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Schwarzschild Solution: Geodesics i

r̈ − 1
2ν
′ ṙ 2 − reν θ̇2 − reν sin2 θφ̇2 + 1

2 e2νν′ṫ2 = 0 (1)

θ̈ + 2
r ṙ θ̇ − sin θ cos θφ̇2 = 0 (2)

φ̈+ 2
r ṙ φ̇+ 2 cos θ

sin θ θ̇φ̇ = 0 (3)

ẗ + ν′ ṙ ṫ = 0 (4)

(how?) and from gλµẋλẋµ = 1 (or = c2) (here we assume a massive particle)
we get :

−eν ṫ2 + eλ ṙ 2 + r 2θ̇ + r 2 sin2 θφ̇2 = 1. (5)

If a geodesic is passing through a point P in the equatorial plane (θ = π/2)
and has a tangent at P situated also in this plane (θ̇ = 0 at P) then from (2)
we get θ̈ = 0 at P and all higher derivatives are also vanishing at P. That is,
the geodesic lies entirely in the plane defined by P, the tangent at P and the
center of symmetry of the space.
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Schwarzschild Solution: Geodesics ii

Since the symmetry planes are equivalent to each other, it will be sufficient to
discuss the geodesics lying on one of these planes e.g. the equatorial plane
θ = π/2.

The geodesics on the equatorial plane are:

r̈ − 1
2ν
′ ṙ 2 − reν φ̇2 + 1

2 e2νν′ṫ2 = 0 (6)

φ̈+ 2
r ṙ φ̇ = 0 (7)

ẗ + ν′ ṙ ṫ = 0 (8)

−eν ṫ2 + eλ ṙ 2 + r 2φ̇2 = 1 (9)

Then from equations (7) and (8) we can easily prove (how?) that:

d
dτ
(
r 2φ̇
)

= 0 ⇒ r 2φ̇ = h = const : (Angular Momentum) (10)

d
dτ (eν ṫ) = 0 ⇒ eν ṫ = k = const : (Energy) (11)
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Schwarzschild Solution: Geodesics iii

• For a massive particle with unit rest mass, , m0, by assuming that τ is the
affine parameter for its motion we get pµ = (E/c, ~p) = ẋµ and pµ = gµν ẋν . 1

Thus
p0 = g00ṫ = eν ṫ = kc2 and (12)

pφ = gφφφ̇ = −r 2φ̇ = −h (13)
• An observer with 4-velocity Uµ will find that the energy of a particle with
4-momentum pµ is:

E = pµUµ

An observer at rest at infinity, will have Uµ = (1, 0, 0, 0) leading to
E = p0 = kc2 which is conserved along the particle geodesic.

Actually, for a particle with rest mass m0 we get k = E/(m0c2) i.e. it is the
energy per unit rest-mass.

For a particle at infinity (eν → 1 and thus k → 1) thus E = m0c2.

• The constant h (later we may use the letter L) it is equal to the specific
angular momentumof the particle and its is −pφ.
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Schwarzschild Solution: Geodesics iv
————

Finally, by substituting eqns (11) and (10) into (9) we get the “energy
equation” for the r -coordinate (from now on we assume c = 1):

ṙ 2 + eν

r 2 L2 + eν = E 2 (14)

which suggests that at r →∞ (and ṙ = 0) we get that E = 1.

By combining the 2 integrals of motion and eqn (9) we can eliminate the
proper time τ to derive an equation for a 3D path of the particle (how?)(

d
dφu

)2

+ u2 = E 2 − 1
L2 + 2Mu

L2 + 2Mu3 (15)

where we have used u = 1/r and

ṙ = dr
dτ = dr

dφ
dφ
dτ = L

r 2
dr
dφ
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Schwarzschild Solution: Geodesics v

The previous equation can be written in a form similar to Kepler’s equation of
Newtonian mechanics (how?) i.e.

d2

dφ2 u + u = M
L2 + 3Mu2 (16)

The term 3Mu2 is the relativistic correction to the Newtonian equation.

