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The electromagnetic (EM) force of a moving charge

In an inertial frame S, the 3-force on a particle of charge q moving in an EM
field is:

~f = q
(
~E + ~u × ~B

)
This equation suggests that the force is proportional to the velocity and this
means that the extension of this equation in a 4-dim spacetime should be of
the form:

f = qF · u ⇒ fµ = qFµνuν (1)
where F (or Fµν) is the electromagnetic field tensor, the scalar q is some
property of the particle that determines the strength of the EM force upon it
(i.e. the charge).
In order that the rest mass of a particle is not altered by the action of the EM
force we require the latter to be a pure force or rest-mass preserving 1. This
requires that u · f = 0 or

fµuµ = qFµνuµuν = 0 (2)

This implies that EM field tensor must be antisymmetric (why?)

Fµν = −Fνµ (3)
1A force which does not change the rest mass of the object on which it acts is called a pure force (see Appendix at the end) 2



The 4-current density i

• In order to construct the field equations of the theory which will determine
F(x) at any point in spacetime in terms of charges and currents we must find a
covariant way of expressing the source term.

• Let us consider some general time-dependent charge distribution. At each
event P of the spacetime we give the charge density ρ and 3-velocity ~u as
measured in some inertial frame e.g. the frame in which ~u = ~0 at P.

• In this frame the proper charge density is given by ρ0 = qn0, where q is
the charge of each particle and n0 is the number of particles in a unit volume.
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The 4-current density ii
• In some other frame S ′ moving with speed u relative to S the volume will be
Lorentz contracted along the direction of motion hence the number density of
particles will be n′ = γun0 and

ρ′ = γuρ0 (4)

i.e the charge density is not a scalar but transforms like the component of a
vector.

Thus the obvious choice of a source term for the EM field equations should be
a 4-vector

j = ρ0(x)u(x) and j · j = ρ2
0c2 (5)

In an inertial frame S the components of the 4-current density j

jµ = ρ0γu(c, ~u ) = (cρ,~j ) (6)

Thus we see that c2ρ2 − j2 is a Lorentz invariant (j2 =~j ·~j ).
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The 4-current density iii
NOTE:
Suppose that there is a reference frame in which there is a charge density but
no currents.
In another moving reference frame there will be both a charge density

j̃0 = ∂x̃0

∂x0 j0

and a current density

j̃k = ∂x̃ k

∂x0 j0

In other words the charge density of the first frame becomes a combination of
the charge density and current density.

Any law that will be valid in all reference frames must include both interactions
of charge densities and current densities.

If the charge density j0 generates some kind of force field, so will the current
density jk .
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The EM field equations

The general form of the field equations will be

∇ · F = k j .

In Cartesian inertial coordinates xµ in some inertial frame S

Fµν ,µ = k jν . (7)

This equation can be used to find a law for conservation of charges

Fµν ,µν = k jν ,ν ⇒ jν ,ν = 0 (why?)2 (8)

In a 3-vector notation we may write this in a well known form:

∂ρ

∂t + ~∇ ·~j = 0

which is similar to the non-relativistic equation of charge continuity, but we
should use the relativistic expressions for ρ and ~j.

2

Fµν ,µν = −Fνµ,µν = −Fµν ,νµ = −Fµν ,µν = 0
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Do we have a viable theory? i

• The field equations are given by eqn (7). But Fµν has 6 independent
components and from eqn (7) we get only 4 field equations.

• Our theory is underdetermined as it stands and this suggests that one can
use a 4-vector “potential” Aµ to construct Fµν .

• In Cartesian coordinates we may write:

Fµν = Aµ,ν − Aν,µ (9)

i.e. Fµν is antisymmetric by construction and contains ONLY 4 independent
fields Aµ.

• Thus we can write the field equations (7) in terms of the 4-vector potential
Aµ

ηµσ (Aλ,σµ − Aσ,λµ) = k jλ (10)
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Do we have a viable theory? ii

Alternatively, we can express electromagnetism entirely in terms of the EM field
tensor and in this case, we require the 2 field equations:

Fµν,µ = k jµ (11)

F[µν,σ] ≡ Fµν,σ + Fσµ,ν + Fνσ,µ = 0 (12)

The last equation can be easily derived from equation (9) (how?).

Finally, the constant k can be found by demanding consistency with the
standard Maxwell equations.

