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Scalars and Vectors i

• A n-dim manifold is a space M on every point of which we can assign n
numbers (x 1,x 2,...,xn) - the coordinates - in such a way that there will be an
one to one correspondence between the points and the n numbers.

• Every point of the manifold has its own
neighborhood which can be mapped to a n-dim
Euclidean space.
• The manifold cannot be always covered by a
single system of coordinates and there is not a
preferable one either.

The coordinates of the point P are connected by relations of the form:
xµ

′
= xµ

′ (
x 1, x 2, ..., xn) for µ′ = 1, ..., n and their inverse

xµ = xµ
(

x 1′
, x 2′

, ..., xn′
)

for µ = 1, ..., n. If there exist

Aµ
′
ν = ∂xµ

′

∂xν and Aνµ′ = ∂xν

∂xµ′ ⇒ det |Aµ
′
ν | (1)

then the manifold is called differential.
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Scalars and Vectors ii
Any physical quantity, e.g. the velocity of a particle, is determined by a set of
numerical values - its components - which depend on the coordinate system.

Tensors
Studying the way in which these values change with the coordinate system
leads to the concept of tensor.

With the help of this concept we can express the physical laws by tensor
equations, which have the same form in every coordinate system.

• Scalar field : is any physical quantity determined by a single numerical
value i.e. just one component which is independent of the coordinate
system (mass, charge,...)

• Vector field (contravariant): an example is the infinitesimal
displacement vector, leading from a point A with coordinates xµ to a
neighbouring point A′ with coordinates xµ + dxµ. The components of
such a vector are the differentials dxµ.
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Vector Transformations

From the infinitesimal vector ~AA′ with components dxµ we can construct a
finite vector vµ defined at A. This will be the tangent vector to the curve
xµ = f µ(λ) passing from the points A and A′ corresponding to the values λ
and λ+ dλ of the parameter. Then

vµ = dxµ

dλ . (2)

Any transformation from xµ to x̃µ (xµ → x̃µ) will be determined by n
equations of the form: x̃µ = f µ(xν) where µ , ν = 1, 2, ..., n.

This means that :

dx̃µ =
∑
ν

∂f µ

∂xν dxν =
∑
ν

∂x̃µ

∂xν dxν for ν = 1, ..., n (3)

and
ṽµ = dx̃µ

dλ =
∑
ν

∂x̃µ

∂xν
dxν

dλ =
∑
ν

∂x̃µ

∂xν vν (4)
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Contravariant and Covariant Vectors i

Contravariant Vector: is a quantity with n components depending on the
coordinate system in such a way that the components aµ in the coordinate
system xµ are related to the components ãµ in x̃µ by a relation of the form

ãµ =
∑
ν

∂x̃µ

∂xν aν (5)

This means that, if the coordinate system undergoes a transformation
described by an invertible matrix M, so that a coordinate vector x is
transformed to x̃ = Mx, then a contravariant vector must be similarly
transformed via ã = Ma .

This requirement is what distinguishes a contravariant vector from any other
triple of physically meaningful quantities.

Displacement, velocity and acceleration are contravariant vectors.
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Contravariant and Covariant Vectors ii

Covariant Vector: eg. bµ, is an object with n components which depend on
the coordinate system on such a way that if aµ is any contravariant vector, the
following sums are scalars∑

µ

bµaµ =
∑
µ

b̃µãµ = φ for any xµ → x̃µ [ Scalar Product] (6)

The covariant vector will transform as (why?):

b̃µ =
∑
ν

∂xν

∂x̃µ bν or bµ =
∑
ν

∂x̃ν

∂xµ b̃ν (7)

The gradient vector transform is covariant

∇φ =
(
∂

∂x 1 ,
∂

∂x 3 ,
∂

∂x 3

)
φ ≡ ∇µφ ≡ ∂µφ ≡ φ,µ . (8)

What is Einstein’s summation convention?
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Tensors: at last

A contravariant tensor of order 2 is a quantity having n2 components Tµν

which transforms (xµ → x̃µ) in such a way that, if aµ and bµ are arbitrary
covariant vectors the following sums are scalars:

Tλµaµbλ = T̃λµãλb̃µ ≡ φ for any xµ → x̃µ (9)

Then the transformation formulae for the components of the tensors of order 2
are (why?):

T̃αβ = ∂x̃α

∂xµ
∂x̃β

∂xν Tµν , T̃α
β = ∂x̃α

∂xµ
∂xν

∂x̃β Tµ
ν & T̃αβ = ∂xµ

∂x̃α
∂xν

∂x̃β Tµν

The Kronecker symbol

δλµ =

{
0 if λ 6= µ ,

1 if λ = µ .

is a mixed tensor having frame independent values for its components.

? Tensors of higher order: Tαβγ...
µνλ...
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Tensor algebra i

• Tensor addition : Tensors of the same order (p, q) can be added, their
sum being again a tensor of the same order. For example:

ãν + b̃ν = ∂x̃ν

∂xµ (aµ + bµ) (10)

• Tensor multiplication : The product of two vectors is a tensor of order 2,
because

ãαb̃β = ∂x̃α

∂xµ
∂x̃β

∂xν aµbν (11)

in general:

Tµν = AµBν or Tµ
ν = AµBν or Tµν = AµBν (12)

• Contraction: for any mixed tensor of order (p, q) leads to a tensor of
order (p − 1, q − 1) (prove it!)

Tλµν
λα = Tµν

α (13)
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Tensor algebra ii

• Trace: of the mixed tensor Tα
β is called the scalar T = Tα

α.

