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Abstract. In this short review we present recent results on the dynamics of neutron stars and
their magnetic fields. We discuss the progress that has been done in understanding the rotational
instabilities with emphasis to the one due to the f -mode, the possibility of using gravitational
wave detection in constraining the parameters of neutron stars and revealing the equation of
state as well as the detectability of gravitational waves produced during the unstable phase of the
life of a neutron star. In addition we study the dynamics of extremely strong magnetic fields that
have been observed in a class of neutron stars (magnetars). Magnetic fields of that strength are
responsible for highly energetic phenomena (giant flares) and we demonstrate that the analysis of
the emitted electromagnetic radiation can lead in constraining the parameters of neutron stars.
Furthermore, we present our results from the study of such violent phenomena in association
with the emission of gravitational radiation
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1 INTRODUCTION

Neutron stars are among the most interesting astronomical objects since their under-
standing involves all branches of physics such as general relativity, quantum mechanics,
quantum chromodynamics, nuclear physics at supra nuclear densities, elasticity theory
and magnetohydrodymanics (MHD). The observations over the last three decades in
x-rays, gamma rays and radio have provided enormous sets of data that asterophysi-
cists and nuclear physicists are analyzing and modeling. The detection of gravitational
waves in the next 3-5 years will provide an alternative way in studying the universe
and obviously these highly relativistic objects. In a series of articles over the last five
years we made an effort in modeling the observations in the electromagnetic spectrum
in an attempt to understand the dynamics of the phenomena (giant flares) and the mag-
netic field instabilities involved [59, 98, 100, 58]. Our aim was also to use the data from
existing observations in the electromagnetic spectrum in order to constraint the param-
eters of the neutron stars [86, 94, 87, 80, 85, 27, 46, 28, 29] our ultimate plan is to provide
waveforms and empirical formulae in order to help in the detection of the events and
the analysis of the forthcoming data by the gravitational wave detectors via our studies
of the instabilities induced by rotation, the expected gravitational wave spectra and the
amplitudes and forms of their signal [72, 42, 51, 43, 55, 99, 52, 44, 41, 70].

2 Oscillations and Instabilities of Neutron Stars

During the birth of a proto-neutron star or the merging of two older compact stars,
violent non-radial oscillations may be excited, resulting in the emission of significant
amounts of gravitational radiation [8]. The detection of gravitational waves from os-
cillating neutron stars will allow the study of their interior, in the same way as helio-
seismology provides information about the interior of the Sun. It is expected that the
identification of specific pulsation frequencies in the observational data will reveal the
true properties of matter at densities that cannot be probed today by any other exper-
iment. Thus, there is significant interest in this problem also from the nuclear-physics
community since the discovery of the true properties of matter at extremely high ener-
gies will allow significant advances in theoretical physics and possibly new discoveries
and applications will follow. The recent works on gravitational wave asteroseismol-
ogy [42, 43, 55, 44] , provided new empirical relationships for mode-frequencies and
damping times of the quadrupolar f -mode for rapidly rotating neutron stars, extending
earlier studies for the non-rotating case [10, 11, 53].

As it has been originally suggested by Chandrasekhar [23] and verified by Fried-
man & Schutz [38] certain non-axisymmetric pulsation modes may grow exponentially
in rotating stars; this is due to the emission of gravitational waves and is called CFS in-
stability. Exploring this type of instability in rapidly rotating stars turned out to be very
difficult. In linear perturbation theory for example, rapid rotation was never treated
properly until recently; almost all formulations of the relevant perturbation equations
were prone to numerical instabilities either at the surface or along the rotation axis of the
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neutron star. Thus, it was not surpising that the first results for the oscillations of rapidly
rotating stars were derived using evolutions of the non-linear equations [89, 34, 50]. Still
all these studies were purely axisymmetric and thus the effects of rotation on the spec-
tra was present only for very high rotation rates. Rotational instabilities are driven by
non-axisymmetric modes and thus these first 2D calculations where not of much use
for their study. The only non-linear 3D study of the non-axisymmetric oscillations is by
Zink et. al. [99].