In SI units we have k = µ0, where ε0µ0 = 1/c2.
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Electromagnetism in the Lorenz gauge i

We can always add an arbitrary 4-vector Qµ to the 4-potential Aµ. Thus in
Cartesian inertial coordinates xµ we have

A(new)
µ = Aµ + Qµ (13)

This is not a coordinate transformation. The new EM field tensor will be:

F (new)
µν = A(new)

ν,µ − A(new)
µ,ν = Aν,µ − Aµ,ν + Qν,µ − Qµ,ν (14)

and the original EM field tensor will be recovered if Qν,µ = Qµ,ν .

This is possible if Qµ is the gradient of a scaler field i.e. Qµ = ψ,µ.
This is called gauge freedom of the theory i.e. we are free to add the gradient
of any scalar field ψ to the 4-vector potential Aµ i.e.

A(new)
µ = Aµ + ψ,µ (15)

and still recover the same EM field tensor and the same EM field equations.
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Electromagnetism in the Lorenz gauge ii

This is an example of a gauge transformation, which is not a coordinate
transformation.

In the field equations

ηµσ (Aλ,σµ − Aσ,λµ) = µ0 jλ (16)

the 2nd term in the left hand side can be written as Aµ,µλ thus this term can
become zero by choosing a scalar field ψ such that

Aµ,µ = 0 (17)

This condition is called Lorenz gauge3 and simplifies the EM field equations

ηµσAλ,σµ = Aλ,µ,µ = �Aλ = µ0 jλ (18)

where � = ηµν∂µ∂ν = ∂ν∂ν

• The last 2 equations are the EM field equations in the Lorenz gauge.
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Electromagnetism in the Lorenz gauge iii

• In the absence of charges and currents Aµ admits wave solutions traveling
with the speed of light.

• This is also true for the components of Fµν since in this case we also have
�Fµν = 0.

3Prove that this condition is preserved by any further gauge transformation Aµ → Aµ + ψ,µ if
and only if ηνµψ,νµ ≡ ψ,µ,µ = 0.
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Electric and Magnetic Fields in inertial frames i

It is useful to define the components of Fµν and Aµ in terms of the familiar
electric and magnetic 3-vector fields ~E and ~B in some inertial frame S.

Thus the components of Aµ can be written in terms of the electrostatic
potential φ and the 3-dimesional vector potential ~A:

Aµ =
(
φ/c, ~A

)
(19)

Then the Lorenz gauge condition becomes (why?):

~∇ · ~A + 1
c
∂φ

∂t = 0 (20)

and in this gauge, the field equations become 4

�~A = µ0~j and �φ = ρ

ε0
(21)

In terms of φ and ~A, the electric and magnetic fields in S are given by:

~B = ~∇× ~A and ~E = −~∇φ− ∂~A
∂t (22)
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Electric and Magnetic Fields in inertial frames ii
These equations lead to Maxwell equations in the familiar form (prove it):

~∇ · ~E = ρ

ε0
, ~∇× ~E = −∂

~B
∂t (23)

~∇ · ~B = 0 , ~∇× ~B = µ0~j + µ0ε0
∂~E
∂t (24)

Finally, by using eqns (9) and (22) we can find (how?) that the covariant
components of Fµν in S are:

Fµν =


0 E 1/c E 2/c E 3/c

−E 1/c 0 −B3 B2

−E 2/c B3 0 −B1

−E 3/c −B2 B1 0

 (25)

The corresponding electric and magnetic fields ~E ′ and ~B′ in some other
Cartesian inertial frame S ′ are most easily obtained by calculating the
components of the EM field tensor Fµν or the 4-potential Aµ in this frame.

4ε0 : permittivity of free space, µ0 magnetic permeability of free space, both are universal
constants. SI UNITS: henries per meter, or newtons per ampere squared. NOTE: ε0 · µ0 = 1/c2.
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Electromagnetism in arbitrary coordinates i

The EM field equations in Cartesian inertial coordinates are given by:
Fµν,µ = µ0 jµ (26)

F[µν,σ] ≡ Fµν,σ + Fσµ,ν + Fνσ,µ = 0 (27)

In such a coordinate system, the partial derivative is identical to the covariant
derivative and we can rewrite the equations as:

Fµν ;µ = µ0 jµ (28)

F[µν;σ] ≡ Fµν;σ + Fσµ;ν + Fνσ;µ = 0 (29)

These new equations are fully covariant and if they are valid in one system of
coordinates then they will be valid in all coordinate systems.

