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Embedding diagrams i

In order to get some feeling for the global geometry of the Schwarzchild black
hole we can try to represent aspects of it by embeddings in 3-space.

Let us look at the space of constant time and also suppress one of the angular
coordinates, say θ = π/2. The metric becomes:

dl2 =
(

1− 2M
r

)−1
dr 2 + r 2dφ2 (1)

The metric of the Euclidean embedding space is:

dl2 = dz2 + dr 2 + r 2dφ2 (2)

which on z = z(r) becomes

dl2 =
[

1 +
(dz

dr

)2
]

dr 2 + r 2dφ2 . (3)
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Embedding diagrams ii
These are the same if

1 +
(dz

dr

)2
=
(

1− 2M
r

)−1
→ z = 2

√
2M(r − 2M) (4)

? We cannot follow the geometry for r < 2M.

Figure 1: Embedding Diagram for
Schwarzschild spacetime

Figure 2: An embedding diagram
depicting the curvature of spacetime around
a static spherical star
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Embedding diagrams iii

Figure 3: The figure adapted from K.S. Thorne ”Black Holes and Time Warps” (1994), Fig.
3.4 on page 132.

4



The isotropic coordinates i

One may try to write the well known form of Schwarzschild metric

ds2 = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr 2 + r 2 (dθ2 + sin2 θdφ2) (5)

as close as possible into a form where the spacelike slices are as close as
possible to Euclidean i.e.

ds2 = −
(

1− 2M
r

)
dt2 + B(r)

(
dx2 + dy 2 + dz2)

≡ −
(

1− 2M
r

)
dt2 + B(r)

(
dr 2 + r 2dθ2 + r 2 sin2 θdφ2) (6)

we can assume a new set of coordinates (t, r̃ , θ, φ) where r̃ = r̃(r) in which the
above metric will be written as

ds2 = −
(

1− 2M
r

)
dt2 + λ(r̃)2 (dr̃ 2 + r̃ 2dθ2 + r̃ 2 sin2 θdφ2) (7)

where λ = λ(r̃) is a conformal factor.
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The isotropic coordinates ii

Comparing (5) with (7) we get(
1− 2M

r

)−1
dr 2 = λ(r̃)2dr̃ 2 and r 2 = λ(r̃)2 r̃ 2 (8)

From the last two equations we get:

dr√
r 2 − 2Mr

= ±dr̃
r̃ (9)

since we want r̃ →∞ when r →∞ we choose the sign (+) and by integration
we get

r = r̃
(

1 + M
2r̃

)2
(10)

Then r 2 = λ2 r̃ 2 implies:

λ2 =
(

1 + M
2r̃

)4
(11)
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The isotropic coordinates iii

ds2 = −
(

1−M/2r̃
1 + M/2r̃

)2

dt2 +
(

1 + M
2r̃

)4 [
dr̃ 2 + r̃ 2 (dθ2 + sin2 θdφ2)] (12)

? Isotropic coordinates used by experimental gravitation because one can
expand on a more natural way the gravitational quantities and to compare
directly with Newtonian flat space gravity as well as with alternative theories of
gravity.

• Metric (12) in the PPN formalism it becomes:

ds2 ≈ −
[

1− 2M
r̃ + 2β

(M
r̃

)2
]

dt2 +
[

1 + 2γM
r̃

] [
dr̃ 2 + r̃ 2dΩ2] (13)
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Schwarzschild Solution: Black Holes I

The light cone in a Schwarzschild spacetime

ds2 ≡ 0 =
(

1− 2M
r

)
dt2 −

(
1− 2M

r

)−1
dr 2 ⇒ dr

dt = ±
(

1− 2M
r

)
.

r = 2M is a null surface and is called horizon or infinite redshift surface.
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Eddington-Finkelnstein coordinates i