2.1 Gravitational Wave Asteroseismology

The original suggestions about gravitational wave asteroseismology has been sup-
ported by many complementary works which studied specific features of oscillation
spectra for various compact objects, such as typical neutron stars [15, 88, 16, 90, 91, 26,
96, 60], but also for strange [81, 82, 17] or superfluid stars [6, 7]. More recently, it has
also been suggested that one may use asteroseismology to find the imprints of scalar or
even vector components of gravity [83, 84, 79, 78] as well as the possibility for pressure
anisotropies [35]. It should be noted here that all previous studies have been performed
for non-rotating relativistic stars. The treatment of rotation was always a problem in
general relativity and thus the majority of the studies for the oscillation spectra of fast-
rotating compact stars was done mainly in Newtonian theory which gives only qualita-
tive answers.

Figure 1: Co- and counterrotating branches of the different polytropic EoS. Panel (i):
Mode frequencies in the inertial frame; the solid line of each EoS depicts the more com-
pact sequence while the dashed line traces the less compact configurations. Panel (ii):
Normalized mode frequencies and fitting curve in the comoving frame; the larger cir-
cles represent again the more compact models while the small circles stand for the less
compact ones.
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In the last four years there was significant progress in the study of non-axisymmetric
perturbations of rapidly rotating neutron stars. For the first time it was possible to calcu-
late in GR the oscillation spectra of fast rotating relativistic stars by using the linearized
form of the fluid equations in the so-called Cowling approximation. Thus the effect of
fast rotation on f - and r-modes has been demonstrated while the critical points for the
onset of the f -mode (CFS) instability have been derived [42]. In addition it has been
demonstrated that there is a way to derive empirical relations connecting the oscillation
frequencies with the rotation of the stars [44]. These studies has been recently extended
to g-modes [43] and to differentially rotating neutron stars [55]. For non-axisymmetric
oscillations, the frequencies of co- and counter-rotating modes split in the presence of
rotation and there is a critical rotation rate for which these frequencies vanish for an
inertial observer, see Figure 1.

Based on the data of our simulations, we proposed the following relationships [44]

σs
c

σ0
= 1.0− 0.27

(
Ω

ΩK

)
− 0.34

(
Ω

ΩK

)2
for the always stable m = −2 (1)

σu
c

σ0
= 1.0 + 0.47

(
Ω

ΩK

)
− 0.51

(
Ω

ΩK

)2
for the potentially unstable m = 2 (2)

where σ0 is the frequency in the nonrotating limit and ΩK represents the Kepler-limit.
Similar relations can be found for the damping/growth times of the two f-mode

branches. What is needed for the potentially unstable branch is a quantity that also
changes its sign when a mode becomes prone to the CFS-instability and which is a
monotonic function of the rotation rate. The f -mode frequency in the inertial frame
σi exactly conforms to these requirements. Since dE/dt ∼ σ6 and for any oscillation
E ∼ σ2, we can also make an estimation on how the damping times depend on the
mode frequency thus we expect 1

τ ∼ dE/dt
E ∼ σ4 .

Using least-square methods fit we finally yield [44], see also Figure
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where sgn(x) is the sign function. For the corotating branch, using a somehow different
fitting we get
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Apart for the above relations for the frequency and the damping additional, model-
independent relation for the frequency σ0 and the damping time τ0 of nonrotating con-
figurations is needed, this information can be found in [11, 53].