In the same way we can write the EM field equations in terms of the
4-potential Aµ

ηµσ (Aλ,σµ − Aσ,λµ) = k jλ ⇒ gµσ (Aλ;σµ − Aσ;λµ) = µ0 jλ (30)

which is again a fully covariant equation.
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Electromagnetism in arbitrary coordinates ii
Gauge transformations are also permitted in arbitrary coordinates:

A(new)
µ = Aµ + ψ,µ ≡ Aµ + ψ;µ (31)

The Lorenz gauge condition in abritrary coordinates will be written as:

Aµ;µ = 0

and in this case the EM field equations will be written as:

�g Aµ = µ0 jµ

where the d’Alembertian operator is: �g = gµν∇µ∇ν = ∇ν∇ν and in vacuuo
we may again have: �g Aµ = 0 and �g Fµν = 0 (32)

Finally, the charge conservation in arbitrary coordinates will be expressed as:

jµ;µ = 0 .

Obviously, the components of Fµν and Aµ in two different arbitrary coordinate
systems xµ and x ′µ are related by:

A′µ = ∂x ′µ

∂xν Aν and F ′µν = ∂x ′µ

∂xσ
∂x ′µ

∂xρ Fσρ (33)
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Equations of motion for charged particles

The equation of motion of a charged particle in an EM field in a coordinate
invariant form is:

dp
dτ = m0

du
dτ = q F · u

where m0 is the rest mass of the particle, p is its 4-momentum, u is its
4-velocity and τ is the proper time measured along its worldline.

In Cartesian inertial coordinates this will be written

m0
duµ

dτ = q Fµν uν

in an arbitrary coordinate system the derivative in left hand side must be
replaced with the absolute (or intrinsic) derivative:

m0
Duµ

Dτ = m0

(duµ

dτ + Γµνσuνuσ
)

= q Fµν uν

where uµ = dxµ/dτ , since the 4-velocity is tangent to the particle’s worldline
xµ(τ). In arbitrary coordinates will be:

d2xµ

dτ 2 + Γµνσ
dxν

dτ
dxσ

dτ = q
m0

Fµν
dxν

dτ (34)
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Conclusion

The general procedure for converting an equation valid in Cartesian inertial
coordinates into one that is valid in an arbitrary coordinate system is as follows:

• replace partial with covariant derivatives

• replace ordinary derivatives along curves with absolute (intrinsic)
derivatives

• replace ηµν with gµν .
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Energy-Momentum Tensor of the EM field i

The energy momentum tensor Tµν in Cartesian coortinates will be

Tµν = 1
4π

(
FµαF νβηαβ −

1
4η

µνFαβFαβ
)

(35)

The explicit form of the various components is:

T 00 = 1
8π
(
|~E |2 + |~B|2

)
T 0i = 1

4π
(
δijεjkmE kBm) = 1

4π
(
~E × ~B

)i

T ij = 1
8π
[(
|~E |2 + |~B|2

)
δij − 2

(
E iE j + B iBj)] (36)

• The component T 00 is the electromagnetic energy density

• The component T 0i = T i0 gives the momentum flux density of the EM
field, referred as the Poynting vector.

~P = c
4π
(
~E × ~B

)
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Energy-Momentum Tensor of the EM field ii
• The spacelike diagonal component with i = j

T ii = 1
8π
[(
|~E |2 + |~B|2

)
− 2
(
E iE i + B iB i)]

gives the pressure normal to the face of a small cube of EM field

• The off-diagonal spacelike component with i 6= j

T ij = − 1
4π
(
E iE j + B iBj)

gives the shear stresses that act parallel to the faces of an infinitesimal
region of the EM field

EXAMPLE: The EM stress energy tensor for a constant electric field in the x
direction will be (prove it):

T 00 = E 2

8π , T xx = −E 2

8π , T yy = T zz = E 2

8π

what will be the components of this tensor in a frame S ′ moving with a
velocity v at the x -direction?
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Energy-Momentum Tensor i