The Schwarzschild solution in a new set of coordinates (t ′, r ′, θ′, φ′)

t = t ′ ± ln
(

r ′

2M − 1
)
, r > 2M (outgoing)

t = t ′ ± ln
(

1− r ′

2M

)
, r < 2M (ingoing)

r = r ′, θ = θ′, φ = φ′

can be written as

ds2 =
(

1− 2M
r

)
dt ′2−

(
1 + 2M

r

)
dr 2 ± 4M

r drdt ′ − r 2 (dθ2 + sin2 θdφ2)
While for null surfaces

ds2 ≡ 0 =
(

1− 2M
r

)
dt ′2 −

(
1 + 2M

r

)
dr 2 ± 4M

r drdt ′
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Eddington-Finkelnstein coordinates ii

(
dt ′ + dr

) [(
1− 2M

r

)
dt ′ −

(
1 + 2M

r

)
dr
]

= 0

dr
dt ′ = −1 and dr

dt ′ = r − 2M
r + 2M
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Eddington-Finkelnstein coordinates iii
We can define the so called tortoise coordinate as:

r∗ = r + 2M ln
∣∣∣ r

2M − 1
∣∣∣ (14)

satisfying
dr∗
dr =

(
1− 2M

r

)−1
(15)

notice that r∗ → −∞ as r → 2M.

By using the definitions v = t + r∗ (ingoing) and u = t − r∗ (outgoing) we can
get the
Ingoing form of the metric

ds2 = −
(

1− 2M
r

)
dv 2 + 2dvdr + r 2dΩ2 (16)

Outgoing form of the metric

ds2 = −
(

1− 2M
r

)
du2 − 2dudr + r 2dΩ2 (17)
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Eddington-Finkelnstein coordinates iv
A manifold is said to be geodesically complete if all geodesics are of infinite
length. This means that in a complete specetime manifold, every particle has
been in the spacetime forever and remains in it forever.

Figure 4: The spacetime of a collapsing star.
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Kruskal - Szekeres Coordinates : Maximal Extension

v =
( r

2M − 1
)1/2

e
r

4M sinh
( t

4M

)
u =

( r
2M − 1

)1/2
e

r
4M cosh

( t
4M

)

( r
2M − 1

)
er/2M = u2 − v 2

t
4M = tanh−1

(v
u

)

ds2 = 32M3

r e−r/2M (dv 2 − du2)−r 2dΩ2

du2−dv 2 = 0 ⇒ du
dv = ±1

In a maximal spacetime,
particles can appear or
disappear, but only at
singularities.

—
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Kruskal - Szekeres Coordinates : Maximal Extension II

Kruskal-Szekeres diagram, illustrated for 2GM = 1.

• The quadrants are the black hole interior (II), the white hole interior (IV) and the two
exterior regions (I and III).

• The dotted 45o lines, which separate these four regions, are the event horizons.
• The darker hyperbolas which bound the top and bottom of the diagram are the physical

singularities.
• The paler hyperbolas represent contours of the Schwarzschild r coordinate, and the straight

lines through the origin represent contours of the Schwarzschild t coordinate. [From
Wikipedia] 14



Wormholes

A hypothetical “tunnel” (Einstein-Rosen bridge) connecting two different
points in spacetime in such a way that a trip through the wormhole could take
much less time than a journey between the same starting and ending points in
normal space. The ends of a wormhole could, in theory, be intra-universe (i.e.
both exist in the same universe) or inter-universe (exist in different universes,
and thus serve as a connecting passage between the two).

15



Figure 5: The Einstein-Rosen wormholes would be useless for travel because they collapse
quickly. Alternatively, a wormhole containing ”exotic” matter could stay open and unchanging for
longer periods of time.
Exotic matter, contains negative energy density and a large negative pressure. Such matter has
only been seen in the behaviour of certain vacuum states as part of quantum field theory.
If a wormhole contained sufficient exotic matter, it could theoretically be used as a method of
sending information or travelers through space.
It has been conjectured that if one mouth of a wormhole is moved in a specific manner, it could
allow for time travel.
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Tübingen Wormholes !!!