• Symmetric Tensor : Tλµ = Tµλ orT(λµ) ,
Tνλµ = Tνµλ or Tν(λµ)

• Antisymmetric : Tλµ = −Tµλ or T[λµ],
Tνλµ = −Tνµλ or Tν[λµ]

Number of independent components :
Symmetric : n(n + 1)/2,
Antisymmetric : n(n − 1)/2
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Tensors: Differentiation & Connections i

We consider a region V of the space in which some tensor, e.g. a covariant
vector aλ, is given at each point P(xα) i.e.

aλ = aλ(xα)

We say then that we are given a tensor field in V and we assume that the
components of the tensor are continuous and differentiable functions of xα.

Question: Is it possible to construct a new tensor field by differentiating the
given one?

The simplest tensor field is a scalar field φ = φ(xα) and its derivatives are the
components of a covariant tensor!

∂φ

∂x̃λ = ∂xα

∂x̃λ
∂φ

∂xα we will use: ∂φ

∂xα = φ,α ≡ ∂αφ (14)

i.e. φ,α is the gradient of the scalar field φ.
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Tensors: Differentiation & Connections ii
The derivative of a contravariant vector field Aµ is :

∂Aµ

∂xα ≡ Aµ,α = ∂

∂xα
(
∂xµ

∂x̃ν Ãν
)

= ∂x̃ρ

∂xα
∂

∂x̃ρ
(
∂xµ

∂x̃ν Ãν
)

= ∂2xµ

∂x̃ν∂x̃ρ
∂x̃ρ

∂xα Ãν + ∂xµ

∂x̃ν
∂x̃ρ

∂xα
∂Ãν

∂x̃ρ (15)

Without the first term (red) in the right hand side this equation would be the
transformation formula for a mixed tensor of order 2.

The transformation (xµ → x̃µ) of the derivative of a vector is:

Aµ,α −
∂2xµ

∂x̃ν∂x̃ρ
∂x̃ρ

∂xα
∂x̃ν

∂xκ︸ ︷︷ ︸
Γµ

ακ

Aκ = ∂xµ

∂x̃ν
∂x̃ρ

∂xα Ãν,ρ (16)

in another coordinate (x ′µ → x̃µ) we get again:

A′µ,α −
∂2x ′µ

∂x̃ν∂x̃ρ
∂x̃ρ

∂xα
∂x̃ν

∂x ′κ︸ ︷︷ ︸
Γ′µ

ακ

A′κ = ∂x ′µ

∂x̃ν
∂x̃ρ

∂x ′α Ãν,ρ (17)
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Tensors: Differentiation & Connections iii

Suggesting that for a transformation (xµ → x ′µ) the following convention
might work:

Aµ ,α + Γµ ακAκ = ∂xµ

∂x ′ν
∂x ′ρ

∂xα
(

A′ν ,ρ + Γ′νσρA′σ
)

(18)

The necessary and sufficient condition for Aµ ,α + Γµ ακAκ to be a tensor is:

Γ′λρν = ∂2xµ

∂x ′ν∂x ′ρ
∂x ′λ

∂xµ + ∂xκ

∂x ′ρ
∂xσ

∂x ′ν
∂x ′λ

∂xµ Γµκσ . (19)

The object Γλρν is the called the connection of the space and it is not tensor.
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Covariant Derivative

According to the previous assumptions, the following quantity transforms as a
tensor of order 2

Aµ;α = Aµ,α + ΓµαλAλ or ∇αAµ = ∂αAµ + ΓµαλAλ (20)

and is called absolute or covariant derivative of the contravariant vector Aµ.

In similar way we get (how?) :

φ;λ = φ,λ (21)

Aλ;µ = Aλ,µ − ΓρµλAρ (22)

Tλµ
;ν = Tλµ

,ν + ΓλανTαµ + ΓµανTλα (23)

Tλ
µ;ν = Tλ

µ,ν + ΓλανTα
µ − ΓαµνTλ

α (24)

Tλµ;ν = Tλµ,ν − ΓαλνTµα − ΓαµνTλα (25)

Tλµ···
νρ··· ;σ = Tλµ···

νρ··· ,σ

+ ΓλασTαµ···
νρ··· + ΓµασTλα···

νρ··· + · · ·

− ΓανσTλµ···
αρ··· − ΓαρσTλµ···

να··· − · · · (26) 13



Parallel Transport of a vector i

Let aµ be some covariant vector field.
Consider two neighbouring points P
and P ′, and the displacement PP′

having components dxµ.

At the point P ′ we may define two vectors associated to aµ(P) :
a) The vector aµ(P ′) defined as:

aµ(P ′) = aµ(P) + aµ,ν(P)dxν = aµ(P) + ∆aµ(P) (27)

The difference aµ(P ′)− aµ(P) = aµ,ν(P)dxν ≡ ∆aµ(P) is not a tensor.

b) The vector Aµ(P ′) after its “parallel transport” from P to P ′

Aµ(P ′) = aµ(P) + δaµ(P). (28)

δaµ(P) is not yet defined. Potentially it can be written as : δaµ = Cλ
µνaλdxν .
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Parallel Transport of a vector ii
The difference of the two vectors

aµ(P ′)− Aµ(P ′)︸ ︷︷ ︸
vector

= aµ + ∆aµ︸ ︷︷ ︸
at point P

− (aµ + δaµ)︸ ︷︷ ︸
at point P

= ∆aµ − δaµ︸ ︷︷ ︸
vector

= aµ,νdxν − δaµ︸ ︷︷ ︸
vector

=
(

aµ,ν − Cλ
µνaλ

)
dxν

Which leads to the obvious suggestion that Cλ
µν ≡ Γλµν .