This term for the trajectories of planets in the solar system, where
M = M� = 1.47664 km, and for orbital radius r ≈ 4.6× 107km (Mercury) and
r ≈ 1.5× 108km (Earth) gets very small values ≈ 3× 10−8 and ≈ 10−8

correspondingly.

1Remember the STR relation pµpµ = E 2/c2 − p2 = m0c2, where p2 = ~p · ~p.
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Radial motion of massive particles i

For the radial motion φ is constant, which implies that L = 0 and eqn (14)
reduces to

ṙ 2 = E 2 − eν . (17)

By differentiating we get an equation which reminds the equivalent one of
Newtonian gravity i.e.

r̈ = M
r 2 . (18)

• If a particle is dropped from the rest at r = R (ṙ = 0) we get that
E 2 = eν(R) = 1− 2M/R and (17) will be written

ṙ 2 = 2M
(1

r −
1
R

)
(19)

which is again similar to the Newtonian formula for the gain of kinetic energy
due to the loss in gravitational potential energy for a particle (of unit mass)
falling from rest at r = R.
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Radial motion of massive particles ii

• For a particle dropped from the rest at infinity E = 1 the geodesic
equations are simplified (how?):

dt
dτ = e−ν and dr

dτ = −
√

2M
r (20)

The component of the 4-velocity will be:

uµ = dxµ

dτ =

(
e−ν , −

√
2M
r , 0 , 0

)
(21)

Then by integrating the second of (20) and by assuming that at τ = τ0 = 0
that r = r0 we get

τ = 2
3

√
r 3

0
2M −

2
3

√
r 3

2M (22)

which suggests that for r = 0 we get τ → 2
3

√
r3
0

2M i.e. the particle takes finite
proper time to reach r = 0.
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Radial motion of massive particles iii

If we want to map the trajectory of the particle in the (r , t) coordinates we
need to solve the equation

dr
dt = dr

dτ
dτ
dt = −eν

√
2M
r (23)

The integration leads to the relation

t = 2
3

(√
r 3

0
2M −

√
r 3

2M

)
(24)

+ 4M
(√ r0

2M −
√ r

2M

)
+ 2M ln

∣∣∣∣∣
(√

r/2M + 1√
r/2M − 1

)(√
r0/2M − 1√
r0/2M + 1

)∣∣∣∣∣
where we have chosen that for t = 0 to set r = r0.

Notice that when r → 2M then t →∞. In other words, for an observer at
infinity, it takes infinite time for a particle to reach r = 2M.

QUESTION : Can you find what will be the velocity of the radially falling
particle for a stationary observer at coordinate radius r̃ = 2M?
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Radial motion of massive particles iv

Figure 1: Radial fall from rest towards a Schwarschild BH as described by a comoving observer
(proper time τ) and by a distant observer (Schwarschild coordinate time t)

τ = 2
3

√
r 3

0
2M −

2
3

√
r 3

2M

t =
2

3

(√
r3
0

2M
−

√
r3

2M

)
+ 4M

(√
r0

2M
−

√
r

2M

)
+ 2M ln

∣∣∣∣∣
(√

r/2M + 1√
r/2M − 1

)(√
r0/2M − 1√
r0/2M + 1

)∣∣∣∣∣
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Circular motion of massive particles i

The motion of massive particles in the equatorial plane is described by eqn (16)

d2

dφ2 u + u = M
L2 + 3Mu2 (25)

For circular motions r = 1/u=const and ṙ = r̈ = 0. Thus we get

L2 = r 2M
r − 3M (26)

if we also put ṙ = 0 in eqn (14) we get :

k = 1− 2M/r√
1− 3M/r

(27)

The energy of a particle with rest-mass m0 in a circular radius r is then given
by E = k · (m0c2).
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Circular motion of massive particles ii