To construct the gravitational field equations, we must find a covariant way of
expressing the source term. We must find a tensor that describes the matter
distribution at each event in spacetime.
• Let’s start with dust, this is a time-dependent distribution of electrically
neutral non-interacting particles, each of rest mass m0.
• At each event P of the spacetime we can characterize the distribution
completely by giving the matter density ρ and 3-velocity ~u as measured in some
inertial frame.
• For example in an instantaneous rest frame S at a given point P, ~u = ~0 while
the proper density is given by ρ0 = m0n0, where m0 is the rest mass of each
particle and n0 is the number of particles in the unit volume.
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• In a moving frame S ′, the volume containing a fixed number of particles is
Lorentz contracted along the direction of the motion thus n′ = γun and the
mass of each particle in S ′ is m′ = γum0 thus the matter density in S ′ is

ρ′ = γ2
uρ0

• This means that the matter density is not a scalar but does transform as the
00 component of rank-2 tensor. This suggests that the source term in the
gravitational field equations should be a rank-2 tensor

Tµν = ρ0uµuν (37)

In a local Cartesian coordinate frame the components of the 4-velocity for the
fluid is uµ = γu(c, ~u).

In this frame the components of the energy-momentum tensor are:
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Energy - Momentum Tensor
T 00 = ρu0u0 = γ2

uρc2 energy density of the particles

T 0k = ρu0uk = γ2
uρcuk energy flux ×c−1 in the k-direction

T k0 = ρu0uk = γ2
uρcuk momentum density ×c in the k-direction

T ij = ρuiuj = γ2
uρuiuj the rate of flow of the i-component

of momentum per unit area in the j-direction
Due to these identifications the tensor T is known as the energy - momentum
or stress - energy tensor.5

5wikipedia
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The Energy-Momentum tensor of a perfect fluid

A perfect fluid is defined as one for which there are no forces between the
particles and no heat conduction or viscosity. Thus in an inertial reference
frame the components of T for a perfect fluid are given by:

Tµν =


ρc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


while we can show that for inertial observers (or in STR)

Tµν = (ρ+ p/c2)uµuν + ηµνp (38)

while in an arbitrary coordinate system it will be:

Tµν = (ρ+ p/c2)uµuν + gµνp (39)

Note : the Tµν is symmetric and is made up from 2 scalar fields ρ and p and
the vector field ~u that uniquely characterize the perfect fluid.
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The Energy-Momentum tensor of a “real fluid”

For the general real fluid we have to take into account that:

• besides the bulk motion of the fluid, each particle has some random
(thermal) velocity

• there may be various forces between the particles that contribute potential
energies to the total.

In this case the components of the energy momentum tensor will be:

• T 00 : is the total energy density, including any potential energy
contributions from forces between the particles and kinetic energy from
the random thermal motions.

• T 0i : although there is NO bulk motion, energy might transmitted by heat
conduction i.e. it is a heat conduction term in the inertial frame of
reference

• T i0 : if heat is being conducted then the energy will carry momentum
• T ij : the random thermal motions of the particles will give rise to

momentum flow, so that T ii is the isotropic pressure in the i-direction and
T ij (i 6= j) are the viscous stresses in the fluid. 24



Conservation of Energy & Momentum for a perfect fluid

By analogy with equation jµ,µ = 0 for the conservation of charge, the
conservation of energy and momentum is represented by

Tµν
,ν = 0 (40)

We will show that this relation leads to well known equations of motion and
continuity for a fluid in the Newtonian limit.

Substituting eqn (38) into equation (40) we get (how?):(
ρ+ p/c2)

,ν
uµuν +

(
ρ+ p/c2) [(uµ,µ)uν + uµ(uν ,µ)]− ηµνp,µ = 0 (41)

from the normalization condition for the 4-velocity uνuν = c2 by differentiation
we get the relativistic equation of continuity for a perfect fluid in local inertial
coordinates at a point P:

(ρuµ),µ + (p/c2)uµ,µ = 0 (42)

and equation (41) becomes the relativistic equation of motion for a perfect
fluid in local inertial coordinates at some point P:(

ρ+ p/c2) (uµ,µ)uν =
(
ηµν − uµuν/c2) p,µ (43)
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A slowly moving fluid is the one for which we may neglect u/c and so take
γu ≈ 1 and uµ ≈ (c, ~u) and the proper density becomes the “normal” density.
In this limit we get

T 0ν
,ν = 0 → eqn (42) ⇒ ∂ρ

∂t + ~∇ · (ρ~u) = 0 (44)

which is the classical equation of continuity for a fluid, and

T jν
,ν = 0 → eqn (43) ⇒ ∂~u

∂t +
(
~u · ~∇

)
~u = −1

ρ
~∇p (45)

which Euler’s equations of motion for a perfect fluid.

