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Scalars and Vectors i

e A n-dim manifold is a space M on every point of which we can assign n

numbers (x*,x2,...,x") - the coordinates - in such a way that there will be an

one to one correspondence between the points and the n numbers.

e Every point of the manifold has its own
neighborhood which can be mapped to a n-dim u U]
Euclidean space.
e The manifold cannot be always covered by a ap
Y

single system of coordinates and there is not a
preferable one either.

The coordinates of the point P are connected by relations of the form:
xt = xH (xl,x2, ...,x") for ;' =1,...,n and their inverse
s =5 (XII,XZI, ...,x"/> for p=1,...,n. If there exist
’
A ox*
" oxv
then the manifold is called differential.

O det|A”) (1)

and A", = 3
X



Scalars and Vectors ii

Any physical quantity, e.g. the velocity of a particle, is determined by a set of
numerical values - its components - which depend on the coordinate system.

Tensors
Studying the way in which these values change with the coordinate system
leads to the concept of tensor.

With the help of this concept we can express the physical laws by tensor
equations, which have the same form in every coordinate system.

e Scalar field : is any physical quantity determined by a single numerical
value i.e. just one component which is independent of the coordinate

system (mass, charge,...)

e Vector field (contravariant): an example is the infinitesimal
displacement vector, leading from a point A with coordinates x* to a
neighbouring point A’ with coordinates x* + dx*. The components of
such a vector are the differentials dx*.



Vector Transformations

From the infinitesimal vector AA’ with components dx* we can construct a
finite vector v# defined at A. This will be the tangent vector to the curve
x* = f*(X) passing from the points A and A" corresponding to the values A
and A 4+ d\ of the parameter. Then
dx*

b= — 2
Any transformation from x* to X" (x* — X") will be determined by n
equations of the form: X* = f*(x") where pu, v =1,2,...,n.

This means that :

W Sh
dst = gi'/ dx” = gi" dx” for v=1,..,n 3)
and a5t A%M dx” o
on _ dXT XTdx” 2 a
YT A xv dA oxv (4)



Contravariant and Covariant Vectors i

Contravariant Vector: is a quantity with n components depending on the
coordinate system in such a way that the components a" in the coordinate
system x* are related to the components 3" in X" by a relation of the form

ox*

a (5)

st _
a =
ox”
v

This means that, if the coordinate system undergoes a transformation
described by an invertible matrix M, so that a coordinate vector x is
transformed to X = Mx, then a contravariant vector must be similarly

transformed via @a = Ma .

This requirement is what distinguishes a contravariant vector from any other
triple of physically meaningful quantities.

Displacement, velocity and acceleration are contravariant vectors.



Contravariant and Covariant Vectors ii

Covariant Vector: eg. b, is an object with n components which depend on
the coordinate system on such a way that if a" is any contravariant vector, the
following sums are scalars

Z el = Z b,3" = ¢ forany x" — &* [ Scalar Product] (6)
w w

The covariant vector will transform as (why?):

ox ox 5

b# = %by or b‘u‘ = w v (7)
The gradient vector transform is covariant
o o0 0
Vo = (ﬁ7%,%)¢zvu¢z6u¢z¢,u. (8)

What is Einstein’s summation convention?



Tensors: at last

A contravariant tensor of order 2 is a quantity having n?> components T+”
which transforms (x* — %*) in such a way that, if a, and b, are arbitrary
covariant vectors the following sums are scalars:

T a,by = T™a\b, = ¢ forany x" — %" (9)

Then the transformation formulae for the components of the tensors of order 2
are (why?):

Ox" Ox"
x> Q%P

x> 0x" =  OX™OXY

7—04[:? o —,—;1,1/ Ta _
PP T oxm %P

T OxM Oxv

The Kronecker symbol

Tuv & 7—04['3 = Tuv

0 if N£u,

&, =
Tl if A=up.

is a mixed tensor having frame independent values for its components.

x  Tensors of higher order: T°%7



Tensor algebra i

e Tensor addition : Tensors of the same order (p, g) can be added, their
sum being again a tensor of the same order. For example:

ox”
OxH

3+ b = (a" + b*) (10)

e Tensor multiplication : The product of two vectors is a tensor of order 2,

because P
- 0x* 0%
~O bﬁ — TR% 11
a OxH OxV (11)
in general:
T = A*BY or TH,/ = AHBII or Tuu - AHBV (12)

e Contraction: for any mixed tensor of order (p, q) leads to a tensor of
order (p — 1,9 — 1) (prove it!)