For the circular orbits to be bound we require E < m0c2, so the limits on r for
an orbit to be bound is given by k = 1 which leads to

(1− 2M/r)2 = 1− 3M/r true when r = 4M or r =∞ (28)

Thus over the range 4M < r <∞ circular orbits are bound.
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Circular motion of massive particles iii

Figure 2: The variation of k = E/(m0c2) as a function of r/M for a circular orbit of a massive
particle in the Schwarzchild geometry
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Circular motion of massive particles iv

Figure 3: The shape of a bound orbit outside a spherical star or a black-hole
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Circular motion of massive particles v

From the integral of motion r 2φ̇ = L and eqn (26) we get(dφ
dτ

)2
= M

r 2(r − 3M) (29)

NOTICE : This equation cannot be satisfied for circular orbits with r < 3M.
Such orbits cannot be geodesics and cannot be followed by freely falling
particles. Thus according to GR a free massive particle, cannot maintain a
circular orbit with r < 3M around a massive body, no matter how large the
angular momentum of the particle.
This is very different from Newtonian theory.

We can also calculate an expression for Ω = dφ/dt

Ω2 =
(dφ

dt

)2
=
(dφ

dτ
dτ
dt

)2
= e2ν

E 2

(dφ
dτ

)2
= M

r 3 (30)

which is equivalent to Kepler’s law in Newtonian gravity.
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Stability of massive particle orbits i

According to the previous discussion the closest bound orbit around a massive
body is at r = 4M, however we cannot yet determine whether this orbit is
stable!

In Newtonian theory the particle motion
in a central potential is described by:

1
2

(dr
dt

)2
+ Veff(r) = E 2 (31)

where

Veff(r) = −M
r + L2

2r 2 (32)

The bound orbits have two turning points while the circular orbit corresponds
to the special case where the particle sits in the minimum (dVeff/dr = 0 ) of
the effective potential.
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Stability of massive particle orbits ii
In GR the corresponding ‘energy’ equation (14) is

ṙ 2 + eν

r 2 L2 + eν = E 2 (33)

which leads to an effective potential of the form

Veff(r) = eν

r 2 L2 + eν = −M
r + L2

2r 2 −
ML2

r 3 (34)

Circular orbits occur where dVeff/dr = 0 that is:

dVeff

dr = M
r 2 −

L2

r 3 + 3ML2

r 4 (35)

so the extrema are located at the solutions of the eqn Mr 2 − Lr + 3ML2 = 0
which occur at

r = L
2M

(
L±

√
L2 − 12M2

)
(36)

Note that if L =
√

12M = 2
√

3M then there is only one extremum and no
turning points in the orbit for lower values of L.
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Stability of massive particle orbits iii
Thus the innermost stable circular
orbit (ISCO) has

rISCO = 6M (37)

and

L = 2
√

3M ≈ 3.46M (38)

and it is unique in satisfying both

dVeff

dr = 0 and d2Veff

dr 2 = 0 , (39)

the latter is the condition for
marginal stability of the orbit.

Figure 4: The dots indicate the locations of stable
circular orbits which occur at the local minimum of the
potential. The local maxima in the potential are the
locations of the unstable circular orbits.
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Stability of massive particle orbits iv

Figure 5: Orbits for L = 4.3 and different values of E .

• The upper shows circular orbits. A stable (outer) and an unstable (inner)
one.

• The lower shows bound orbits , the particle moves between two turning
points marked by dotted circles.
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Stability of massive particle orbits v

Figure 6: Orbits for L = 4.3 and different values of E .

• The upper shows a scattering orbit the particle comes in from infinity
passes around the center of attraction and moves out to infinity again.

• The lower shows plunge orbit , in which the particle comes in from
infinity.
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Trajectories of photons

Photons, as any zero rest mass particle, move on null geodesics.

For photons we cannot use the proper time τ as the parameter to characterize
the motion and thus we will use some affine parameter σ.