————–

We can easily obtain the condition for energy and momentum conservation in
arbitrary coordinates by replacing the partial with the covariant derivative, and
we get:

Tµν
;ν = 0 (46)

This is a fundamental equation which imposes tight restrictions on the
possible forms that the gravitational field equations may take.
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Linear Field Equations for Gravitation

• In the linear approximation for the gravitational field, we neglect the effects
of the gravitational field on itself. 6

• The approximation applies to all phenomena that lie in the region of
overlap between Newton’s and Einstein’s theories.

• Although, it is true that the most spectacular results of gravitational
theory depend in a crucial way on the nonlinearity of the field equations,
almost all of the results that have been the subject of experimental
investigation can be described by the linear approximation.

• The deflection of the light, the retardation of the light, the grav. time
dilation and gravitational radiation emerge in the linear approximation.

• It will be instructive if we follow the same path as for constructing the
Electromagnetic field equations which are linear.

6From ”Gravitation & Spacetime” H. Ohanian & R. Ruffini, Cambridge (2013)
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Linear Field Equations for Electromagnetism

The most general form of the EM field equations will have the form:

Aν,µ,µ + bAµ,ν ,µ + aAν = κjν (47)

where a, b and κ(= 4π) are constants.

We can actually assume a = 0 since it leads to unphysical solutions.

By taking the partial derivative on both sides we get

(Aν,µ,µ + bAµ,ν ,µ),ν = 4πjν ,ν (48)

and by rearranging the indices we get

(1 + b)Aν ,µ
,ν ,µ = 4πjν ,ν (49)

and because jν ,ν = 0 we get that b = 1 and the form of the field equations is

Aν,µ,µ − Aµ,ν ,µ = 4πjν (50)

or
Fµν,µ = 4πjν for Fµν = Aµ,ν − Aν,µ (51)

and obviously
F[µν,σ] ≡ Fµν,σ + Fσµ,ν + Fνσ,µ = 0 (52)
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Linear Field Equations for Gravitation i

• We will assume that our spacetime is the flat spacetime of STR and we
look for a suitable field equation for the gravitational field.

• The first thing that we should decide is the source of the gravitation, and
from Newtonian theory we know that the energy density is the best candidate.
However, it is impossible to construct a Lorentz invariant theory of gravitation.
As we have seen earlier, the energy density is just a component of the the
energy density tensor Tµν and if in one system of coordinates there exists only
one component the T 00 this will not be true in any system. This means that
the whole Tµν will be the source of the gravitation field. 7

• Since the source of gravitation is a 2nd-rank symmetric tensor the obvious
choice is a 2nd rank symmetric field tensor lets say hµν . Then the most general
field equation, linear in hµν is of 2nd differential order and contains the Tµν

as source term:
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Linear Field Equations for Gravitation ii

hµν,λ,λ + αh,µν − β
(
hµλ,λ

,ν + hνλ,λ
,µ)+ γηµνh,λ,λ + δηµνhλσ,λσ = −κTµν

(53)
where α, β, γ , δ and κ are arbitrary constants.

• If we operate on both sides with ∂/∂xµ the right hand side should vanish
due to energy-momentum conservation (Tµν

,µ = 0). 8

∂λ∂
λ∂µhµν + α∂µ∂

µ∂νh − β
(
∂λ∂

ν∂µhµλ + ∂λ∂
µ∂µhνλ

)
+ γ ∂ν∂λ∂

λh + δ ∂ν∂λ∂σhλσ = 0 (54)

• Then by rearranging the terms on the left hand side we get the following
set of equations for the constants: −β + δ = 0, 1− β = 0 and α + γ = 0.
(How?)

• Thus β = δ = 1 & γ = −α and the field equations will be written as

hµν,λ,λ+αh,µν−
(
hµλ,λ

,ν + hνλ,λ
,µ)−αηµνh,λ,λ+ηµνhλσ,λσ = −κTµν (55)
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Linear Field Equations for Gravitation iii

even α can be be eliminated if we introduce a new tensor of the form

hµν = h̃µν − Cηµν h̃

where C is a constant.

Then the equations will get exactly the same form as eqn (55) but instead of α
we will have ã = a(1− C) + 2C .