Figure 6: Image of a simulated traversable wormhole that connects the square in front of the
physical institutes of Tübingen University with the sand dunes near Boulogne sur Mer in the north
of France. The image is calculated with 4D raytracing in a Morris-Thorne wormhole metric, but
the gravitational effects on the wavelength of light have not been simulated

http://www.spacetimetravel.org/wurmlochflug/wurmlochflug.html
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Reissner-Nordström Solution (1916-18) i

• In contrast to the Schwarzschild (and Kerr) solutions, which are vacuum
solutions of the Einstein’s equations, the Reissner-Nordström solution is not
a vacuum solution.
• The presence of the electric field gives rise to a nonzero energy -momentum
tensor throughout space.
• Then we have to solve the static Einstein-Maxwell equations with a potential

Aµ =
(Q

r , 0, 0, 0
)

(18)

where Q is the total charge measured by a distant observer.

Rµν −
1
2 gµνR = κTµν (19)

Fµν ;ν = 0 (20)

Fµν;α + F να;µ + Fαµ;ν = 0 (21)

where Tµν is the energy momentum tensor of the electromagnetic field defined
in Chapter 2.
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Reissner-Nordström Solution (1916-18) ii

The solution contains two constants of integration, M and Q which can be
interpreted as the mass and the electric charge1

ds2 = −
(

1− 2M
r + Q2

r 2

)
dt2 +

(
1− 2M

r + Q2

r 2

)−1

dr 2 + r 2dΩ2 (22)

The horizon is for g00 = 0

r± = M ±
√

M2 − Q2 (23)

two horizons r− and r+.

1Where
M =

G
c2 M and Q2 =

1
4πεo

G
c4 Q2

with 1/4πεo the Coulomb’s force constant
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The slow-rotation limit : Solution

• Stars are not spherically symmetric, but instead they are approximately
axisymmetric.

• For slowly rotating bodies with mass M and angular momentum J the
Einstein equations outside the body are solved approximately and the metric
will have the form:

ds2 ≈
(

1− 2GM
rc2

)
c2dt2 + 4GJ

rc2 sin2 θdt dφ

−
(

1 + 2GM
rc2

)
dr 2 − r 2dθ2 − r 2 sin2 θdφ2 (24)

to order O(1/r). Note, that for J → 0 we get the Scwharzschild solution.

• This solution is approximately correct far from a rotating black-hole, but as
we go closer to the horizon the deviations are increasing and the above solution
fails to describe the spacetime, since even terms of order O(1/r 2) cannot be
neglected.

• Thus this solution can be a good approximation for the exterior specetime
of a rotating star but not of a spinning black-hole.
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The slow-rotation limit : Dragging of inertial frames

ds2 = ds2
Schw + 4J

r sin2 θdtdφ (25)
where J = Mac is the angular momentum.

The contravariant components of the particles 4-momentum will be

pφ = gφµpµ = gφtpt + gφφpφ and pt = g tµpµ = g ttpt + g tφpφ

If we assume a particle with zero angular momentum, i.e. pφ = 0 along the
geodesic then the particle’s trajectory is such that

dφ
dt = pφ

pt = g tφ

g tt ≈
2J
r 3 = ω(r)

ω(r) is the coordinate angular velocity of a zero-angular-momentum particle.
A particle dropped “straight in” from infinity (pφ = 0) is

dragged just by the influence of gravity so that acquires an
angular velocity in the same sense as that of the source of
the metric.
The effect weakens with the distance and makes the
angular momentum of the source measurable in practice.
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Kerr Solution (1963) i

Kerr solution is astrophysically the most important solution of Einstein’s
equations.

ds2 = −∆
ρ2

[
dt − a sin2 θdφ

]2 + sin2 θ

ρ2

[
(r 2 + a2)dφ− adt

]2 + ρ2

∆ dr 2 + ρ2dθ2

where 2

∆ = r 2 − 2Mr + a2 and ρ2 = r 2 + a2 cos2 θ (26)

here a = J/M = GJ/Mc3 is the angular momentum per unit mass.
For our Sun J = 1.6× 1048g cm2/s which corresponds to a = 0.185.

• Obviously for a = 0 Kerr metric reduces to Schwarszchild.