T ya = TH . (13)



Tensor algebra ii

e Trace: of the mixed tensor T%g is called the scalar T = T%,.
e Symmetric Tensor : Ty, = Tux orTin,
TUA;L - Tuuz\ or TI./()\M)

e Antisymmetric : Ty, = —Tpux or T,

TV)\;L = —lyux Or TI/[)\;L]

Number of independent components :
Symmetric : n(n+1)/2,
Antisymmetric : n(n—1)/2



Tensors: Differentiation & Connections i

We consider a region V' of the space in which some tensor, e.g. a covariant
vector ay, is given at each point P(x%) i.e.

ay = ax(x?)
We say then that we are given a tensor field in V' and we assume that the

components of the tensor are continuous and differentiable functions of x<.

Question: Is it possible to construct a new tensor field by differentiating the
given one?

The simplest tensor field is a scalar field ¢ = ¢(x*) and its derivatives are the
components of a covariant tensor!

8¢ _ Ox* 8¢ 8
@ = T2 87 we will use: Ixe =

b0 = 0o (14)

i.e. ¢« is the gradient of the scalar field ¢.

10



Tensors: Differentiation & Connections ii

The derivative of a contravariant vector field A* is :

oA"  _ o _ 0 (ax“A,,):@i (8X“~,,)
oxe T Oxe \ oY Ox> O%P \ OX¥
_ OPxt 9%P 4, OxM ORP QA (15)
0% O%P Ox“ 9% Ox> O%*

Without the first term (red) in the right hand side this equation would be the
transformation formula for a mixed tensor of order 2.

The transformation (x* — X*) of the derivative of a vector is:

Pxt 0% 9% Ox™ O%” -
H _ K v
A flet 0)"&1/0)’2/) axa 8X’€ a)?l, aXQ P (16)
e

5

ak

in another coordinate (x"* — %*) we get again:

A/# B (()ZXW oxP Ox¥ 1k aX/,u ox? v (17)
¢ 0%¥O%P Ox> Ox'™ T 0% Ox'> P
—_—————
r/ﬂr

ak

11



Tensors: Differentiation & Connections iii

Suggesting that for a transformation (x* — x’**) the following convention
might work:
Ox* 9x'?

AN' « + ru anAR — aX/U 8XQ (Alz/.’p + [—/VUPA/U) (18)

The necessary and sufficient condition for A* o + " A" to be a tensor is:

2, 1 A K o I\
o°x"  Ox ox" 0x? Ox e (19)

A
r’ = —
PV axvoxe Oxk o Ax'e Ox'v Oxk 7

The object I‘Ap,, is the called the connection of the space and it is not tensor.

12



Covariant Derivative

According to the previous assumptions, the following quantity transforms as a
tensor of order 2

AH’;LX = AH’,U{ + r”a)\A/\ or V(XAH - aaAH + r“a/\A/\ (20)

and is called absolute or covariant derivative of the contravariant vector A*.

In similar way we get (how?) :

Px = O (21)

A = Avu—T0LA, (22)

T, = T, +[3, T +T5, T (23)

Ty = Trup+T0T% —T5T (24)

Ty = Dpp =5 Upe = T e (25)
T e = T,

T T e [P, TP e o
— T e = [T T e = o0 (26) 13



Parallel Transport of a vector i

ap (P')

Let a, be some covariant vector field.
Consider two neighbouring points P /;—-OMEG\*
and P’, and the displacement PP’ P
having components dx". X
\ dx" (
\

P

At the point P’ we may define two vectors associated to a,(P) :
a) The vector a,(P’) defined as:

au(P") = au(P) + au,u(P)dx” = a,(P) + Aay(P) (27)
The difference a,(P’) — a,(P) = a,,.(P)dx” = Aa,(P) is not a tensor.
b) The vector A, (P’) after its “parallel transport” from P to P’
Au(P') = au(P) + da,u(P). (28)

a,(P) is not yet defined. Potentially it can be written as : da, = Cj, axdx”.

14



Parallel Transport of a vector ii

The difference of the two vectors

au(P) = Au(P) = au+ADay —(au+0a,) = Day —day
—_— —_—— — — ~——
vector at point P at point P vector

v A v
= ay,dx” —da, = (awl — CW,aA) dx
—_———
vector

Which leads to the obvious suggestion that Cﬁ,, = FAW.

The connection I}, allows us to define a covariant vector ay;, which is a
tensor. In other words with the help of Fﬁ,, we can define a vector at a point

P’, which has to be considered as “equivalent” to the vector a,, defined at P.

15



Parallel Transport of a vector

Parallel Transport

The connection I'A,W allows to define the transport of a vector a) from a point
P to a neighbouring point P’ (Parallel Transport).

da, = T,.axdx” for covariant vectors (29)

§a* = —T*,,adx” for contravariant vectors (30)

eThe parallel transport of a scalar field is zero! d¢p = 0 (why?)

