability window may be accelerated by the presence
of strong magnetic fields and a simultaneous presence of an unstable r-mode. Our results show
that a magnetic field with Bp ≥ 1012 G affects the f -mode instability, and its influence is more
relevant in neutron star models with smaller compactness (M/R). For the r-mode we find that
it must reach the maximum value expected from non-linear mode coupling studies in order to
affect considerably the f -mode evolution. However, a definitive answer to this issue cannot be
given as the maximum f -mode amplitude is still unknown.

Another important result of our simulations is that the heat generated by shear viscosity
during the f -mode saturation phase prevents the star from entering the regime of mutual
friction. In fact, the shear viscosity re-heating balances the neutrino cooling and leads to a
nearly isothermal evolution. The star therefore leaves the instability window at lower rotation



rates, and even a moderate change in the superfluid transition temperature does not modify this
result.

Our results show also that the gravitational-wave signal generated during the f -mode
instability may be detected by ET if the source is located within the Virgo cluster and the
mode saturates at E ∼ 10−6M�c

2.
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