The connection Γλµν allows us to define a covariant vector aλ;µ which is a
tensor. In other words with the help of Γλµν we can define a vector at a point
P ′, which has to be considered as “equivalent” to the vector aµ defined at P.
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Parallel Transport of a vector iii

Parallel Transport
The connection Γλµν allows to define the transport of a vector aλ from a point
P to a neighbouring point P ′ (Parallel Transport).

δaµ = Γλµνaλdxν for covariant vectors (29)

δaµ = −Γµλνaλdxν for contravariant vectors (30)

•The parallel transport of a scalar field is zero! δφ = 0 (why?)
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Review of the 1st Lecture

Tensor Transformations

b̃µ =
∑
ν

∂xν

∂x̃µ bν and ãµ =
∑
ν

∂x̃µ

∂xν aν (31)

T̃αβ = ∂x̃α

∂xµ
∂x̃β

∂xν Tµν , T̃α
β = ∂x̃α

∂xµ
∂xν

∂x̃β Tµ
ν & T̃αβ = ∂xµ

∂x̃α
∂xν

∂x̃β Tµν

Covariant Derivative

φ;λ = φ,λ (32)

Aλ;µ = Aλ,µ − ΓρµλAρ (33)

Tλµ
;ν = Tλµ

,ν + ΓλανTαµ + ΓµανTλα (34)

Parallel Transport

δaµ = Γλµνaλdxν for covariant vectors (35)

δaµ = −Γµλνaλdxν for contravariant vectors (36)
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Measuring the Curvature of the Space i

The“expedition” of a vector
parallel transported along a
closed path

The parallel transport of the vector aλ from the point P to A leads to a change
of the vector by a quantity Γλµν(P)aµdxν and the new vector is:

aλ(A) = aλ(P)− Γλµν(P)aµ(P)dxν (37)

A further parallel transport to the point B will lead the vector

aλ(B) = aλ(A)− Γλρσ(A)aρ(A)δxσ

= aλ(P)− Γλµν(P)aµ(P)dxν − Γλρσ(A)
[
aρ(P)− Γρβν(P)aβdxν

]
δxσ
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Measuring the Curvature of the Space ii

Since both dxν and δxν assumed to be small we can use the following
expression

Γλρσ(A) ≈ Γλρσ(P) + Γλρσ,µ(P)dxµ . (38)

Thus we have estimated the total change of the vector aλ from the point P to
B via A (all terms are defined at the point P).

aλ(B) = aλ − Γλµνaµdxν − Γλρσaρδxσ + ΓλρσΓρβνaβdxνδxβ + Γλρσ,τaρdxτδxσ

− Γλρσ,τΓρβνaβdxτdxνδxσ

If we follow the path P → C → B we get:

aλ(B) = aλ−Γλµνaµδxν−Γλρσaρdxσ+ΓλρσΓρβνaβδxνdxβ +Γλρσ,τaρδxτdxσ

and the accumulated effect on the vector will be

δaλ ≡ aλ(B)− aλ(B) = aβ (dxνδxσ − dxσδxν)
(

ΓλρσΓρβν + Γλβσ,ν
)

(39)
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Measuring the Curvature of the Space iii
By exchanging the indices ν → σ and σ → ν we construct a similar relation

δaλ = aβ (dxσδxν − dxνδxσ)
(

ΓλρνΓρβσ + Γλβν,σ
)

(40)

and the total change will be given by the following relation:

δaλ = −1
2 aβRλ

βνσ (dxσδxν − dxνδxσ) (41)

where Rλ
βνσ = −Γλβν,σ + Γλβσ,ν − ΓµβνΓλµσ + ΓµβσΓλµν (42)

is the curvature tensor.

Figure 1: Measuring the curvature for the space.
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Geodesics

• For a vector uλ at point P we apply the parallel transport along a curve
on an n-dimensional space which will be given by n equations of the form:
xµ = f µ(λ); µ = 1, 2, ..., n

• If uµ = dxµ

dλ is the tangent vector at P, the parallel transport of this vector
will determine at another point of the curve a vector which will not be in
general tangent to the curve.

• If the transported vector is tangent to any point of the curve then this
curve is a geodesic curve of this space and is given by the equation :

duρ

dλ + Γρµνuµuν = 0 . (43)

• Geodesic curves are the shortest curves connecting two points on a curved
space.
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Metric Tensor i

A space is called a metric space if a prescription is given attributing a scalar
distance to each pair of neighbouring points

The distance ds of two points P(xµ) and P ′(xµ + dxµ) is given by

ds2 =
(

dx 1)2 +
(

dx 2)2 +
(

dx 3)2 (44)

In another coordinate system, x̃µ, we will get

dxν = ∂xν

∂x̃α dx̃α (45)

which leads to:
ds2 = g̃µνdx̃µdx̃ν = gαβdxαdxβ . (46)

This gives the following transformation relation (why?):

g̃µν = ∂xα

∂x̃µ
∂xβ

∂x̃ν gαβ (47)
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Metric Tensor ii

suggesting that the quantity gµν is a symmetric tensor, the so called metric
tensor.

The relation (46) characterises a Riemannian space: This is a metric space in
which the distance between neighbouring points is given by (46).

• If at some point P there are given 2 infinitesimal displacements d (1)xα and
d (2)xα , the metric tensor allows to construct the scalar

gαβ d (1)xα d (2)xβ

which shall call scalar product of the two vectors.