The above relations demonstrate how one can do gravitational wave asteroseismol-
ogy by using the frequencies and possibly the damping/growth times of the emitted
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Figure 2: Model-independent relations for the damping time. Larger circles represent
the more compact models while small circles stand for the less compact configurations
of each EoS. Panel (i): Damping times for the counterrotating branch, σu

i is the mode
frequency in the inertial frame. Panel (ii): Damping times for the corotating branch, σs

c
is the mode frequency in the comoving frame.

waves from oscillating and rapidly rotating relativistic stars. In a realistic situation
when an f -mode will be excited, it will be possible to detect the signal at least from
galactic sources if the mode is CFS-stable and at least from sources in the Virgo cluster
if it is unstable [56, 68, 77, 52]. This will be possible with the sensitivity of the advanced
Virgo and LIGO detectors [4] and probably even more feasible with the next generation
gravitational wave telescopes such as ET (Einstein Telescope) [73, 8].

2.2 Instabilities & Gravitational Waves

Among the several modes which can be driven unstable, the f - and r-modes are the
most important due to their relatively short growth timescale. The r-mode instability
has attracted more attention so far as it is CFS unstable at any rotation rate and may
grow in about few tens of seconds in rapidly rotating stars. There is in fact an extensive
literature which studied the r-mode instability for various stellar models and considered
it as a possible candidate for limiting the star’s rotation below the Kepler velocity (see
for instance [12, 41] and references therein).

To date the evolution of the f -mode instability has been studied only for the l =
m = 2 case with non-linear dynamical simulations in Newtonian gravity. These works
used both ellipsoidal configurations [33, 56] and compressible stellar models with uni-
form [68] and differential rotation [77]. In these non-linear simulations, the effects of vis-
cosity has been neglected and the bar mode instability is driven by a gravitational radia-
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tion reaction term which has been incorporated in the Newtonian dynamical equations.
In particular, the strength of this Post-Newtonian term has been artificially increased
to shorten the instability evolution and make feasible its analysis within the simula-
tion time. For typical neutron stars parameter these non-linear studies find that the
gravitational-wave signal emitted during the bar mode instability may be detected by
Advanced LIGO from a source located in the Virgo cluster. More importantly, while the
star spins down the mode’s frequency decreases toward the more sensitive frequency
band (100 Hz) of the gravitational-wave detectors.

Here we present some recent results on the f -mode instability window and the evo-
lution of this mode from its growth phase to saturation and its final damping, for more
details [41, 70]. Our approach is based on perturbative calculations of the growth time
and the frequency of the unstable mode as well as the damping due to bulk and shear
viscosity. For the actual evolution of the mode we follow the procedure developed for
the r-mode instability in [69, 9]. From the evolution equations for the mode energy, total
angular momentum and temperature one can derive a system of ordinary differential
equations to describe the mode’s amplitude, the star’s rotation and the thermal evolu-
tion. In our studies we also included the effects of viscosity, magnetic field, and finally
consider the impact of an unstable r-mode on the f -mode instability. The coefficients of
these evolution equations depend on the stellar model and mode properties.

We considered rapidly rotating and relativistic models with uniform rotation and ex-
tract the f -mode properties (frequency and eigenfunctions) from the time evolutions of
the linearised dynamical equations. In particular, we simplify the problem by using the
Cowling approximation, i.e. we neglect the space-time perturbations in our linearised
problem. The accuracy of this approximation is to better than 20% for the quadrupole
f -mode, but increases considerably for higher multipoles. In a second step, the mode’s
frequency and eigenfunctions are inserted in appropriate volume integrals which deter-
mine the viscous damping times and the gravitational radiation growth time [48].

The results that we show here are for two polytropic neutron star models with dif-
ferent compactness and maximum rotation limit. The first is a standard star with poly-
tropic index N = 1 and baryonic mass Mb = 1.4M�. The second is an N = 2/3 poly-
trope with Mb = 1.6M�, which represents a supramassive star, i.e. a configuration that
is stabilised by rotation and that in the non-rotating limit does not have a static stable
configuration [30, 31, 76].

Considering several configurations we find that the gravitational-wave signal gen-
erated by an unstable f -mode may be potentially detected with the Einstein Telescope
(ET) from a source located in the Virgo cluster. For instance, the gravitational charac-
teristic strain generated by the l = m = 4 f -mode is shown in Figure 3 (left panel)
for the N = 1 and N = 2/3 polytropic models with a relatively weak magnetic field,
Bp = 1011 G. This characteristic strain is determined by integrating in time the sig-
nal generated by an f -mode during the instability and setting a maximum saturation
energy of E ∼ 10−6M�c2.