We will study photon orbits on the equatorial plane and the equation of motion
will be in this case

eν ṫ = E (40)

eν ṫ2 − e−ν ṙ 2 − r 2φ̇2 = 0 (41)

r 2φ̇ = L (42)

The equivalent to eqn (14) for photons is

ṙ 2 + eν

r 2 L2 = E 2 (43)

while the equivalent of eqn (16) is

d2

dφ2 u + u = 3Mu2 (44)
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Radial motion of photons

For radial motion φ̇ = 0 and we get

eν ṫ2 − e−ν ṙ 2 = 0

from which we obtain
dr
dt = ±

(
1− 2M

r

)
(45)

integration leads to:
Outgoing Photon

t = r + 2M ln
∣∣∣ r

2M − 1
∣∣∣+ const

Incoming Photon

t = −r − 2M ln
∣∣∣ r

2M − 1
∣∣∣+ const

Figure 7: Radially infaling particle emitting a
radially outgoing photon.
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Circular motion of photons

For circular orbits we have r=constant and thus from eqn (44) we see that the
only possible radius for a circular photon orbit is:

r = 3M
(

or r = 3GM
c2

)
(46)

There are no such orbits around typical stars because their radius is much
larger than 3M (in geometrical units).

Only outside black holes photons can follow such orbits.
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Stability of photon orbits

We can rewrite the “energy” equation (43) as
ṙ 2

L2 + eν

r 2 = 1
D2 (47)

where D = L/E and Veff = eν/r

Figure 8: The effective potential for photon orbits.

We can see that Veff has a single maximum at r = 3M where the value of the
potential is 1/(27M2). Thus the circular orbit r = 3M is unstable.

There are no stable circular photon orbits in the Schwarzschild geometry.
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The slow-rotation limit : Dragging of inertial frames

ds2 = ds2
Schw + 4Ma

r sin2 θdtdφ (48)
where J = Ma is the angular momentum.

The contravariant components of the particles 4-momentum will be

pφ = gφµpµ = gφtpt + gφφpφ and pt = g tµpµ = g ttpt + g tφpφ

If we assume a particle with zero angular momentum, i.e. pφ = 0 along the
geodesic then the particle’s trajectory is such that

dφ
dt = pφ

pt = g tφ

g tt = 2Ma
r 3 = ω(r)

which is the coordinate angular velocity of a zero-angular-momentum particle.

A particle dropped “straight in” from infinity ( pφ = 0) is dragged just by the
influence of gravity so that acquires an angular velocity in the same sense as
that of the source of the metric.
The effect weakens with the distance and makes the angular momentum of
the source measurable in practice.
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Useful constants

Useful Constants in geometrical units

Speed of light c =299,792.458 km/s = 1
Planck’s constant ~ = 1.05× 10−27 erg ·s = 2.612× 10−66cm2

Gravitation constant G = 6.67× 10−8 cm3/g ·s2 =1
Energy eV=1.602×10−12erg = 1.16× 104K

=1.7823×10−33g =1.324×10−56 km
Distance 1 pc=3.09×1013km=3.26 ly
Time 1 yr = 3.156×107 sec
Light year 1 ly = 9.46×1012km
Astronomical unit (AU) 1AU = 1.5× 108 km
Earth’s mass M⊕ = 5.97× 1027 g
Earth’s radius (equator) R⊕ = 6378 km
Solar Mass M� = 1.99× 1033 g =1.47664 km
Solar Radius R� = 6.96× 105 km
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The Classical Tests: Perihelion Advance i

For a given value of angular momentum Kepler’s equation (16)

d2

dφ2 u + u = M
L2 + 3Mu2 (16)

(without the GR term 3Mu2) admits a solution given by

u = M
L2 [1 + e cos(φ+ φ0)] (49)

where e and φ0 are integration constants.

• We can set φ0 = 0 by rotating the coordinate system by φ0.

• The 2nd constant e is the orbital eccentricity which is an ellipse if e < 1.