• Properties:

gµαAα = Aµ, gµαTλα = Tλ
µ, gµνTµ

α = Tνα, gµνgασTµα = Tνσ
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Metric Tensor iii

• Metric element for Minkowski spacetime

ds2 = −dt2 + dx 2 + dy 2 + dz2 (48)

ds2 = −dt2 + dr 2 + r 2dθ2 + r 2 sin2 θdφ2 (49)

• For a sphere with radius R :

ds2 = R2 (dθ2 + sin2 θdφ2) (50)

• The metric element of a torus with radii a and b

ds2 = a2dφ2 + (b + a sinφ)2 dθ2 (51)
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Metric Tensor iv

• The contravariant form of the metric tensor:

gµαgαβ = δβµ where gαβ = 1
det |gµν |

Gαβ ← minor determinant (52)

With gµν we can now raise lower indices of tensors

Aµ = gµνAν , Tµν = gµρT ν
ρ = gµρgνσTρσ (53)

• The angle, ψ, between two infinitesimal vectors d (1)xα and d (2)xα is 1:

cos(ψ) = gαβ d (1)xα d (2)xβ√
gρσ d (1)xρ d (1)xσ

√
gµν d (2)xµ d (2)xν

. (54)

1Remember the Euclidean relation: ~A · ~B = ||A|| · ||B|| cos(ψ)

25



The Determinant of gµν

The quantity g ≡ det |gµν | is the determinant of the metric tensor. The
determinant transforms as :

g̃ = det g̃µν = det
(

gαβ
∂xα

∂x̃µ
∂xβ

∂x̃ν

)
= det gαβ · det

(
∂xα

∂x̃µ
)
· det

(
∂xβ

∂x̃ν

)
=

(
det ∂xα

∂x̃µ
)2

g = J 2g (55)

where J is the Jacobian of the transformation.

This relation can be written also as:√
|g̃ | = J

√
|g | (56)

i.e. the quantity
√
|g | is a scalar density of weight 1.

• The quantity √
|g |δV ≡

√
|g |dx 1dx 2 . . . dxn (57)

is the invariant volume element of the Riemannian space.

• If the determinant vanishes at a point P the invariant volume is zero and
this point will be called a singular point.
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Christoffel Symbols

In Riemannian space there is a special connection derived directly from the
metric tensor. This is based on a suggestion originating from Euclidean
geometry that is :
“ If a vector aλ is given at some point P, its length must remain unchanged
under parallel transport to neighboring points P ′”.

|~a|2P = |~a|2P′ or gµν(P)aµ(P)aν(P) = gµν(P ′)aµ(P ′)aν(P ′) (58)
Since the distance between P and P ′ is |dxρ| we can get

gµν(P ′) ≈ gµν(P) + gµν,ρ(P)dxρ (59)

aµ(P ′) ≈ aµ(P)− Γµσρ(P)aσ(P)dxρ (60)
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By substituting these two relation into equation (58) we get (how?)

(gµν,ρ − gµσΓσνρ − gσνΓσµρ) aµaνdxρ = 0 (61)

This relations must by valid for any vector aν and any displacement dxν which
leads to the conclusion the relation in the parenthesis is zero. Closer
observation shows that this is the covariant derivative of the metric tensor !

gµν;ρ = gµν,ρ − gµσΓσνρ − gσνΓσµρ = 0 . (62)

i.e. gµν is covariantly constant.

This leads to a unique determination of the connections of the space
(Riemannian space) which will have the form (why?)

Γαµρ = 1
2 gαν (gµν,ρ + gνρ,µ − gρµ,ν) (63)

and will be called Christoffel Symbols .

It is obvious that Γαµρ = Γαρµ .
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Geodesics in a Riemann Space i

The geodesics of a Riemannian space have the following important property.
If a geodesic is connecting two points A and B is distinguished from the
neighboring lines connecting these points as the line of minimum or maximum
length. The length of a curve, xµ(s), connecting A and B is:

S =
∫ B

A
ds =

∫ B

A

[
gµν(xα) dxµ

ds
dxν

ds

]1/2
ds

A neighboring curve x̃µ(s) connecting the same points will be described by the
equation:

x̃µ(s) = xµ(s) + ε ξµ(s) (64)

where ξµ(A) = ξµ(B) = 0.
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Geodesics in a Riemann Space ii

The length of the new curve will be:

S̃ =
∫ B

A

[
gµν(x̃α) dx̃µ

ds
dx̃ν

ds

]1/2
ds (65)

For simplicity we set:
f (xα, uα) = [gµν(xα)uµuν ]1/2 and f̃ (x̃α, ũα) = [gµν(x̃α)ũµũν ]1/2

uµ = ẋµ = dxµ/ds and uµ = ˙̃xµ = dx̃µ/ds = ẋ + εξ̇µ (66)

We can create the difference δS = S̃ − S and by making use of the relations:

f (x̃α, ũα) = f (xα + εξα, uα + εξ̇α)

= f (xα, uα) + ε
(
ξα

∂f
∂xα + ξ̇α

∂f
∂uα

)
+ O(ε2)

d
ds

(
∂f
∂uα ξ

α
)

= ∂f
∂uα ξ̇

α + d
ds

(
∂f
∂uα

)
ξα
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Geodesics in a Riemann Space iii
we get

f̃ − f = ε
[
∂f
∂xα −

d
ds

(
∂f
∂uα

)]
ξα + ε

d
ds

(
∂f
∂uα ξ

α
)

(67)