By choosing C = (1− α)/(2− α) we get ã = 1(prove it?).
C = (1− α)/(2− 4α)

• Thus the relativistic field equation for gravitation in the linear
approximation becomes:

hµν,λ,λ + h,µν −
(
hµλ,λ

,ν + hνλ,λ
,µ)− ηµνh,λ,λ + ηµνhλσ,λσ = −κTµν (56)

while κ is the coupling constant of the theory and will be estimated from the
Newtonian limit of the above equation.
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Linear Field Equations for Gravitation iv
• We will call hµν gravitational tensor potential in analogy to EM
potential Aµ.

• Besides the tensor field hµν one may consider extra scalar, vector or even
tensor fields and to construct endlessly complicated theories.

• Jordan (1951) and Brans-Dicke (1961) suggested the least complicated
scalar-tensor theory containing only an extra scalar field. This new scalar field
has the effect of making the gravitational constant dependent on position. The
experimental evidence (up to now) speaks against the scalar-tensor theory
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Linear Field Equations for Gravitation v

GAUGE CONDITION

• In EM we got a simplified field equation by taking advantage of the gauge
invariance. The same can be done for gravitation and it can be shown that the
field equations are invariant under the gauge transformation

hµν(new) = hµν + Qµ,ν + Qν,µ (57)

where Q is an arbitrary vector field.

• In analogy to EM (Lorenz gauge) using the gauge condition known as
Hilbert gauge9

φµν,µ =
(

hµν − 1
2η

µνh
)
,µ

= 0 (58)

If the Hilbert gauge condition holds; the field equations simplifies to:(
hµν − 1

2η
µνh
) ,λ

,λ
= −κTµν (59)
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Linear Field Equations for Gravitation vi

and by substituting
φµν = hµν − 1

2η
µνh (60)

the field equation becomes

�φµν = φµν ,λ
,λ = −κTµν (61)

and the gauge condition
φµν,µ = 0 (62)
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Linear Field Equations for Gravitation vii

Figure 1: Adapted from H.C. Ohanian - R. Ruffini “Gravitation and Spacetime”, Cambridge
(2013)

7Can you find a good reason why the trace of Tµν alone cannot be the source of the
gravitational field?

8Actually, we can demand the this conservation law - as in the case of electromagnetism - to
emerge directly from the field equations.

9Show that if Qν is solution of the differential equation Qν,µ,µ = −hµν,µ + 1
2 h,ν then hµν(new)

will satisfy the Hilbert condition. 35



Interaction of Gravitation and Matter

In writing field eqn (61) we assumed that Tµν was the energy - momentum
tensor of matter. I.e in order to obtain the linear field equations we left out the
effect of the gravitational field upon itself.

Due to this our linear field equations have two drawbacks:

• According to eqn (61) matter acts on the gravitational fields and changes
the fields, but there is no reciprocal action of the gravitational fields on
matter, and the energy-momentum of matter is conserved Tµν

,ν = 0 !
This is an incosistency.

• Gravitational energy does not act as source of gravitation, in contradiction
to the principle of equivalence.

Thus eqn (61) is only an approximation for weak gravitational fields.

The way to correct it is to include the energy-momentum of the gravitational
field in Tµν i.e.

Tµν = Tµν
(m) + T µν (63)

where Tµν
(m) and T µν are the energy momentum tensors of matter and

gravitation. 36



• The field equations become:

�φµν = φµν ,λ
,λ = −κ

(
T µν

(m) + T µν
)

(64)

• If we act on both side with ∂/∂xν we get (because of the Hilbert gauge)(
T µν

(m) + T µν
)
,ν

= 0 (65)

which expresses the conservation of the total energy-momentum, and raises the
inconsistencies mentioned earlier.

• But, T µν is still unknown and we can find it only approximately.

• If we assume a solution of the above eqn free of sources i.e. φµν ,λ
,λ = 0

from field theory we get a first order approximation to the energy-momentum
tensor of the gravitational field

T(1)
µν = 1

4

[
2φαβ,µφαβ,ν − φ,µφ,ν − ηµν

(
φαβ,σφαβ,σ −

1
2φ,σφ

,σ
)]

(66)

Thus the new approximate form of the grav. field equations will be:

�φµν = φµν ,λ
,λ = −κ

(
Tµν

(m) + T(1)
µν
)

(67)
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The corresponding equation for the conservation of the total
energy-momentum is (

T(m)
µν + T(1)

µν
)
,ν
≈ 0 (68)

this can be used to derive the equation of motion.