A general expectation was that superfluidity should further restrict the parameter
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Figure 3: Left panel: Characteristic strain generated by the f -mode (l = m = 4) instability
for a polytrope with N = 1 and N = 2/3. The source is located at 20 Mpc and the
saturation amplitude of the f -mode is set to αsat = 10−4. The number near the vertical
lines denotes the initial rotation rate Ω/ΩK. Right panel: Evolution of the l = m = 4
f -mode instability for a relativistic polytrope with N = 1, a baryonic mass of Mb =
1.4 M� and Bp = 1011 G. The star enters the instability window at different spins. The
shaded region in the right panel represents the temperature range where the neutrons
and protons of the core are expected to be in a superfluid/superconducting state.

space of the instability. In fact, if a star cools down below the transition temperature
where the neutrons of the core become superfluid, the f -mode instability should be effi-
ciently suppressed by the mutual friction force [65]. However, for typical stellar param-
eters we find that the heat generated by shear viscosity during the saturation phase of
an unstable f -mode counterbalance the neutrino cooling. In fact, our results show that
an unstable star may follows a quasi isothermal trajectory within the instability win-
dow without cooling below the critical temperature of the core’s neutrons. As a result
the evolution time is longer and the star loses significantly more angular momentum
via the emission of gravitational waves.

A rough estimation suggests that from the Virgo cluster we should expect about 30-
60 supernova explosions per year, by assuming a rate of 2-3 events per century in our
Galaxy. This means that if few of them leave behind a very rapidly spinning proto-
neutron star, we might be able to detect these events from the gravitational radiation
emitted during the f -mode instability. The number of these potential sources may be
even more promising if we note that in more massive stars the gravitational-wave signal
remains detectable for a period up to ten years.
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3 Magnetars

Soft-gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs) are classes of
neutron stars, collectively known as magnetars, that contain the most extreme magnetic
fields in the Universe [37]. These exotic objects exhibit sporadic bursting and flaring
events, which are commonly associated to dynamics of the magnetic field [36].

3.1 Magnetar QPOs

In the last few years, a great attention was devoted to the interpretation of the quasi
periodic oscillations (QPOs) discovered in the tail of giant flares in Soft Gamma Re-
peaters (SGRs). Those oscillations cover a wide range of frequencies going from some
Hz up to a few kHz. Until now only in two SGRs it was possible to observe clearly
QPOs: in the SGR 1806-20 and in the SGR 1900+14 (see [49], [95] for a review ). In the
SGR 1900+14 four frequencies have been detected: 28, 53, 84, and 155 Hz while in the
SGR 1806-20 several QPOs have been discovered: 18, 26, 30, 92, 150, 625 and 1840 Hz.
A recent reanalysis of the data for the SGR 1806-20 carried on by [46] with a different
method, shows the presence of additional QPOs at 16.9, 21.4, 36.4, 59.0 and 116.3 Hz.

Understanding the nature of the QPOs will offer an unique opportunity to investi-
gate the proprieties of neutron stars and to constrain the nuclear matter in neutron stars
as well as the topology and strength of their magnetic field. For those reasons, since
their discovery, QPOs have been the subject of an intensive study. The first hypothesis,
in order to explain QPOs, was to consider pure shear modes of the crust, excited after
the burst generated by giant flares. This idea proposed by [36] was investigate in several
analytical and numerical works (see for example [86, 74]). Those works suggested that
not all the lower QPOs could be explained as pure crustal frequencies. An alternative
scenario has been then proposed by [62] and [45], involving global crust-core oscilla-
tions of the star. Levin showed with a toy model [63] that the QPOs spectrum should
be continuum, with turning points that were called edges’ of the continuum. Follow-
ing this idea, a significant amount of work has been devoted in understanding global
Alfvén oscillations in neutron star, using general relativistic models ([87], [27], [22]) or
Newtonian model ([61]). All those works made clear that global Alfvén modes in a pure
fluid neutron star could not to explain the small gap between the lower frequencies ob-
served in QPOs.