16



Review of the 1st Lecture

Tensor Transformations

. Ox” o oxt
By = %bu and 3" = e (31)
= I 9%”? = %™ Ix¥ ~ Ox* Ox¥
T = T, T§ = TH & Tap = ooz Tuw
OxH Oxv P Oxm 9xB & Tap oxe 9xB8 M
Covariant Derivative
dx = P (32)
A>\§[L = A)\,/L - rﬁ)\Ap (33)
T)\y‘;u = TA“,V + r?;u T + rﬁu T)\a (34)
Parallel Transport
da, = T[,.axdx” for covariant vectors (35)
§a" = —T*",,a dx” for contravariant vectors (36)

17



Measuring the Curvature of the Space i

c _A X _ _ 8
“:' v/
The"expedition” of a vector 8 B 5 \*(s
parallel transported along a ) /I @)
N
closed path Roc oo o df'  _ | _ ia
N %)

The parallel transport of the vector a* from the point P to A leads to a change
of the vector by a quantity ['*,,,(P)a"dx” and the new vector is:

a*(A) = a(P) — Iy, (P)a"(P)dx” (37)
A further parallel transport to the point B will lead the vector
a*(B) = a(A)-T",.(A)a"(A)dx’

= a*(P) = Mu(P)a"(P)dx” — o (A) [2”(P) — [ 5, (P)a’dx"] 6x7

18



Measuring the Curvature of the Space ii

Since both dx” and dx” assumed to be small we can use the following
expression
M o (A) = T o (P) + T o (P)dx™ . (38)

Thus we have estimated the total change of the vector a* from the point P to
B via A (all terms are defined at the point P).

aNB) = & —Tya"dx” —T),a"0x7 + o145, adx"6x" + T,  adx"6x”

— oM dxdx"6x7
If we follow the path P — C — B we get:
a*(B) = a* =T ,,a"0x" =T o a?dx” + T o[ 5,a° 0x" dx” + T 15 - a” X" dx°
and the accumulated effect on the vector will be

5a

a*(B) — a*(B) = a” (dx"0x” — dx"0x") (I o T, + T 50)  (39)

19



Measuring the Curvature of the Space iii

By exchanging the indices v — ¢ and o — v we construct a similar relation
2" = a” (dx"0x” — dx"6x7) (T o150 + T 1.0 ) (40)
and the total change will be given by the following relation:

§at = —%aﬂRABW (dx?6x” — dx"5x7) (41)

where

RABVO‘ - _rkgﬁ‘v,o + r)\ﬁa,z/ - rHBVrAH,n + r“ﬁo'rxu,l/ (42)

is the curvature tensor.

Figure 1: Measuring the curvature for the space.

20



Geodesics

e For a vector u* at point P we apply the parallel transport along a curve
on an n-dimensional space which will be given by n equations of the form:
xt="f*A), p=1,2,..,n

o If u¥ = % is the tangent vector at P, the parallel transport of this vector
will determine at another point of the curve a vector which will not be in

general tangent to the curve.

e |f the transported vector is tangent to any point of the curve then this
curve is a geodesic curve of this space and is given by the equation :

—— 4+, u"u” =0. (43)

e Geodesic curves are the shortest curves connecting two points on a curved

space.

21



A space is called a metric space if a prescription is given attributing a scalar
distance to each pair of neighbouring points

The distance ds of two points P(x*) and P’'(x" + dx*) is given by
ds? = (dx1)2 + (dx2)2 + (dx3)2 (44)

In another coordinate system, X*, we will get

oxY
dx” = dx 45
X T Bxa X )
which leads to:
ds® = g, d5"d%” = gapdx®dx” . (46)

This gives the following transformation relation (why?):

. Ix™ OxP

L= g 47
gll« a)?u 8)‘?1’g B ( )

22



suggesting that the quantity g, is a symmetric tensor, the so called metric
tensor.