• The Kerr solution is stationary but not static
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Kerr Solution (1963) ii

• The coordinates are known as Boyer-Lindquist coordinates and they are
related to Cartesian coordinates

x = (r 2 + a2)1/2 sin θ cosφ

y = (r 2 + a2)1/2 sin θ sinφ

z = r cos θ

• Another writing of the solution is the following:

ds2 =
(

∆− a2 sin2 θ
)

ρ2 dt2 + ρ2

∆ dr 2 + ρ2dθ2 − A sin2 θ

ρ2 dφ2

+ 4Ma
ρ2 r sin2 θ dφ dt (27)

where A = (r 2 + a2)2 − a2∆ sin2 θ.

2If ∆ = r2 − 2Mr + a2 + Q2 the we get the so called Kerr-Newman solution which
describes a stationary, axially symmetric and charged spacetime.
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Kerr Solution: Infinite redshift surface
We know that :

1 + z = νA

νB
= g00(B)

g00(A) .

When
g00 = 1− 2Mr

ρ2 → 0 ⇒ r 2 + a2 cos2 θ − 2Mr = 0

which leads to
R± = M ±

√
M2 − a2 cos2 θ

• This means that there are two distinct infinite-redshift surfaces. As in
the Schwarzschild case these surfaces do not correspond to any physical
singularity.

• The vanishing of the g00 merely tells us that a particle cannot be at rest (
with dr = dθ = dφ = 0) at theses surfaces; only a light signal emitted in the
radial direction can be at rest.

• NOTE: In the Kerr geometry, the infinite-redshift surface does not
coincide with event horizons. 24



Kerr Solution: The Light Cone

The shape of the light cone on the equatorial plane θ = π/2 can be derived
from:

ds2 ≡ 0 = g00dt2 + grr dr 2 + gφφdφ2 + 2g0φdφdt (28)

For fixed r (i.e., dr = 0) we get

0 = g00 + gφφ
(dφ

dt

)2
+ 2g0φ

(dφ
dt

)
then at g00 = 0 (infinite redshift)

dφ
dt = 0 (29)

and
dφ
dt = − gφφ

2g0φ
(30)
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Kerr Black Hole: Horizon

The light cone in the radial direction:

0 = g00dt2 + grr dr 2 ⇒
(dr

dt

)2
= −g00

grr
= ∆(ρ2 − 2Mr)

ρ4 (31)

thus the horizon(s) will be the surfaces:

∆ = r 2 − 2Mr + a2 = 0 ⇒ r± = M ±
√

M2 − a2 (32)

The are between r+ ≤ r ≤ R+ is called ergosphere.
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Kerr Black Hole : Geodesics i

We will consider test particle motion in the equatorial plane. If we set θ = π/2
in the equation (26) we can get the Lagrangian

2L = −
(

1− 2M
r

)
ṫ2 − 4aM

r ṫφ̇+ r 2

∆ ṙ 2 +
(

r 2 + a2 + 2Ma2

r

)
φ̇2 (33)

Corresponding to the ignorable coordinates t and φ we obtain two first
integrals (where ṫ = dt/dλ):

pt = ∂L
∂ ṫ = constant = −E (34)

pφ = ∂L
∂φ̇

= constant = L (35)

From (33) we can obtain (how?):

ṫ = (r 3 + a2r + 2Ma2)E − 2aML
r∆ (36)

φ̇ = 2aME + (r − 2M)L
r∆ (37)
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Kerr Black Hole : Geodesics ii

A 3rd integral of motion can be derived by gµνpµpν = −m2 which (by using
(36) & (37) is:

r 3 ṙ 2 = R(E , L, r) (38)

where

R = E 2(r 3 + a2r + 2Ma2)− 4aMEL− (r − 2M)L2 −m2r∆ (39)

we can regard R as an “effective potential” for radial motion in the equatorial
plane.

This equation can be written as:( dr
dτ

)2
= Rr 3 ≡ E 2 − Veff (40)

where

Veff =
(

1− 2M
r

)
+
[
L2 − a2(E 2 − 1)

]
r 2 − 2M(L− aE)2

r 3 (41)
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Kerr Black Hole : Circular Orbits i

Circular orbits occur where ṙ = 0. This requires:

R = 0, ∂R
∂r = 0 (42)

These equations can be solved for E and L to give

E/m = Ẽ = r 2 − 2Mr ± a
√

Mr
r
(
r 2 − 3Mr ± 2a

√
Mr
)1/2 (43)

L/m = L̃ = ±
√

Mr
(
r 2 ∓ 2a

√
Mr + a2)

r
(
r 2 − 3Mr ± 2a

√
Mr
)1/2 . (44)

Here the upper sign corresponds to corotating orbits and the lower sign to
counterrotating orbits.