Thus

δS =
∫ B

A
δf ds =

∫ B

A

(
f̃ − f

)
ds

= ε

∫ B

A

[
∂f
∂xα −

d
ds

(
∂f
∂uα

)]
ξαds + ε

∫ B

A

d
ds

(
∂f
∂uα ξ

α
)

ds

The last term does not contribute and the condition for the length of S to be
an extremum will be expressed by the relation:

δS = ε

∫ B

A

[
∂f
∂xα −

d
ds

(
∂f
∂uα

)]
ξαds = 0 (68)

Since ξα is arbitrary, we must have for each point of the curve:

d
ds

(
∂f
∂uµ

)
− ∂f
∂xµ = 0 (69)
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Geodesics in a Riemann Space iv

Notice that the Langrangian of a freely moving particle with mass m = 2, is:
L = gµνuµuν ≡ f 2 this leads to the following relations

∂f
∂uα = 1

2
∂L
∂uαL

−1/2 and ∂f
∂xα = 1

2
∂L
∂xαL

−1/2 (70)

and by substitution in (69) we come to the condition for extremum of the
distance (Euler-Lagrange)

d
ds

(
∂L
∂uµ

)
− ∂L
∂xµ = 0 . (71)

Since L = gµνuµuν we get:

∂L
∂uα = gµν

∂uµ

∂uα uν + gµνuµ ∂uν

∂uα = gµνδµαuν + gµνuµδνα = 2gµαuµ(72)

∂L
∂xα = gµν,αuµuν (73)
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Geodesics in a Riemann Space v

thus

d
ds (2gµαuµ) = 2 dgµα

ds uµ + 2gµα
duµ

ds = 2gµα,νuνuµ + 2gµα
duµ

ds

= gµα,νuνuµ + gνα,µuµuν + 2gµα
duµ

ds (74)

and by substitution (73) and (74) in (71) we get

gµα
duµ

ds + 1
2 [gµα,ν + gαµ,ν − gµν,α] uµuν = 0

if we multiply with gρα the geodesic equations

duρ

ds + Γρµνuµuν = 0 , or uρ;νuν = 0 (75)

because duρ/ds = uρ,νuν .
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Euler-Lagrange Eqns vs Geodesic Eqns

By setting the Lagrangian for a freely moving particle to be L = gµνuµuν we
get the Euler-Lagrange equations

d
ds

(
∂L
∂uµ

)
− ∂L
∂xµ = 0

which are equivalent to the geodesic equations

duρ

ds + Γρµνuµuν = 0 or d2xρ

ds2 + Γρµν
dxµ

ds
dxν

ds = 0 .

Notice that if the metric tensor does not depend from a specific coordinate e.g.
xκ then

d
ds

(
∂L
∂uκ

)
= 0

which means that the quantity ∂L/∂uκ is constant along the geodesic.

Then eq (72) implies that ∂L
∂uκ = gµκuµ that is the κ component of the

generalized momentum pκ = gµκuµ remains constant along the geodesic.
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Types of Geodesics

If we know the tangent vector uρ at a given point of a known space we can
determine the geodesic curve.

Which will be characterized as:

• timelike if |~u|2 > 0

• null if |~u|2 = 0

• spacelike if |~u|2 < 0

where |~u|2 = gµνuµuν

If gµν 6= ηµν then the light cone is affected by the curvature of the spacetime.
For example, in a space with metric ds2 = −f (t, x)dt2 + g(t, x)dx 2 the light
cone will be drawn from the relation dt/dx = ±

√
g/f which leads to STR

results for f , g → 1.
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Null Geodesics

For null geodesics ds = 0 and the proper length s cannot be used to
parametrize the geodesic curves.

Instead we will use another parameter λ and the equations will be written as:

d2xκ

dλ2 + Γκµν
dxµ

dλ
dxν

dλ = 0 (76)

and obiously:
gµν

dxµ

dλ
dxν

dλ = 0 . (77)
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Geodesic Eqns & Affine Parameter

In deriving the geodesic equations we have chosen to parametrize the curve via
the proper length s. This choice simplifies the form of the equation but it is
not a unique choice. If we chose a new parameter, σ = σ(s) then the geodesic
equations will be written:

d2xµ

dσ2 + Γµαβ
dxα

dσ
dxβ

dσ = − d2σ/ds2

(dσ/ds)2
dxµ

dσ (78)

where we have used

dxµ

ds = dxµ

dσ
dσ
ds and d2xµ

ds2 = d2xµ

dσ2

(dσ
ds

)2
+ dxµ

dσ
d2σ

ds2 (79)

The new geodesic equation (78), reduces to the original equation (76) when
the right hand side is zero. This is possible if

d2σ

ds2 = 0 (80)

which leads to a linear relation between s and σ i.e. σ = αs + β where α and β
are arbitrary constants. σ is called affine parameter.
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Riemann - Ricci & Einstein Tensors i

When in a space we define a metric then is called metric space or Riemann
space. For such a space the curvature tensor

Rλ
βνµ = −Γλβν,µ + Γλβµ,ν − ΓσβνΓλσµ + ΓσβµΓλσν (81)

is called Riemann Tensor and can be also written as:

Rκβνµ = gκλRλ
βνµ = 1

2 (gκµ,βν + gβν,κµ − gκν,βµ − gβµ,κν)

+ gαρ
(

ΓακµΓρβν − ΓακνΓρβµ
)

• Properties of the Riemann Tensor:

Rκβνµ = −Rκβµν , Rκβνµ = −Rβκνµ , Rκβνµ = Rνµκβ , Rκ[βµν] = 0

Thus in an n-dim space the number of independent components is (how?):

n2(n2 − 1)/12 (82)
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Riemann - Ricci & Einstein Tensors ii

Thus in a 4-dimensional space the Riemann tensor has only 20 independent
components.