The relation (46) characterises a Riemannian space: This is a metric space in
which the distance between neighbouring points is given by (46).

e |f at some point P there are given 2 infinitesimal displacements dVx* and
d®x* | the metric tensor allows to construct the scalar

gap dPx® d®PxP

which shall call scalar product of the two vectors.

e Properties:

githa =Au,  8ua T = TA}M Buv THe = Toa, 8uv8ac T =Ty

23



e Metric element for Minkowski spacetime

ds®> = —dt’ 4+ dx* + dy’ + dz° (48)
ds®> = —dt’ +dr’ + r’d6® + r’sin’ d ¢’ (49)

e For a sphere with radius R :
ds® = R* (d6® + sin” 0d¢’) (50)
e The metric element of a torus with radii a and b

ds® = a’d¢’ + (b + asin ¢)* d6” (51)

24



Metric Tensor iv

e The contravariant form of the metric tensor:

af3 1

= ———G*” + minor determinant  (52)
det |guy|

af B
8uag"” =07, where g
With g"” we can now raise lower indices of tensors

Al =gl A, T =g"T", =g""g" Tpo (53)

e The angle, ¢, between two infinitesimal vectors dDx® and d@x® is 1

8ap d(l)Xa d(z)xﬂ
VErr dD0x2 dDx7\/g,., dCxi dPxv

cos(¢)) = (54)

1Remember the Euclidean relation: A - B = ||A|| - ||B|| cos(t))

25



The Determinant of g,

The quantity g = det|gu.| is the determinant of the metric tensor. The
determinant transforms as :

- - Ox OxP ox“ ox”?
g = detgu, =det (gag EFT 8)?”) = det gop - det (8)?#) - det (8)"("
axa 2 .
= (det 6)?“) g=Jg (55)

where J is the Jacobian of the transformation.
This relation can be written also as:

VIEl =TV el (56)
i.e. the quantity \/|g| is a scalar density of weight 1.

e The quantity

lgl6V = /|gldx dx*. .. dx" (57)
is the invariant volume element of the Riemannian space.
e If the determinant vanishes at a point P the invariant volume is zero and
this point will be called a singular point.

26



Christoffel Symbols

In Riemannian space there is a special connection derived directly from the
metric tensor. This is based on a suggestion originating from Euclidean
geometry that is :

“If a vector a” is given at some point P, its length must remain unchanged
under parallel transport to neighboring points P’".

o "
far

P 2(P)

|35 =35 or gu(P)a"(P)a"(P) = gu(P")a"(P)a"(P')  (58)

Since the distance between P and P’ is |dx”| we can get
guv(P') 8uv(P) + guv,p(P)dx” (59)
a*(P") a'(P)—T%,(P)a’(P)dx” (60)

Q

Q

27



By substituting these two relation into equation (58) we get (how?)
(8uv,o — Buo T vp — 8o T pp) a“a"dx” = 0 (61)
This relations must by valid for any vector a” and any displacement dx” which
leads to the conclusion the relation in the parenthesis is zero. Closer
observation shows that this is the covariant derivative of the metric tensor !
Buvip = Buv,p — Buo rUVp - gcwrgup =0. (62)
i.e. guv is covariantly constant.

This leads to a unique determination of the connections of the space
(Riemannian space) which will have the form (why?)

1 av
Eg (8uvo + 8up — Bop.w) (63)

e —
M =

and will be called Christoffel Symbols .

It is obvious that [, =T%,, .

28



Geodesics in a Riemann Space i

The geodesics of a Riemannian space have the following important property.
If a geodesic is connecting two points A and B is distinguished from the
neighboring lines connecting these points as the line of minimum or maximum
length. The length of a curve, x"(s), connecting A and B is:

dx* dx¥ 1?2
/dsf/ guv(x ds s ds

A neighboring curve %*(s) connecting the same points will be described by the
equation:

%H(s) = x*(s) + €& (s) (64)
where £4(A) = £#(B) = 0.

29



Geodesics in a Riemann Space ii

The length of the new curve will be:

B o e V8
o Loy dXP dX
5= / [ () 2 S g (65)

For simplicity we set:
F(x*, u®) = [guv(x*)uu”]"/? and F(%*, 0%) = [gu (%*)0"7"]"*

Ut = x" =dx"/ds and u" =%" =dx"/ds = x + e£* (66)

We can create the difference 65 = 5 — S and by making use of the relations:

XY, 0%) = F(x* 4 e, u™ +e€”)
= ) e (€ s €00 ) 1 0(e)
% (E)aui" a) - ;Tiga + & (c’)dui*) &

30



Geodesics in a Riemann Space iii

o of d of o d of o
Fof=clsm- % (5o) ] €+ o5 (567) (67)

we get

Thus

0S

B B
/ 5fds:/ (F—f)ds
A A

B B
of d [ Of o d [ 0f
/ {axﬁ‘g(a?)}ﬁds“/A AC L

The last term does not contribute and the condition for the length of S to be
an extremum will be expressed by the relation:

B
of d [ of @0
‘”*/A o=~ 4 ()] €205 =0 (68)
Since £“ is arbitrary, we must have for each point of the curve:
d [ Of of
AC R (69)