A further step was then needed: to add a solid crust and to study the coupling of this
latter with the fluid core, [54, 92], using a non-relativistic model, showed that the pres-
ence of the crust strongly influences the continuum spectrum. In particular, they found
that near the edges of the continua other discrete Alfvén modes appear. This results
was partially confirmed by [39] and [40], using a non-linear relativistic method: the au-
thors could find some frequencies in the gaps between two near continua, however they
stated that those oscillations were quickly damped. In a linear relativistic simulation,
[28] it was confirmed the presence of those discrete Alfvén modes in the gap between
two continua and showed that the crustal modes could live long if they are located in
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Figure 4: Identification of the frequencies of SGR 1806-20. We show that a stellar model
with EoS APR with mass M = 1.4M� and radius R = 11.57km can explain all the
frequencies observed. The magnetic field strength is 4× 1015G (from [28] ).

those gaps, see Figure 4. The discrete Alfvén modes as well as the crustal modes in the
gap between the first two continua could explain the small gap between the observed
lower frequencies QPOs. However as pointed out in [93], it was still difficult to explain
the higher frequencies as the 625Hz because at higher frequencies the continuum dom-
inates, absorbing all the discrete frequencies, and in addition the continua overlap to
each other: in this way it is not possible to isolate the edges of the continuum and to
have a unique interpretation for the 625Hz QPO.

A possibility to explain the high frequency QPOs came from the study of polar os-
cillations in magnetars [85] . In this work it was shown that the polar Alfvén spectrum
has a discrete nature and, in addition, the lower polar Alfvén modes have frequencies
around few hundred Hz. However, it was not clear how this result could affect the axial
spectrum. An alternative suggestion is that the few hundred Hz frequencies might be
explained by introducing the effects of superfluidity [71].

In [29] we investigated the effect of the coupling between axial (torsional) oscillations
and polar oscillations on the frequency spectrum. The neutron star model was com-
posed of a fluid core and a solid crust and is permeated by a magnetic field with strength
B = 1016G which acquires both poloidal and toroidal components. The toroidal compo-
nent is the coupling pipeline’ between the axial and polar part of the spectrum. By using
a two dimensional relativistic, linear code, we found that the axial spectrum is strongly
modified by the presence of the coupling: its continuum feature is destroyed, leaving
behind only the edges’ of the continuum. In this new picture, both Alfvén modes and
crustal modes have a discrete nature and those latter, if out of resonance with the edges’
of the continuum, could live long enough to be seen as high frequency modes. Due to
the presence of the crust in our model, also crustal modes’ appear in the spectrum. In the axial
case, they are not anymore absorbed by the continuum so they are long-living modes.



Kostas D. Kokkotas

The only case in which a damping of the crustal modes can be observed is if they are
in resonance with the edges of the continuum. In this case the energy leaks from the
crust to the core with a velocity that depends on the strength of the magnetic field. The
efficiency of the process depends on the magnetic field strength. Finally, in [29], an at-
tempt was made to resolve the puzzle of the 625 Hz QPO: we found that in our model,
although the spectrum is discrete, at higher frequencies it becomes too dense to allow
an unambiguous interpretation of this high frequency mode.

3.2 Magnetars & Gravitational Waves

The strongest of the magnetar flares has been considered in the literature as poten-
tial multi-messenger gravitational wave sources, which has prompted targeted gravita-
tional wave searches [14, 2, 3, 67, 1]. Presently, these searches have placed upper limits
on gravitational wave energies of 1.4× 1049 erg for the f -mode (i.e. in the kHz frequency
range), and 3.5× 1044 erg for white noise around 100− 200 Hz.