• Kepler’s 3rd law : for circular equatorial orbits, by using (36) & (37) we get
(how?):

Ω = dφ
dt = φ̇

ṫ = ± M1/2

r 3/2±aM1/2 (45)
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Kerr Black Hole : Circular Orbits ii

Circular orbits exist from r =∞ all the way down to the limiting circular
photon orbit, when the denominator of Eq. (43) vanishes i.e.

r 2 − 3Mr ± 2a
√

Mr = 0

Solving for the resulting equation we find for the photon orbit

rph = 2M
{

1 + cos
[2

3 cos−1
(
∓ a

M

)]}
. (46)

NOTE :
For a = 0, rph = 3M
For a = M, rph = M (direct) or rph = 4M (retrograde).

? For r > rph, not all circular orbits are bound.
An unbound circular orbit has E/m > 1 and for an infinitesimal outward
perturbation, a particle in such an orbit will escape to infinity on an
asymptotically hyperbolic orbit.
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Kerr Black Hole : Circular Orbits iii

Bound orbits exist for r > rmb, where rmb is the radius of the marginally
bound circular orbit with E/m = 1:

rmb = 2M ∓ a + 2M1/2(M ∓ a)1/2 (47)

rmb is the minimum periastron of all parabolic E/m = 1 orbits.

? In astrophysical problems, particle infall from infinity is very nearby
parabolic, since u∞ � c.

? Any parabolic orbit that penetrates to r < rmb must plunge directly into
the BH.

? For a = 0, rmb = 4M, while
for a = M, rmb = M (direct) or rmb = 5.83M (retrograde)
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Kerr Black Hole : Stable Orbits

Even the bound orbits are not all stable.

Stability requires that
∂2R
∂r 2 ≤ 0 (48)

From eqn (43) we get

1−
(E

m

)2
≥ 2

3
M
r (49)

The solution for rms, the “radius of marginally stable circular orbit” is

rms = M
[
3 + Z2 ∓ [(3− Z1) (3 + Z1 + 2Z2)]1/2] (50)

Z1 = 1 +
(

1− a2

M2

)1/3 [(
1 + a

M

)1/3
+
(

1− a
M

)1/3
]

Z2 =
(

3 a2

M2 + Z 2
1

)1/2

For a = 0, rms = 6M, while
for a = M, rms = M (direct) or rms = 9M (retrograde)
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Kerr Black Hole : Binding Energy i

Schwarzchild case : Stable circular orbit in the Schwarzchild case exist down
to r = 3M i.e. when the denominator of

Ẽ 2 = (r − 2M)2

r(r − 3M) (51)

goes to zero (Ẽ = E/m→∞), this happens for photons i.e. rph = 3M.

• Circular orbits are stable if ∂2Veff/∂
2r > 0 and unstable if ∂2Veff/∂

2r ≤ 0.
This limit is rISCO = 6M then ẼISCO =

√
8/9.

• The binding energy per unit mass of a particle in the last stable circular
orbit (r = 6M) is, from (51) we get

Ẽbind = 1−
(8

9

)1/2
≈ 5.72% (52)

This is the fraction of rest-mass energy released when a particle originally at
rest at infinity spirals towards the BH to the innermost stable circular orbit, and
then plunges into the BH.
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Kerr Black Hole : Binding Energy ii

Thus the conversion of rest mass to other forms of energy is potentially much
more efficient for accretion onto a black hole than for nuclear burning which
releases maximum of only 0.9% of the rest mass (H → Fe).

• Kerr case :
The binding energy of the marginally stable circular orbits can be taken if we
eliminate r from Eq (43) and using Eq (50) we find

a
M = ∓4

√
2(1− Ẽ 2)1/2 − 2Ẽ
3
√

3(1− Ẽ 2)
(53)

The quantity Ẽ decreases from
√

8/9 (a = 0) to
√

1/3 (a = M) for direct
orbits and
increases from

√
8/9 (a = 0) to

√
25/27 (a = M) for retrograde orbits.