Now since the term 3Mu2 is small we can use perturbation theory to get a
solution of equation (16).

d2

dφ2 u + u ≈ M
L2 + 3M3

L4 [1 + e cos(φ)]2

≈ M
L2 + 3M3

L4 + 6eM3

L4 cos(φ)
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The Classical Tests: Perihelion Advance ii

Because, 3M3/L4 � M/L2 and can be omitted and its corrections will be small
periodic elongations of the semiaxis of the ellipse.

The term 6eM3/L4 cos(φ) is also small but has an accumulative effect which
can be measured.

Thus the solution of the relativistic form of Kepler’s equation (50) becomes
(k = 3M2/L2)

u = M
L2

[
1 + e cosφ+ 3eM2

L2 φ sinφ
]
≈ M

L2 {1 + e cos[φ(1− k)]} (50)
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The Classical Tests: Perihelion Advance iii

The perihelion of the orbit can be found be maximizing u that is when
cos[φ(1− k)] = 1 or better if φn(1− k) = 2nπ. This mean that after each
rotation around the Sun the angle of the perihelion will increase by

φn = 2nπ
1− k ⇒ φn+1 − φn = 2π

1− k ≈ 2π(1 + k) = 2π + 6πM2

L2 (51)
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The Classical Tests: Perihelion Advance iv

i.e. in the relativistic orbit the perihelion is no longer a fixed point, as it was in
the Newtonian elliptic orbit but it moves in the direction of the motion of the
planet, advancing by the angle

δφ ≈ 6πM2

L2 (52)

By using the well known relation from Newtonian Celestial Mechanics
L2 = Mr0(1− e2) connecting the perihelion distance r0 with L we derive a more
convenient form for the perihelion advance

δφ ≈ 6πM
r0(1− e2) (53)
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The Classical Tests: Perihelion Advance v

Solar system measurements

Mercury (43.11± 0.45)′′ 43.03′′

Venus (8.4± 4.8)′′ 8.6′′

Earth (5.0± 1.2)′′ 3.8′′

In binary pulsars separated by 106km the perihelion advance is extremely
important and it can be up to ∼ 2o/year (about 1000 orbital rotations)
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The Classical Tests: Perihelion Advance vi
Sources of the precession of perihelion for Mercury

Amount (arcsec/century) cause
5025.6 Coordinate ( precession of the equinoxes)2

531.4 Gravitational tugs of the other planets
0.0254 Oblateness of the Sun
42± 0.04 General relativity
5600.0 Total
5599.7 Observed

2Precession refers to a change in the direction of the axis of a rotating object. There
are two types of precession, torque-free and torque-induced. 32



The Classical Tests : Deflection of Light Rays i

Deflection of light rays due to presence of a gravitational field is a prediction of
Einstein dated even before the GR.

This prediction has been verified in 1919 by Eddington during a total solar
eclipse.

Photons follow null geodesics, this means that ds = 0 and the integrals of
motion (E and L) are divergent but not their ratio L/E .

Thus the photon’s equation of motion on the equatorial plane of Schwarszchild
spacetime will be:

d2u
dφ2 + u = 3Mu2 . (54)

with an approximate solution (we omit at the moment the term 3Mu2)

u = 1
b cos(φ+ φ0) (55)

describing a straight line, where b and φ0 are integration constants.
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The Classical Tests : Deflection of Light Rays ii

Actually, with an appropriate rotation φ0 = 0 the length b is the distance of the
line from the origin.