31



Geodesics in a Riemann Space iv

Notice that the Langrangian of a freely moving particle with mass m = 2, is:
L = gu u'u” = f? this leads to the following relations

of 1 0L —1/2 of 1 0L —-1/2
L =S F d = o
ou® 2 0u~ AN Bxa T 20xe £ (70)
and by substitution in (69) we come to the condition for extremum of the
distance (Euler-Lagrange)
d (0L oL
ds (8u/") Coaxk (71)
Since £ = g, utu” we get:
oL ou* ,ou” v v
e = g;wa?U + gt CI = gu o' u” + g u"o", = 2guau"(72)
oL B
e Buv,a U (73)

32



Geodesics in a Riemann Space v

thus
d m dgp.a ot du” du*
a4 =  + 2810 = 2guau’ U’ 4 2g,
s (28uad”) gs U T 280~ = 28uanu”u" + 20—~
> m .0 du*
= Spa,pl U +gua,,uu u +2g,ua¥ (74)
and by substitution (73) and (74) in (71) we get
du* 1 v
Bua + > (8ua.w + oy — Guva] uu” =0
if we multiply with g” the geodesic equations
P
C;Ls + M uu” =0, or v ,u" =0 (75)

because du” /ds = u” ,u".

33



Euler-Lagrange Eqns vs Geodesic Eqns

By setting the Lagrangian for a freely moving particle to be £ = gy, u*u” we
get the Euler-Lagrange equations

d ( 8£> oL 0

ds \ Qut OxH

which are equivalent to the geodesic equations

du” d’x* dx* dx”
- + M, u"u” =0 or p: Z"I e
Notice that if the metric tensor does not depend from a specific coordinate e.g.
x" then
d (0L
ds (8u*”°) N

which means that the quantity 9L/0u” is constant along the geodesic.

Then eq (72) implies that 2% = g,,.u* that is the x component of the

generalized momentum p, = guu" remains constant along the geodesic.

34



Types of Geodesics

If we know the tangent vector u” at a given point of a known space we can

determine the geodesic curve.

Which will be characterized as:

o timelike if |G]* >0

e null if | =0
e spacelike if |4]> <0 R
where |i]*> = g, u"u”

If guv 7# muv then the light cone is affected by the curvature of the spacetime.
For example, in a space with metric ds*> = —f(t, x)dt> + g(t,x)dx* the light
cone will be drawn from the relation dt/dx = £./g/f which leads to STR
results for f, g — 1.

<90 00°
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Null Geodesics

For null geodesics ds = 0 and the proper length s cannot be used to

parametrize the geodesic curves.

Instead we will use another parameter A and the equations will be written as:

d*x" W dxtodx”
o gy ay =0 (76)
and obiously:
dx" dx”
g;wﬁﬁ =0, (77)

36



Geodesic Eqns & Affine Parameter

In deriving the geodesic equations we have chosen to parametrize the curve via
the proper length s. This choice simplifies the form of the equation but it is
not a unique choice. If we chose a new parameter, o = o(s) then the geodesic
equations will be written:

2 1 el B 2 2 n
dx | pu BEET__ dojds b (78)
do? *f do do (do/ds)? do
where we have used
B _gtde L, dit_ At gdey atds o
ds = do ds ds2 — do? \ds do ds?

The new geodesic equation (78), reduces to the original equation (76) when
the right hand side is zero. This is possible if

d’c

which leads to a linear relation between s and o i.e. 0 = as+ 3 where a and 3
are arbitrary constants. o is called affine parameter.

37



Riemann - Ricci & Einstein Tensors i

When in a space we define a metric then is called metric space or Riemann
space. For such a space the curvature tensor

RA‘SUM - 7r§1/,,u, + r?\ﬁu,u - rguréu + rgurézl (81)
is called Riemann Tensor and can be also written as:
N 1
RK,BI/;J, = gm/\R Br = 5 (gﬁ,,u,[iu i 8Bv,kpu — Brv,fu gﬁu,nu)
+ gap (Mol — TRuTE,)
e Properties of the Riemann Tensor:
Rnﬂuu = 7Rﬁ3u,l/7 Rﬁﬂl/u - 7Rﬁr;,1/u, Rm’iuu - Ruu&ﬂ, Rﬁ[ﬁﬂu] =0
Thus in an n-dim space the number of independent components is (how?):
n’(n® —1)/12 (82)

38



Riemann - Ricci & Einstein Tensors ii

Thus in a 4-dimensional space the Riemann tensor has only 20 independent
components.

e The contraction of the Riemann tensor leads to Ricci Tensor

Raﬂ = R)\akﬁ = gA“R,\(WB
= Mam= Moo Mol — T (83)

which is symmetric i.e. Rog = Rpa-

e Further contraction leads to the Ricci or Curvature Scalar

R=R% =g"Ras = £"7¢" Ruovs (84)
e The following combination of Riemann and Ricci tensors is called Einstein
Tensor
1
G = Ry = Eg;wR (85)

39



Riemann - Ricci & Einstein Tensors

with the very important property:

G}J‘I/;“, = (Ry‘u - 1(S/Jy/l‘?) =0.
2 m

This results from the Bianchi Identity (how?)