• The maximum binding energy 1− Ẽ for a maximally rotating BH is 1− 1/
√

3
or 42.3% of the rest-mass energy.
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Kerr Black Hole : Binding Energy iii

• This is the amount of energy that is released by matter spiralling in toward
the black hole through a succession of almost circular equatorial orbits.
Negligible energy will be released during the final plunge from rms into the
black hole.

• Note that the Boyer-Lindquist coordinate system collapses rms, rmb, rph and
r+ into r = M as a→ M.
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Frame draging

A particle with initial L = 0 at infinity released from the rest will follow a spiral
towards the black-hole along a conical surface of constant θ.
It acquires an angular velocity (HOW?)

dφ
dt = ω(r , θ) = 2aMr

(r 2 + a2)2 −∆a2 sin2 θ
(54)

as viewed from infinity.
Observers at fixed r and θ, with zero angular velocity, corotate with the
geometry with angular momentum ω(r , θ). Such observers define the so-called
“locally non-rotating frame’’ (LNRF) according to such observers, the released
particle described above appears to move radially locally.
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Penrose Process (1969) & Superadiance (Zel’dovich 1971) i

Particles inside the ergosphere may have negative energy trajectories

E = p0 = mg0µuµ = m
(
g00u0 + g0φuφ

)
(55)

Inside the ergosphere g00 < 0 while g0φ > 0 thus with an appropriate choice of
u0 and uφ it is possible to have particles with negative energy.

This can lead into energy extraction from a Kerr BH. Actually, we can extract
rotational energy till the BH reduces to a Schwarzschild one. The maximal
energy that can be extracted corresponds to 20.7% of the initial black hole
mass. Larger efficiencies are possible for charged-rotating black holes.

Starting from outside the ergosphere particle m0

enters into the ergosphere and splits into two parts.

One of them follows a trajectory of negative energy

and falls into the BH, the second escapes at infinity

carrying more energy than the initial particle!
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Penrose Process (1969) & Superadiance (Zel’dovich 1971) ii

Superadiance (Zel’dovich 1971) Energy amplification can occur when
electromagnetic or gravitational waves of suitable frequency scattered by a
rotating black-hole.

In this case a part of the wave is absorbed while the scattered part, under the
right conditions, can have more energy than the initial incident wave.
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Penrose Process (1969) & Superadiance (Zel’dovich 1971) iii

Figure 7: A city covering its energy needs from a black hole via the Penrose process. Figure
adapted from Misner-Thorne-Wheeler ”Gravitation” (1973)
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Black-Hole: Mechanics

There is a lower limit on the mass that can remain after a continuous
extraction of rotational energy via Penrose process.
Christodoulou (1969) named it irreducible mass Mir

4M2
ir = r 2

+ + a2 ≡
(

M +
√

M2 − a2
)2

+ a2 = 2Mr+ (56)

while Hawking (‘70) suggested that the area of the BH horizon cannot be
reduced via the Penrose process.

The two statements are equivalent!

EXAMPLE : Calculate the area of the horizon

ds2 = gθθdθ2 + gφφdφ2 =
(
r 2

+ + a2 cos2 θ
)

dθ2 + (r 2
+ + a2)2 sin2 θ

r 2
+ + a2 cos2 θ

dφ2

thus the horizon area is

A =
∫ 2π

0

∫ π

0

√gdθdφ =
∫ 2π

0

∫ π

0

√gφφ
√gθθdθdφ

=
∫ 2π

0

∫ π

0
(r 2

+ + a2) sin θdθdφ = 4π(r 2
+ + a2) = 8πMr+ = 16πM2

ir
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Black Hole Thermodynamics i

Hawking’s area theorem opened up a new avenue in the study of BH physics.

• The surface area of a BH seems to be analogous to entropy in
thermodynamics.