Comparatively little theoretical work has been done on the topic of magnetar flares
as a viable source of gravitational radiation. In part this is due to a reasonably poor un-
derstanding of the internal dynamics of the objects during and immediately following a
flare. Ioka [47] first investigated this question by looking at the maximum gravitational
wave energy released by a change in moment of inertia induced by a dynamical rear-
rangement of the core magnetic field inside the star. This calculation placed an upper
limit of about 1049 erg under ideal conditions, including optimistic values of the internal
magnetic field. More recently, Corsi & Owen [32] found similar values to be possible un-
der more generic conditions, still tapping into the full energy reservoir associated with
an instantaneous change in the magnetic potential energy of the star. In contrast, Levin
& van Hoven [64] did not find f -mode detection to be very likely in the near future.
Their model was based on some mechanism external to the star triggering the internal
f -modes.

Here we present a short review on the recent numerical work aimed at understand-
ing the magnetic field instabilities and the related emission of gravitational waves caused
by a large-scale rearrangement of the internal magnetic field [100]. In particular, we
utilise magnetic field instabilities to trigger global reconfigurations of the magnetic field,
and determine the gravitational wave output for such models. Recently, Ciolfi et al. [25]
performed numerical simulations as our earlier paper [59], concluding that giant flares
could give rise to observable gravitational radiation. However, they utilised a stellar
model with a surface magnetic field strength some sixty times the strongest observed to
reach these conclusions. We have shown [98] that the gravitational wave energy emitted
in these events is a highly nonlinear function of the magnetic field strength, implying
f -mode detection is unlikely. In this review, a conglomeration of our three recent papers
[59, 100, 58], is provided.

We study the time evolution of the ideal MHD equations in general relativity under
the Cowling approximation utilising the three-dimensional GRMHD code THOR [101]
and the GPU code HORIZON [98]. The MHD portion of the code utilises the conservative
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formalism outlined in [13], with hyperbolic divergence cleaning employed following
the prescription in [5]. In the our simulations we used a Cartesian grid with 1203 grid
points. Resolution studies have been completed using 903, 1503 and 2003 grid points,
finding consistent phenomenology. The outer boundary of the star is located approxi-
mately 1.4 times the stellar radius (at the closest point), and we adopt Dirichlet bound-
ary conditions for the evolution of the magnetic field at this outer boundary. We have
performed various tests with different boundary conditions and again found consistent
phenomenology. The spectral code LORENE is utilised to create initial conditions, which
are self-consistent solutions of the Einstein-Maxwell field equations in ideal MHD with
purely poloidal magnetic fields [18]. Our fiducial model is a non-rotating star with
polytropic equation of state with N = 1 and K = 100. This gives a stellar model with
gravitational mass M = 1.3 M� and equatorial radius R = 12.6 km.

3.2.1 Hydromagnetic Instabilities

Purely poloidal fields are known to be dynamically unstable to the kink instabil-
ity from local, linear studies in Newtonian physics [66]. Such studies have been con-
firmed with global, linearised numerical evolutions [57] and in full non-linear studies
[19]. Such configurations were also shown to be unstable in fully nonlinear relativistic
calculations in [59] – some details of which we repeat here.
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for a model with initial surface magnetic field of Bsurf = 8.8× 1015 G, yielding an Alfvén
crossing time of 5.0 ms. The arrows represent the times of the three-dimensional snap-
shots plotted in figure 6. This figure was originally published in [59]

An instability can be seen in all modes after the first couple of Alfvén crossing times.
Each mode grows exponentially by approximately six orders of magnitude over many
subsequent Alfvén crossing times. Saturation of the modes is seen to occur after about
75 ms, at which point the simulation evolves to a pseudo-equilibrium state. We have
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evolved such simulations to 400 ms ≡ 80 tA, where tA is the Alfvén crossing time,
with little variation in the equilibrium configuration following the first hundred or
so milliseconds. The equilibrium configurations are discussed in more detail in refs.
[59, 100, 58].