Since the term 3Mu2 is very small we can substitute u with the Newtonian
solution (55) and we need to solve the non-homogeneous ODE

d2u
dφ2 + u = 3M

b2 cos2 φ . (56)

admitting a solution of the form

u = cosφ
b + M

b2

(
1 + sin2 φ

)
(57)

for distant observers (r →∞) we get u → 0,
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The Classical Tests : Deflection of Light Rays iii

Thus for r →∞ we get a relation between φ, M and the parameter b

cosφ
b + M

b2

(
1 + sin2 φ

)
= 0 (58)

and since r →∞, this means that φ→ π/2 + ε leading to cosφ→ 0 + ε and
sinφ→ 1− ε we get:

ε ≈ −2M
b (59)

Since, φ→ π/2 + 2M/b for r →∞ on the one side and φ→ 3π/2− 2M/b on
the other side the total deviation will be the sum of the two i.e.

δφ = 4M
b . (60)

For a light ray tracing the surface of the Sun gives a deflection of ∼ 1.75′′.
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The Classical Tests : Deflection of Light Rays iv

Figure 9: (Left): Instruments used to observe the 1919 total solar eclipse, Sobral, Brazil.
Photograph: Science & Society Picture Library/SSPL via Getty Images. (Right): Einstein and
Eddington, Photographed at the University of Cambridge Observatory, UK, in 1930.

Instruments used to observe the 1919 total solar eclipse, Sobral, Brazil.
Photograph: Science & Society Picture Library/SSPL via Getty Images
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The Classical Tests : Deflection of Light Rays v

Figure 10: Total solar eclipse, 29 May 1919. Glass positive photograph of the corona, taken at
Sobral in Brazil, with a telescope of 4in in aperture and 19ft focal length. Photograph: Science &
Society Picture Library/SSPL via Getty Images.
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The Classical Tests : Deflection of Light Rays vi

Figure 11: A schematic presendation of the light bending during solar eclipse.

EINSTEIN: “In that case, I would have to feel sorry for God, because the
theory is correct.”
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Gravitational Lensing i

The deflection of light rays is a quite common phenomenon in Astronomy and
has many applications. We typically observe “crosses” or “rings”
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Gravitational Lensing ii

Figure 12: Einstein Cross (G2237+030) is the most characteristic case of gravitational lens
where a galaxy at a distance 5 × 108lys focuses the light from a quasar who is behind it in a
distance of 8 × 109 lys. The focusing creates 4 symmetric images of the same quasar. The system
has been discovered by John Huchra.
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Gravitational Lensing iii

Figure 13: Einstein rings are observed when the source, the focusing body and Earth are on
the same line of sight. This ring has been discovered by Hubble space telescope.
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Gravitational Lensing iv

Figure 14: Mapping the dark matter in the Universe
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The Classical Tests : Gravitational Redshift i

Figure 15: Let’s assume 3 static observers on a Schwarszchild spacetime, one very close to the
source of the field the other in a medium distance from the source and the third at infinity.

The clocks of the 3 observers ticking with different rates. The clocks of the
two closer to the source are ticking slower than the clock of the observer at
infinity who measures the so called ‘ coordinate time” i.e.
dτ1 =

(
1− 2M

r1

)1/2 dt and dτ2 =
(

1− 2M
r2

)1/2 dt this means that

dτ2

dτ1
=

(
1− 2M

r2

)1/2(
1− 2M

r1

)1/2 ≈ 1 + M
r1
− M

r2
. (61)
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The Classical Tests : Gravitational Redshift ii
If the 1st observer sends light signals on a specific wavelegth λ1 from c = λ/τ

we get a relation between the wavelength of the emitted and received signals

λ2

λ1
≈ 1 + M

r1
− M

r2
⇒ λ2 − λ1

λ1
= ∆λ

λ1
= M

r1
− M

r2
. (62)

A similar relation can be found for the frequency of the emitted signal:

ν1

ν2
=

(
1− 2M

r2

)1/2(
1− 2M

r1

)1/2 . (63)

While the photon redshift z is defined by

1 + z = ν1

ν2
(64)

QUESTION : What will be the redshift for signals emitted from the surface of
the Sun, a neutron star and a black hole?
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The Classical Tests : Gravitational Redshift iii

Figure 16: Gravitational Redshift : Verification by Pound-Rebka
1959-65
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The Classical Tests : Radar Delay i

A more recent test (late 60s) where the delay of the radar signals caused by the
gravitational field of Sun was measured. This experiment suggested and
performed by I.I. Shapiro and his collaborators.