• In order to associate them one needs :
? to define precisely what is meant by the “entropy” of a BH
? to associate the concept of temperature with a BH

• Entropy is defined as the measure of the disorder of a system or of the lack
of information of its precise state. As the entropy increases the amount of
information about the state of a system decreases.

• No-hair theorem : a BH has only 3 distinguishing features : mass, angular
momentum and electric charge (Wheeler-Bekenstein , Carter-Hawking 1970).
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Black Hole Thermodynamics ii

Bekenstein argued that the entropy of a BH could be described in terms of the
number of internal states which correspond to the same external appearance.
I.e. the more massive is a BH the greater the number of possible configurations
that went into its formation, and the greater is the loss of information (which
has been lost during its formation).

• The area of the BH’s event horizon is proportional to M2.

• The entropy of the BH can be regarded as proportional to the area of the
horizon. Bekenstein has actually written

Sbh = ckB

~
A
4 = ckB

~
4πM2 (57)

where A is the surface area, ~ Planck’s constant divided by 2π and kB

Boltzmann’s constant.

• The introduction of BH entropy, calls for the definition of the BH
temperature!
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Black Hole Thermodynamics: 0th Law

The temperature of a body is uniform at thermodynamical equilibrium (0th
Law)

• The surface gravity of the event horizon of a BH is inversely proportional to
its mass

κbh =
(GM

r 2

)
r→r+

= c4

G
1

4M (58)

The surface gravity of the BH (spherical or axisymmetric) can play the role of
the temperature,

And in analogy the BH temperature should be inversely proportional to its
mass.

• The less massive is a BH the hotter it would be !
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Black Hole Thermodynamics: 1st Law i

The area of the event horizon is:

Ah = 8πMr+ = 8πM
[
M +

(
M2 − a2)1/2

]
(59)

Any change in A will be followed by a change in M and a, i.e.

δAh = 8π
[

2MδM + δM
(
M2 − a2)1/2 + M (MδM − aδa)

(M2 − a2)1/2

]
= 8π

(M2 − a2)1/2

[
Mr+δM − a2δM − aMδa

]
(60)

= 16πr+π

(M2 − a2)1/2 [δM − Ω+δJ] (61)

where Ω+ = a(2Mr+) is the angular velocity of the black-hole, while from the
definition of the angular momentum of the black hole J = Ma we get
δJ = aδM + Mδa.
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Black Hole Thermodynamics: 1st Law ii

We may rewrite eqn (61) as

δM = κ

8πG δAh + Ω δJ where κ =
(
M2 − a2)1/2

2Mr+
(62)

• In more general case (Kerr-Newman) if we make a small change in the
mass M, angular momentum J and the electric charge Q we get 3

δM = κ

8πG δA + ΩδJ + ΦδQ (64)

where the surface gravity and horizon area of a Kerr-Newman BH are:

κ = 4πµ/A

A = 4π[2M(M + µ)− Q2]

µ = (M2 − Q2 − J2/M2)1/2

This is the 1st law of black hole mechanics
3In thermodynamics

dU = TdS − PdV (63)

where U = U(S,V ) is the internal energy and S the entropy,
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Black Hole Thermodynamics : 2nd Law

Second law of black hole mechanics: the horizon can never decrease assuming
Cosmic Censorship and a positive energy condition 4

? This statement is not valid once quantum mechanics comes into play,
because Hawking radiation carries mass and therefore reduces the surface area
of the BH and hence its entropy.

? The correct statement is a generalised form of the law, that the entropy
of the Universe, including that of the black hole Sh, cannot decrease.
I.e. SUni = Sh + Sext cannot decrease (where Sext is the entropy of the world
excluding the BH).

4Note that during the “evaporation”, M decreases and thus so does A and S this
violates Hawking’s area theorem. However one of the postulates is that matter obeys
the “strong” energy condition, which requires that the local observer always measures
positive energy densities and there are no spacelike energy fluxes, which is not the case
of pair creation i.e. there is a spacelike energy flux.
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Black Hole Thermodynamics : 3rd Law

Third law of black hole mechanics: the surface gravity of the horizon cannot be
reduced to zero in a finite number of steps.