In Figures 6 we present three-dimensional plots of the magnetic field at various in-
stances throughout the evolution. The instability acts near the neutral line, which is the
line where B = 0 around the equatorial plane. In our simulations this is located at ap-
proximately two-thirds of the stellar radius. For clarity we have plotted red magnetic
field lines seeded near the neutral line in the equatorial plane. Also plotted are black
field lines seeded in the equatorial plane interior to the neutral line. The blue volume
rendering is an isopycnic surface of ρ = 0.37ρc, where ρc is the central rest-mass den-
sity. This surface lies at a radius of approximately 50% of the stellar radius, which is
well inside the neutral line.

Figure 6a shows the initial data imported from the LORENE spectral code. The do-
main of our grid is larger than that plotted here, and field lines are truncated at the
surface of the star for clarity in the figure.

Figure 6b shows the evolution after 25 ms ≡ 5 tA. The onset of the “sausage”
or “varicose” mode [66], involving a change in the cross-sectional area of a flux tube
around the neutral line, is clearly visible. This is strongest in the m = 4 mode, which is
a result of the transient excitation at the beginning of our simulation (for more details
we refer the reader to ref. [59]). It is worth noting that, while this transient reduces with
increasing grid resolution, the presence of the varicose mode is an inherent characteris-
tic of the system.

Figure 6c shows the point at which the “kink” instability begins to visually dominate
the system, which is after 50 ms = 10 tA. The kink mode acts perpendicularly to the
gravitational field, in accordance with the prediction of ref. [66]. While one can still see
the presence of the varicose mode in this snapshot, this point represents the non-linear
development of the instability where the change in field structure is of similar order to
the background field.

Figure 6d shows the simulation after 195 ms = 39 tA. This is a typical snapshot many
Alfvén timescales after the non-linear saturation of the unstable modes. In some ways,
this figure is consistent with the “twisted-torus” configurations seen in the non-linear
evolutions of refs. [21, 20], and in the semi-analytic equilibrium calculations of refs.
[97, 24]. Figure 6d shows about half of the star is well approximated by a twisted-torus,
however the remainder of the star also exhibits large non-axisymmetric structures.

3.2.2 Gravitational Wave Emissions

The preceding simulations provide an invaluable tool for predicting gravitational
wave emissions from magnetised neutron stars. In particular, we utilise the hydromag-
netic instabilities to mimic a global magnetic field reconfiguring that may occur during,
or immediately following, a magnetar flare. While the entire magnetic field may not
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Figure 6: Time evolution of model in figure 5 with an Alfvén crossing time of 5.0 ms.
The figures are (a) t = 0 ms, (b) t = 25 ms, (c) t = 50 ms and (d) t = 195 ms. The
red magnetic field lines are seeded on the equatorial plane close to the neutral line to
more clearly visualise the instabilities, while the black magnetic field lines are seeded
on the equatorial plane interior to the neutral line. The volume rendering is an isopy-
cnic surface at 37% of the central rest-mass density which is shown only to provide
contrast with the field lines. A full movie of this simulation lasting 400 ms can be seen
at www.tat.physik.uni-tuebingen.de/∼tat/grmhd. These figures were origi-
nally published in [59]

rearrange in a realistic magnetar, rearranging the entire field gives us an upper limit of
gravitational wave excitation in one of these events.

Our simulations exhibit negligible gravitational wave strain (i.e. h× . 10−27 mea-
sured at 10 kpc) for the initial period of the simulation. During the non-linear phase of
the instability, typically around 20 tA into the evolution, the gravitational wave strain
grows until the instability saturates, at which point the strain signal remains roughly
constant. It is worth noting that the dominant mechanism for damping the f -mode
is through gravitational wave emissions, which occurs on a timescale of order 100 −
200 ms [11]. As we are working in the Cowling approximation, we do not see such
damping, and hence the gravitational wave amplitude remains nearly constant through-
out the evolution of the system.