• The contraction of the Riemann tensor leads to Ricci Tensor

Rαβ = Rλ
αλβ = gλµRλαµβ

= Γµαβ,µ − Γµαµ,β + ΓµαβΓννµ − ΓµανΓνβµ (83)

which is symmetric i.e. Rαβ = Rβα.

• Further contraction leads to the Ricci or Curvature Scalar

R = Rα
α = gαβRαβ = gαβgµνRµανβ . (84)

• The following combination of Riemann and Ricci tensors is called Einstein
Tensor

Gµν = Rµν −
1
2 gµνR (85)
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Riemann - Ricci & Einstein Tensors iii

with the very important property:

Gµ
ν;µ =

(
Rµ

ν −
1
2δ

µ
νR
)

;µ
= 0 . (86)

This results from the Bianchi Identity (how?)

Rλ
µ[νρ;σ] = 0 (87)
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Flat & Empty Spacetimes

• When Rαβµν = 0 the spacetime is flat
• When Rµν = 0 the spacetime is empty

Prove that :
aλ;µ;ν − aλ;ν;µ = −Rλ

κµνaκ
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Weyl Tensor i

Important relations can be obtained when we try to express the Riemann or
Ricci tensor in terms of trace-free quantities.

Sµν = Rµν −
1
4 gµνR ⇒ S = Sµµ = gµνSµν = 0 . (88)

or the Weyl tensor Cλµνρ:

Rλµνρ = Cλµνρ + 1
2 (gλρSµν + gµνSλρ − gλνSµρ − gµρSλν)

+ 1
12 R (gλρgµν − gλνgµρ) (89)

Rλµνρ = Cλµνρ − 1
2 (gλρRµν + gµνRλρ − gλνRµρ − gµρRλν)

− 1
12 R (gλρgµν − gλνgµρ) . (90)

and we can prove (how?) that :

gλρCλµρν = 0 (91)
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Weyl Tensor ii
• The Weyl tensor is the trace-free part of the Riemann tensor. In the
absence of sources, the trace part of the Riemann tensor will vanish due to the
Einstein equations, but the Weyl tensor can still be non-zero.
This is the case for gravitational waves propagating in vacuum.

• The Weyl tensor expresses the tidal force (as the Riemann curvature tensor
does) that a body feels when moving along a geodesic.
The Weyl tensor differs from the Riemann curvature tensor in that it does not
convey information on how the volume of the body changes, but rather only
how the shape of the body is distorted by the tidal force.
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Weyl Tensor iii
• The Weyl tensor is called also conformal curvature tensor because it has
the following property :
If we consider besides the Riemannian space M with metric gµν a second
Riemannian space M̃ with metric

g̃µν = e2Agµν

where A is a function of the coordinates. The space M̃ is said to be conformal
to M.

One can prove that

Rα
βγδ 6= R̃α

βγδ while Cα
βγδ = C̃α

βγδ (92)

i.e. a “conformal transformation” does not change the Weyl tensor.

44



Weyl Tensor iv

• It can be verified at once from equation (90) that the Weyl tensor has the
same symmetries as the Riemann tensor. Thus it should have 20 independent
components, but because it is traceless [condition (91)] there are 10 more
conditions for the components therefore the Weyl tensor has 10 independent
components. In general, the number of independent components is given by

1
12 n(n + 1)(n + 2)(n − 3) (93)

• In 2D and 3D spacetimes the Weyl curvature tensor vanishes identically.
Only for dimensions ≥ 4, the Weyl curvature is generally nonzero.

• If in a spacetime with ≥ 4 dimensions the Weyl tensor vanishes then the
metric is locally conformally flat, i.e. there exists a local coordinate system in
which the metric tensor is proportional to a constant tensor.

• On the symmetries of the Weyl tensor is based the Petrov classification of
the space times (any volunteer?).
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Tensors : An example for parallel transport i

A vector ~A = Aθ~eθ + Aφ~eφ is parallel
transported along a closed line on the
surface of a sphere with metric
ds2 = dθ2 + sin2θdφ2 and Christoffel
symbols Γ1

22 = Γθφφ = − sin θ cos θ and
Γ2

12 = Γφθφ = cot θ .

The eqns δAα = −ΓαµνAµdxν for parallel transport will be written as:

∂A1

∂x 2 = −Γ1
22A2 ⇒ ∂Aθ

∂φ
= sin θ cos θAφ

∂A2

∂x 2 = −Γ2
12A1 ⇒ ∂Aφ

∂φ
= − cot θAθ
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Tensors : An example for parallel transport ii

The solutions will be:

∂2Aθ

∂φ2 = − cos2 θAθ ⇒ Aθ = α cos(φ cos θ) + β sin(φ cos θ)

⇒ Aφ = − [α sin(φ cos θ)− β cos(φ cos θ)] sin−1 θ

and for an initial unit vector (Aθ,Aφ) = (1, 0) at (θ, φ) = (θ0, 0) the
integration constants will be α = 1 and β = 0.