? Bekenstein-Hawking entropy formula

SH = 1
G~

A
4

? Bekenstein-Hawking temperature formula 5

T = ~
4π2kBc κ ≈ 6.2× 10−8

(M�
M

)
K (65)

5NOTE: a black-hole of 1M� will absorb far more CMB radiation than it emits. A
black-hole with mass of the order of our moon will have a temperature of about 2.7K
and thus will be in equilibrium with the environment.

47



Hawking (-Zeldovich) Radiation i

• Classically: Nothing can escape from the interior of a BH.

• Quantum Mechanically: Black holes shine like a blackbody with
temperature inversely proportional to their mass (Hawking 1974).

Quantum fluctuations of the zero-energy vacuum can

create particle - antiparticle pairs. These particles and

antiparticles are considered to be virtual in the sense

that they don’t last long enough to be observed.

According to Heisenberg’s principle ∆E ·∆t ≥ ~ and from Einstein’s equation
E = mc2 we get a relation which implies an uncertainty in mass

∆m ·∆t ≥ ~/c2

This means that in a very brief interval ∆t of time, we cannot be sure how
much matter there is in a particular location, even in the vacuum.
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Hawking (-Zeldovich) Radiation ii

Thus particle-antiparticle pairs can be created which may last for at most, a
time ~/c2∆m.
Before, the time is up, they must find each other and annihilate !

In the presence of a strong field the e− and the e+

may become separated by a distance of Compton
wavelength λ = h/mc that is of the order of the BH
radius r+.

There is a small but finite probability for one of them

to “tunnel” through the barrier of the quantum

vacuum and escape the BH horizon as a real particle

with positive energy, leaving the negative energy

inside the horizon of the BH.

• This process is called Hawking radiation

• The rate of emission is as if the BH were a hot body of temperature
proportional to the surface gravity.
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Hawking Temperature i

Hawking calculated that the statistical effect of many such emissions leads to
the emergence of particles with a thermal spectrum:

N(E) = 8π
c3h3

E 2

e4π2E/κh − 1
(66)

where N(E) is the number of particles of energy E per unit energy band per
unit volume.

• Notice the similarity between this formula and the Planckian distribution for
thermal radiation from a black body 2hν3

c2
1

ehν/kB T−1
.

• This similarity led Hawking to conclude that a black hole radiates as a black
body at the temperature T

T = ~
4π2kBc κ = ~c3

8πkBGM (67)

• Note that in the classical limit ~→ 0 the temperature vanishes and the BH
only absorbs photons, never emits them.
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Hawking Temperature ii

The temperature expressed in terms of mass is

T = ~c3

8πkBGM = 6.2× 10−8
(M�

M

)
K (68)

where M� is the solar mass.

To estimate the power radiated, we assume that the surface of the BH radiates
according to the Stefan-Boltzmann law:

dP
dA = σT 4 = π2

60
k4

B
~3c2 T 4 (69)

Substituting the temperature and noting that the power radiated corresponds
to a decrease of mass M by P = (dM/dt)c2, we obtain the differential
equation for the mass of a radiating BH as a function of t

dM
dt = − π3

15360
~ c4

G2M2 (70)
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Hawking Temperature iii

By integration we get the duration of the radiation

t ≈ Mc2

P ≈ 5120πG2

~ c4 M3 ≈ 8.41× 10−17
(

M
Kg

)3

sec (71)
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Hawking Radiation : Mini - BHs

? A BH with a mass comparable to that of the Sun would have a
temperature T ∼ 10−7K and will emit radiation at the rate of ∼ 10−16erg/s
and will evaporate in 6.73× 1074secs.

? A BH with mass of about 1014gr is expected to evaporate over a period of
about 1010 years (today).

? Planck mass quantum black hole Hawking radiation evaporation time:

tev = 5120πG2

~c4 m3
P = 5120πtP = 5120π

√
~G
c5 = 8.671× 10−40s . (72)

? The critical mass M0 for a BH to evaporate after time t is

M0 = π

8
1

101/3

(
~c4t

G2M2

)1/3

(73)

? We do not have a theory capable of explaining what happens when a BH
shrinks within the Planck radius (10−37 cm), and the answer to this question
lies in the area of speculation.
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