A
R ulvpio) = 0

(86)

(87)

40



Flat & Empty Spacetimes

e When R.p,,, = 0 the spacetime is flat
e When R,, =0 the spacetime is empty

Prove that :

41



Weyl Tensor i

Important relations can be obtained when we try to express the Riemann or
Ricci tensor in terms of trace-free quantities.

1 174
Spv = Ry — ZgWR = $=8p=8"8»=0. (88)
or the Weyl tensor Cy,.p:

1
Rypwp = Caxpvp  + 2 (&xpSpv + 8uvSxp — 830 Spp — BupSiv)

1
+ ER (gxpg;w - gkvgup) (89)
1
Rypwp = Capvp  — 2 (&xpRuv + 8uvRop — &30 Rup — upRowv)
1
— GR(&vaw —ave,) (%0)

and we can prove (how?) that :

g)\p C/\u,/n/ =0 (91)

42



Weyl Tensor ii

e The Weyl tensor is the trace-free part of the Riemann tensor. In the
absence of sources, the trace part of the Riemann tensor will vanish due to the
Einstein equations, but the Weyl tensor can still be non-zero.

This is the case for gravitational waves propagating in vacuum.

e The Weyl tensor expresses the tidal force (as the Riemann curvature tensor
does) that a body feels when moving along a geodesic.

The Weyl tensor differs from the Riemann curvature tensor in that it does not
convey information on how the volume of the body changes, but rather only
how the shape of the body is distorted by the tidal force.

43



Weyl Tensor

e The Weyl tensor is called also conformal curvature tensor because it has
the following property :

If we consider besides the Riemannian space M with metric g, a second
Riemannian space M with metric

~ _ 2A
Buv = € Buv

where A is a function of the coordinates. The space M is said to be conformal
to M.

One can prove that
R5.s # Rg,s while Cgs = Csys (92)

i.e. a “conformal transformation” does not change the Weyl tensor.

a4



Weyl Tensor iv

e It can be verified at once from equation (90) that the Weyl tensor has the
same symmetries as the Riemann tensor. Thus it should have 20 independent
components, but because it is traceless [condition (91)] there are 10 more
conditions for the components therefore the Weyl tensor has 10 independent
components. In general, the number of independent components is given by
Za(n+ 1)(n+2)(n - 3) (93)

e In 2D and 3D spacetimes the Weyl curvature tensor vanishes identically.
Only for dimensions > 4, the Weyl curvature is generally nonzero.

e |[f in a spacetime with > 4 dimensions the Weyl tensor vanishes then the
metric is locally conformally flat, i.e. there exists a local coordinate system in
which the metric tensor is proportional to a constant tensor.

e  On the symmetries of the Weyl tensor is based the Petrov classification of

the space times (any volunteer?).
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Tensors : An example for parallel transport i

A vector A = A%8 + A?8, is parallel
transported along a closed line on the
surface of a sphere with metric

ds®> = d0® + sin0d¢* and Christoffel
symbols 3, = de, = —sinfcosf and
M, =T, =coth .

The eqns A = —TI'};, A*dx” for parallel transport will be written as:
A 1.2 oA s
=7 = —T3A = 78¢ = sinfcosfA
oA 2 a1 OA? o
5 —TI,A = 78‘17 = —cothA
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Tensors : An example for parallel transport ii

The solutions will be:

82A9
By

= —cos’0A’ = A° = acos(¢cosh) + Ssin(¢cosh)
= A? = —[asin(¢cosf) — [ cos(¢cosf)]sin~' 0

and for an initial unit vector (A, A®) = (1,0) at (8, ¢) = (6o,0) the
integration constants will be « =1 and 5 = 0.