The line element ds2 = gµνdxµdxν for the light rays i.e. for ds = 0 on the
equatorial plane has the form

0 =
(

1− 2M
r

)
−
(

1− 2M
r

)−1 (dr
dt

)2
− r 2

(dφ
dt

)2
(65)

For the study of the radial motion we should substitute the term dφ/dt from
the integrals of motion (10) and (11) i.e. we can create the quantity:

D = L
E = r 2

(
1− 2M

r

)−1 dφ
dt (66)
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The Classical Tests : Radar Delay ii
Then eqn (65) becomes(

1− 2M
r

)
−
(

1− 2M
r

)−1 (dr
dt

)2
− D2

r 2

(
1− 2M

r

)2
= 0 . (67)

At the point of the closest approach to the Sun, r0, there should be dr/dt = 0
and thus we get the value of D2 = r2

0
1−2M/r0

. Leading to an equation for the
radial motion:

dr
dt =

(
1− 2M

r

)[
1−

( r0

r

)2 1− 2M/r
1− 2M/r0

]1/2

(68)

and by integration we get:

t1 =
∫ r1

r0

dr(
1− 2M

r

)√
1−

( r0
r

)2 1−2M/r
1−2M/r0

=
√

r 2
1 − r 2

0 + 2M ln

[
r1
√

r 2
1 − r 2

0

r0

]
+ M

√
r1 − r0

r1 + r0

≈ r1 + 2M ln
(2r1

r0

)
+ M
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The Classical Tests : Radar Delay iii
• For flat space we have t1 = r1 (remember
c = 1)i.e. the term t̃1 = 2M ln(2r1/r0) + M is
the relativistic correction for the first part of
the orbit in same way we get a similar
contribution as the signal returns to Earth.

• Thus the total “extra time” is:

∆T = 2 (t̃1 + t̃2)

= 4M
[

1 + ln
(

4r1r2

r 2
0

)]
(69)

Figure 17: I.I. Shapiro

Figure 18: Cassini Spacecraft on its
way to Saturn in 2003; Deviations from
GR 0.002% – the most stringent test of
the theory so far.
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The Classical Tests : Radar Delay iv

Figure 19: Comparison of the experimental results with the prediction of the theory. The
results are from I.I. Shapiro’s experiment (1970) using Venus as reflector.
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EXAMPLE: weighting a pulsar

Figure 20: As a pulsar passes behind its heavy companion star, its pulses are delayed by the
mass of the companion. (Credit B. Saxton/NRAO/AUI)

• If a pulsar is in orbit around a companion WD, its pulses of light will follow the space curve
caused by that star. When the companion WD star is in front of the pulsar, the pulses take a little
longer to reach us than when the WD is clear of the pulsar. The amount of delay tells you the
amount of mass of the star causing the delay. 3

• Astronomers using the NSF’s Green Bank Telescope (GBT) have discovered the most massive
neutron star (2M�) yet found, a discovery with strong and wide-ranging impacts across several
fields of physics and astrophysics.

3NRAO:http://www.nrao.edu/index.php/learn/science/weighing-pulsars
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The Pound-Rebka-Snider experiment

• The first successful, high-precision
redshift measurement was the series of
Pound-Rebka-Snider experiments of
1960-65 that measured the frequency shift
of gamma-ray photons (14keV) from 57Fe
as they ascended or descended the JPL
tower at Harvard University.
• The high accuracy achieved - one percent
- was obtained by making use of the
Mössbauer effect to produce a narrow
resonance line whose shift could be
accurately determined.

• Other experiments since 1960 measured the shift of spectral lines in the
Sun’s gravitational field and the change in rate of atomic clocks transported
aloft on aircraft, rockets and satellites.
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