Thus Aθ = cos(φ cos θ) and Aφ = − sin(φ cos θ)

• The solution is:

~A = Aθ~eθ + Aφ~eφ = cos(2π cos θ)~eθ −
sin(2π cos θ)

sin θ ~eφ
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Tensors : An example for parallel transport iii

• i.e. different components but the measure is still the same

|~A|2 = gµνAµAν =
(

Aθ
)2 + sin2 θ

(
Aφ
)2

= cos2(2π cos θ) + sin2 θ
sin2(2π cos θ)

sin2 θ
= 1

Question : What is the condition for the path followed by the vector to be a
geodesic?
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Extension



1-forms (*) i

• A 1-form can be defined as a linear, real valued function of vectors. 2

• A 1-form ω̃ at a point P associates with a vector v at P a real number,
which maybe called ω̃(v). We may say that ω̃ is a function of vectors while the
linearity of this function means:

• ω̃(av + bw) = aω̃(v) + bω̃(w) a, b ∈ IR

• (aω̃)(v) = a[ω̃(v)]

• (ω̃ + σ̃) (v) = ω̃(v) + σ̃(v)

• Thus 1-forms at a point P satisfy the axioms of a vector space, which is
called the dual space to TP , and is denoted by T ∗P .

• The linearity also allows to consider the vector as function of 1-forms: Thus
vectors and 1-forms are thus said to be dual to each other.

49



1-forms (*) ii

• Their value on one another can be represented as follows:

ω̃(v) ≡ v(ω̃) ≡< ω̃, v > . (94)

• We may introduce a set of basis 1-forms ω̃α dual to the basis vectors eα.

• An arbitrary 1-form B̃ can be expanded in its covariant components
according to

B̃ = Bαω̃α . (95)

• The scalar product of two 1-forms Ã and B̃ is

Ã · B̃ = (Aαω̃α) ·
(

Bβω̃β
)

= gαβAαBβ where gαβ = ω̃α · ω̃β . (96)

• A basis of 1-forms dual to the basis eα always satisfies

ω̃α · eβ = δαβ . (97)
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1-forms (*) iii

• The scalar product of a vector with a 1-form does not involve the metric,
but only a summation over an index

A · B̃ = (Aαeα) ·
(

Bβω̃β
)

= AαδαβBβ = AαBα . (98)

A vector A carries the same information as the corresponding 1- form Ã, and
we often make no distinction between them, recall that :

Aα = gαβAβ and Aα = gαβAβ . (99)

A coordinate basis of 1-forms may be written ω̃α = d̃xα, remember that
eα = ∂/∂xα ≡ ∂α.

Geometrically the basis form d̃xα may be thought of as surfaces of constant xα.

• An orthonormal basis ω̃α̂ satisfies the relation

ω̃α̂ · ω̃β̂ = ηα̂β̂ . (100)
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1-forms (*) iv

• The gradient, d̃f , of an arbitrary scalar function f is particularly useful
1-form.

• In a coordinate basis, it may be expanded according to d̃f = ∂αf ˜dxα (its
components are ordinary partial derivatives).

• The scalar product between an arbitrary vector v and the 1-form d̃f gives
the directional derivative of f along v

v · d̃f = (vαeα) ·
(
∂βf ˜dxβ

)
= vα∂αf . (101)

2See B. F. Schutz “Geometrical methods of mathematical physics” Cambridge, 1980.
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1-forms or co-vectors (*) i

Based on the previous, any 4-vector A can be expanded in contravariant
components 3

A = Aαeα . (102)

Here the four basis vectors eα span the vector space TPM tangent to the
spacetime manifold M
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1-forms or co-vectors (*) ii

and
gαβ = eα · eβ . (103)

In a coordinate basis, the basis vectors are tangent vectors to coordinate lines
and can be written as eα = ∂/∂xα ≡ ∂α. The coordinate vectors commute.

We may also set an orthonormal basis vectors at a point (orthonormal tetrad)
for which

eα̂ · eβ̂ = ηα̂β̂ . (104)

• In general, orthonormal basis vectors do not form a coordinate basis and do
not commute.

• In a flat spacetime it is always possible to transform to coordinates which
are everywhere orthonormal i.e. ηαβ = diag(−1, 1, 1, 1).

• For a genaral spacetime this is not possible, but one may select an event
in the spacetime to be the origin of a local inertial coordinate frame, where
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1-forms or co-vectors (*) iii

gαβ = ηαβ at this point and in addition the 1st derivatives of the metric tensor
at that point vanish, i.e. ∂γgαβ = 0.

• An observer in such a coordinate frame is called a local inertial and can use
a coordinate basis that forms that forms a local orthonormal tetrad to make
measurements in SR.

• Such n observer will find that all the (non-gravitational) laws of physics in
this frame are the same as in special relativity.

• The scalar product of two 4-vectors A and B is

A · B = (Aαeα) ·
(

Bβeβ
)

= gαβAαBβ . (105)

3Baumgarte-Shapiro ”Numerical Relativity”, Cambridge 2010
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Lie Derivatives, Isometries & Killing Vectors i

Up to now we consider coordinate transformations xµ → x̃µ with the following
meaning: to the point P with initial coordinate values xµ we assign new
coordinates x̃µ determined from xµ via the n functions

x̃µ = f µ(xα) , µ = 1...n (106)

We shall give to the transformation xµ → x̃µ the following meaning:
To the point P having the coordinate values xµ we correspond another point Q
of the same space having the coordinate values x̃µ in the same coordinate
system.

This operations is a mapping of the space into itself.

In the infinitesimal mapping

x̃µ = xµ + εξµ (107)

where ξµ = ξµ(xα) is a given vector field and ε an infinitesimal parameter.
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Lie Derivatives, Isometries & Killing Vectors ii
The meaning is: in the point P with coordinate values xµ we correspond the
point Q with coordinate values xµ + εξµ (in the same coordinate system).