Thus A’ = cos(¢ cosf) and A? = —sin(¢ cos6)

e The solution is:

sin(27 cos ) :

A=A%, + A¢é’¢ = cos(2m cos 0)& — <nd 5
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Tensors : An example for parallel transport iii

e i.e. different components but the measure is still the same

AP = guAtA” = (A%)% +sin?0 (A%)°
. 2 2
cos’ (2 cos ) + sin’ ﬁw =1l
sin

Question : What is the condition for the path followed by the vector to be a

geodesic?
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Extension




1-forms (*) i

e A 1-form can be defined as a linear, real valued function of vectors. 2

e A 1l-form & at a point P associates with a vector v at P a real number,
which maybe called &(v). We may say that & is a function of vectors while the
linearity of this function means:

o &(av+ bw) = aw(v) + bo(w) a,belR

e Thus 1-forms at a point P satisfy the axioms of a vector space, which is
called the dual space to Tp, and is denoted by Tj.

e The linearity also allows to consider the vector as function of 1-forms: Thus
vectors and 1-forms are thus said to be dual to each other.
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1-forms (*) ii

e Their value on one another can be represented as follows:
O(v) =v(@) =< d,v> . (94)

e We may introduce a set of basis 1-forms @“ dual to the basis vectors e,.

e An arbitrary 1-form B can be expanded in its covariant components
according to
B =B.o". (95)

e The scalar product of two 1-forms A and B is
A.B=(A0%)- (B/gcbﬁ) =g’ A.Bs where g =0 .&°. (96)
e A basis of 1-forms dual to the basis e, always satisfies

@

% -eg =46%. (97)
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1-forms (*)

e The scalar product of a vector with a 1-form does not involve the metric,
but only a summation over an index

A-B=(A%.) (Bs&") = A%0a"Bs = A°B.,. (98)
A vector A carries the same information as the corresponding 1- form A, and
we often make no distinction between them, recall that :
A = gapA’ and A* =g As. (99)

A coordinate basis of 1-forms may be written &% = dx”, remember that
eq = 0/0x = Oa.

Geometrically the basis form dx” may be thought of as surfaces of constant x.

e An orthonormal basis & satisfies the relation

&% &P =t (100)
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1-forms (*) iv

e The gradient, df, of an arbitrary scalar function f is particularly useful

1-form.

e In a coordinate basis, it may be expanded according to df = 9, fdxe (its

components are ordinary partial derivatives).

e The scalar product between an arbitrary vector v and the 1-form df gives
the directional derivative of f along v

v-df = (v¥eq) - (9sfdxB) = v Oaf . (101)

2See B. F. Schutz “Geometrical methods of mathematical physics” Cambridge, 1980.
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1-forms or co-vectors (*) i

Based on the previous, any 4-vector A can be expanded in contravariant
components €

A= A%,. (102)
Here the four basis vectors e, span the vector space TpM tangent to the

spacetime manifold M
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1-forms or co-vectors (*) ii

and
8ap = € - €5 . (103)

In a coordinate basis, the basis vectors are tangent vectors to coordinate lines
and can be written as e, = 9/9x% = J.. The coordinate vectors commute.

We may also set an orthonormal basis vectors at a point (orthonormal tetrad)
for which

E@-EB :77&5,. (104)
e In general, orthonormal basis vectors do not form a coordinate basis and do

not commute.

e In a flat spacetime it is always possible to transform to coordinates which
are everywhere orthonormal i.e. 43 = diag(—1,1,1,1).

e For a genaral spacetime this is not possible, but one may select an event
in the spacetime to be the origin of a local inertial coordinate frame, where
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1-forms or co-vectors (*)

&ap = Nap at this point and in addition the 1st derivatives of the metric tensor
at that point vanish, i.e. d,g8.3 = 0.

e An observer in such a coordinate frame is called a local inertial and can use
a coordinate basis that forms that forms a local orthonormal tetrad to make
measurements in SR.

e Such n observer will find that all the (non-gravitational) laws of physics in
this frame are the same as in special relativity.

e The scalar product of two 4-vectors A and B is

A-B = (A%.) (B’es) = gapA*B’. (105)

3Baumgarte-Shapiro "Numerical Relativity”, Cambridge 2010
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Lie Derivatives, Isometries & Killing Vectors i

Up to now we consider coordinate transformations x* — X* with the following
meaning: to the point P with initial coordinate values x* we assign new
coordinates X* determined from x* via the n functions

g4 = FH(xY), p=1..n (106)

We shall give to the transformation x* — X" the following meaning:

To the point P having the coordinate values x* we correspond another point Q@
of the same space having the coordinate values X* in the same coordinate
system.

This operations is a mapping of the space into itself.

In the infinitesimal mapping
XM =Xt 4 egt (107)

where £ = ¢#(x%) is a given vector field and € an infinitesimal parameter.
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Lie Derivatives, Isometries & Killing Vectors ii

The meaning is: in the point P with coordinate values x* we correspond the
point Q with coordinate values x* + €£* (in the same coordinate system).

Thus we can define the difference between two tensors defined at the point Q
this will be the Lie derivative.