For the gravitational wave amplitude as a function of surface magnetic field strength
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we find an approximate power-law relation between h and Bsurf given by

hmax
× = 8.5× 10−28

(
10 kpc

d

)(
R

10 km

)4.8 ( M
M�

)1.8 ( Bpole

1015 G

)2.9

(5)

It is worth noting that the 2.9 exponent is an approximate value we find from this par-
ticular set of simulations. In general, this number will vary with the equation of state
and magnetic field configuration, however an exponent of approximately 3 does agree
with theoretical predictions. More details can be found in detail in our latest article [58].

Most of the energy in the aforementioned signal is in the f -mode. Assuming a grav-
itational wave damping time of approximately 100 ms [11], we find a corresponding
power-law relation for the energy emitted in gravitational wave radiation via the f-
mode to be

EGW = 1.7× 1036
(

R
10 km

)9.6 ( M
M�

)3.6 ( Bpole

1015 G

)5.8

erg. (6)

We can see from the above two relations that the gravitational wave amplitude and en-
ergies are highly non-linear functions of the surface magnetic field strength. Moreover,
for typical magnetar field strengths of order 1015 G, one finds strains below 10−25 and
energies lower than 1040 erg for a source at 10 kpc, even if we assume a catastrophic
global restructuring of the field to be associated with a giant flare.

We provide the signal-to-noise ratios for different detector sensitivity curves in Fig-
ure 7. Here we have plotted the signal amplitude,

√
T|h̃ ( f ) |, where T is the damping

time of the oscillation and h̃ ( f ) is the Fourier transform of h×, as a function of the fre-
quency for various magnetic field strength models. At approximately 1.8 kHz we show
the signal amplitude for the f -mode as excited by the hydromagnetic instability assum-
ing a damping time of 50 ms ≤ T ≤ 200 ms. In the lower part of the spectrum we plot
the other maximal mode seen in the Fourier transform, assuming a damping time be-
tween 10 ms ≤ T ≤ 1 s. Over this we plot the entire spectrum (assuming T = 100 ms)
for two models with Bsurf = 8.8× 1015 G and Bsurf = 1.8× 1016 G. Finally, we also plot
the root of the noise power spectral density,

√
|Sh( f )|, as a function of frequency for the

LIGO, AdvLIGO and ET detectors [75].
The amplitude signal-to-noise ratio, defined by

√
T|h̃( f )|/

√
|Sh( f )|, can be read off

the graph as the ratio between the signal and the noise curve for the respective detector.
The main conclusion from this figure is this: Assuming a giant flare is associated with a
catastrophic large-scale rearrangement of the core magnetic field, the gravitational wave
signal associated with f -modes are not observable with present or near-future gravitational wave
observatories [100].

We do note the presence of lower frequency modes in the 10–100 Hz region of the
spectrum. These are Alfvén modes, whereby the restoring force is provided by the
magnetic field itself. The dominant damping mechanism for these modes is largely
unknown, although it is generally expected that they will last significantly longer than
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Figure 7: Signal amplitude,
√

T|h̃ ( f ) | against oscillation frequency. The colored boxes
on the right represent the maximum for the f -mode assuming a constant periodic source
lasting between 50 and 200 ms. The colored boxes on the left represent the maximum
mode seen in the Fourier transform for any given frequency below the f -mode fre-
quency assuming a constant periodic source lasting between 10 ms and 1 s. These scale
with

√
T, implying one can easily extrapolate to alternative values of the damping time.

We have further plotted the entire spectrum (assuming a damping time of 100 ms) for
both the Bsurf = 1.8× 1016 G model (blue line) and Bsurf = 8.8× 1015 G model (black
line). This figure was originally published in [100].

the f -mode signal. For this reason we have plotted them in figure 7 with damping times
between 10 ms and 1 s, although we note they may be excited for significantly longer
than this. These modes are an exciting new prospect for gravitational wave detection
[100], which we discuss in significantly more detail in a forthcoming article.
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