Thus we can define the difference between two tensors defined at the point Q
this will be the Lie derivative.

The first tensor is the one defined by the field at Q while the second will be the
one defined if we ”take over” the value of the field at P and map it via (107)
into the point Q.
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Lie Derivatives, Isometries & Killing Vectors iii
The Lie derivative of a Scalar Field

Lets assume a scalar field at a point P i.e. φP = φ(xµ), since it is a scalar we
postulate that the mapping P → Q will leave it unchanged.

Thus we have at Q two scalars

φQ = φ(x̃µ) + εφ,µξ
µ and φP→Q = φP (108)

The Lie derivative of the scalar φ with respect to ξµ is defined as follows:

Lξφ = lim
ε→0

φQ − φP→Q

ε
(109)

therefore due to (108) we get:

Lξφ = φ,µξ
µ (110)
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Lie Derivatives, Isometries & Killing Vectors iv

The Lie derivative of a Contravariant Vector Field

Let’s assume that the contravariant vector kµ = kµ(xα) is the tangent vector
to a curve passing from the point at P.
If this curve is described by a parameter λ we have:

kµ = dxµ

dλ (111)

where dxµ are the components of the vector PP’. If the points Q and Q′

correspond to P and P ′ via the mapping (107) then the components of the
vector QQ′ will be

δxµ = dxµ + εξµP′ − εξµP = dxµ + εξµ,νdxν (112)
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Lie Derivatives, Isometries & Killing Vectors v

The transport of the vector kµ from P to Q by the mapping (107) will be:

kµP→Q = δxµ

dλ = kµP + εξµ,νkν (113)

and the definition of the Lie derivative of the vector kµ is:

Lξkµ = lim
ε→0

kµQ − kµP→Q

ε
(114)

and since
kµQ = kµ(x̃α) = kµP + εkµ,νξν
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Lie Derivatives, Isometries & Killing Vectors vi
we finally get

Lξkµ = kµ,νξν − ξµ,νkν . (115)

The Lie derivative of any other tensor T ...
... will be defined as

LξT ...
... = lim

ε→0

(T ...
... )Q − (T ...

... )P→Q

ε
(116)

The detailed formulae will be derived from the formulae that we have already
derived for the scalar and the contravariant vector.
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Lie Derivatives, Isometries & Killing Vectors vii
The Lie derivative of a Covariant Vector Field

For a covariant vector field pµ with the help of a contravariant vector kµ we get

Lξ (pµkµ) = Lξpµkµ + pµLξkµ (117)

For the left hand side due to (110) we get

Lξ (pµkµ) = (pµkµ),ν ξ
ν = (pµ,νkµ + pµkµ,ν) ξν (118)

Then by introducing in the last term of (117) the expression (115) we get:

kµ
[
Lξpµ − pµ,νξν − pνξν ,µ

]
= 0 (119)

and since kµ is arbitrary we get:

Lξpµ = pµ,νξν + pνξν ,µ (120)

In a similar way we can find the formulae for the Lie derivative of any tensor

LξTµν = Tµν,ρξρ + Tρνξρ,µ + Tµρξρ,ν (121)
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Lie Derivatives, Isometries & Killing Vectors viii

The Lie derivative of the metric tensor

If we apply the formula (121) to the metric tensor we get:

Lξgµν = gµν,ρξρ + gρνξρ,µ + gµρξρ,ν (122)

and if we use the relation gλµ;ν = gλµ,ν − gαµΓαλν − gλαΓαµν = 0 we get

Lξgµν = gρνξρ;µ + gµρξρ;ν (123)

but since gρνξρ;µ = (gρνξρ);µ = ξν;µ we get

Lξgµν = ξµ;ν + ξν;µ (124)
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Isometries & Killing Vectors i

QUESTION: If the neighboring points P and P ′ go over, under the mapping
(107), to the points Q and Q′ what is the condition ensuring that

ds2
PP′ = ds2

QQ′ (125)

for any pair of points P and P ′.

If such a mapping exist, it will be called isometric mapping.

We have
ds2

PP′ = (gµν)P dxµdxν (126)

But then according to the second of (108):

ds2
PP′ = (gµνdxµdxν)P→Q = (gµν)P→Qδxµδxν (127)

where dxµ are the components of PP′ and δxµ the components of QQ′.

On the other side
ds2

QQ′ = (gµν)Q δxµδxν (128)
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Isometries & Killing Vectors ii

Therefore the condition for the validity of (125) is

(gµν)P→Q = (gµν)Q .

and according to the definition (116) of the Lie derivative:

Lξgµν = 0 (129)

Therefore we found that the condition for the existence of isometric mappings
is the existence of solutions ξµ of the equation

ξµ;ν + ξν;µ = 0 (130)

This is the Killing equation and the vectors ξµ which satisfy it are called
Killing vectors.

The existence of a Killing vector, i.e. of an isometric mapping of the space onto
itself, it is an expression of a certain intrinsic symmetry property of the space.
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Isometries & Killing Vectors iii

According to Noether’s theorem, to every continuous symmetry of a physical
system corresponds a conservation law.

• Symmetry under spatial translations → conservation of momentum

• Symmetry under time translations → conservation of energy

• Symmetry under rotations → conservation of angular momentum

PROVE: If ξµ is a Killing vector, then, for a particle moving along a geodesic,
the scalar product of this killing vector and the momentum Pµ = m dxµ/dτ of
the particle is a constant.
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