The first tensor is the one defined by the field at @ while the second will be the
one defined if we "take over” the value of the field at P and map it via (107)
into the point Q.
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Lie Derivatives, Isometries & Killing Vectors iii

The Lie derivative of a Scalar Field

Lets assume a scalar field at a point P i.e. ¢p = ¢(x*), since it is a scalar we
postulate that the mapping P — @ will leave it unchanged.

Thus we have at @ two scalars
bo = O(X*) + € .E" and dpg = dp (108)
The Lie derivative of the scalar ¢ with respect to £" is defined as follows:

therefore due to (108) we get:

Lep =" (110)
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Lie Derivatives, Isometries & Killing Vectors iv

The Lie derivative of a Contravariant Vector Field

Let's assume that the contravariant vector k* = k*(x®) is the tangent vector
to a curve passing from the point at P.
If this curve is described by a parameter A we have:

_dx"

» -
K= (111)

where dx* are the components of the vector PP'. If the points @ and Q'
correspond to P and P’ via the mapping (107) then the components of the
vector QQ" will be

X! = dx" + elp, — €€ = dx" 4 e£¥ dx” (112)
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Lie Derivatives, Isometries & Killing Vectors v

The transport of the vector k¥ from P to Q by the mapping (107) will be:

w ox* W woopv
kp_ o = an kp + €€k (113)
and the definition of the Lie derivative of the vector k* is:
kB — kb
Lek" = lim 2209 (114)
e—0 €

and since
kg = k"(XY) = kb + ek L&
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Lie Derivatives, Isometries & Killing Vectors vi

we finally get
Lek! = k" &7 =& k" (115)

The Lie derivative of any other tensor T will be defined as

(T = (T)pg

LT = lim (116)
e—0

The detailed formulae will be derived from the formulae that we have already
derived for the scalar and the contravariant vector.
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Lie Derivatives, Isometries & Killing Vectors vii

The Lie derivative of a Covariant Vector Field
For a covariant vector field p,, with the help of a contravariant vector k" we get

Le (puk") = Lepuk® + pulek” (117)
For the left hand side due to (110) we get

Le (pukt) = (pukt) , € = (Puwk® + puk™ ) € (118)

Then by introducing in the last term of (117) the expression (115) we get:

k* [Lepu — Punt” — put” ] =0 (119)
and since k" is arbitrary we get:

Lepy = pu.l/fy + pl/fy,;,, (120)

In a similar way we can find the formulae for the Lie derivative of any tensor

£E T = Tuu,pfp + T/wfp,u + Tupgp,u (121)
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Lie Derivatives, Isometries & Killing Vectors viii

The Lie derivative of the metric tensor

If we apply the formula (121) to the metric tensor we get:

Leguy = g;wwgp + g/wgp,u + gﬂpgl),u (122)

and if we use the relation gxu = gy, — 8aul S — 8ral . = 0 we get

ﬁfgﬂl’ - gpl’é-p;u + gl‘-/)gp;u (123)

but since ngfp;M = (gﬂl/‘gp);“ = &u;p e get

Leguv = Epw + v (124)
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Isometries & Killing Vectors i

QUESTION: If the neighboring points P and P’ go over, under the mapping
(107), to the points @ and Q" what is the condition ensuring that

ds?pr = dsagr (125)

for any pair of points P and P’.
If such a mapping exist, it will be called isometric mapping.

We have
dsppr = (gu)p dx™dx"” (126)

But then according to the second of (108):
dstr = (g dxdx")p_, o = (g )P @0x"Ox" (127)

where dx* are the components of PP’ and dx* the components of QQ’.

On the other side
dsaq = (guv) g 0x"8x” (128)
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Isometries & Killing Vectors ii

Therefore the condition for the validity of (125) is
(8uv)pg = (8uv)g -
and according to the definition (116) of the Lie derivative:
Leguy =0 (129)

Therefore we found that the condition for the existence of isometric mappings
is the existence of solutions £" of the equation

éu:v + gu;u =0 (130)

This is the Killing equation and the vectors £* which satisfy it are called
Killing vectors.

The existence of a Killing vector, i.e. of an isometric mapping of the space onto
itself, it is an expression of a certain intrinsic symmetry property of the space.
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Isometries & Killing Vectors

According to Noether's theorem, to every continuous symmetry of a physical
system corresponds a conservation law.

e Symmetry under spatial translations — conservation of momentum
e Symmetry under time translations — conservation of energy

e Symmetry under rotations — conservation of angular momentum

PROVE: If £&* is a Killing vector, then, for a particle moving along a geodesic,
the scalar product of this killing vector and the momentum P* = mdx"/dt of

the particle is a constant.
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