Thus by expanding the above equation we get (how?):

T(1)
µν

,ν
= 1

4
(

2φαβ,µφαβ,ν,ν − φ
,µφ,ν ,ν

)
≈ −κ4

(
2φαβ,µT(m)αβ − φ,µT(m)

)
+. . .
(69)

we can obtain (how?):

T(m)
µν

,ν
− κ

2 T(m)αβ

(
φαβ,µ − 1

2η
αβφ,µ

)
= 0 (70)

or
T ν

(m)µ ,ν −
κ

2 hαβ,µT αβ
(m) = 0 (71)

This equation tells how much energy and momentum the gravitational field
transfers to the matter on which it acts.

In other words it determines the rate at which the momentum of a particle
changes and therefore it determines the equation of motion of a particle acted
upon a gravitational field.
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To derive this equation of motion we integrate equation (71) over the volume
of the “particle” (a small system of finite size).

The 1st term gives:
d
dt

∫
T 0

(m)µ d3x ≡ d
dt Pµ (72)

For the 2nd term of (71) we should remember that:

T αβ
(m) = ρ0uαuβ + . . . (73)

then10

−κ2 hαβ,µ
∫

T αβ
(m) d3x ≈ −κ2 hαβ,µ

√
1− u2muαuβ (74)

Thus we finally get (how?)

d
dτ Pµ = −κ2 mhαβ,µuαuβ

which has the right form for an equation of motion
10Show that

∫
ρ0uαuβd3x = muαuβ

√
1− u2

39



If we assume that :
∂L
∂xµ = −κ2 mhαβ,µuαuβ and ∂L

∂uµ = Pµ (75)

we get the Euler -Lagrange form of equations of motion.

Actually, in the absence of forces the Lagrangian will have the form

L0 = 1
2 m ηαβuαuβ

while in the presence of a field becomes:

L = 1
2 m
(
ηαβ + κh̃αβ

)
uαuβ

notice that h̃αβ is a quantity related to the spacetime while hαβ is the ”tensor
potential” of our theory.

But because of the Euler-Lagrange equations these two quantities are identical
and this suggests that a relation between the “geometrical” quantity h̃αβ and
the “ physical” quantity” hαβ !
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NOTE 1 : We have created a relation between physical and geometrical
quantities

Alternatively, if in the geodesic equations one assumes that gµν = ηµν + κhµν
then it comes to the equation

d
dτ (uµ + κhµαuα)− κ

2 hαβ,µuαuβ = 0 . (76)

NOTE 2 : That the equation of motion of a particle in a gravitational field is
independent of the mass of the particle, in agreement with Galileo principle.

NOTE 3 : The equations of motion of a particle is no more than a statement
about the exchange of momentum between particle and field. Hence the
equations of motion cannot be independent of the conservation law for the
energy-momentum tensor of the fields.
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APPENDIX



Pure forces i

Uµ = γ
(
c, uj) 4-velocity (77)

Fµ = dPµ

dτ = d
dτ (m0Uµ) = γ

d
dt
(
mc, pj) force 4-vector (78)

f j = dpj

dt = d
dt
(
muj) relativistic force 3-vector (79)

where Fµ is the force 4-vector, Pµ the momentum 4-vector, Uµ the velocity
4-vector, pj the relativistic momentum and m the mass of the particle on which
f j acts.

Then the equation (78) can be written as

Fµ = γ
d
dt
(
mc, pj) = γ

(
c dm

dt , f
j
)

(80)
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Pure forces ii

If the force Fµ acts on a particle with 4-velocity Uµ = γ
(
c, uj) their inner

product in Minkowski space is

ηµνUµF ν = γ2
(

c2 dm
dt − ηii f iui

)
= c2 dm0

dτ = γc2 dm0

dt (81)

where the second equation results from specializing the first to the rest frame
of the particle, and the third is a consequence of

dt
dτ = 1√

1− u2/c2
= γ (82)

We shall call a force pure if it does not change a particle’s rest mass

The necessary and sufficient condition for a force to be pure follows at once
from (81):

ηµνUµF ν = 0 ⇐⇒ m0 = constant (83)

43



The antisymmetry of the electromagnetic tensor

fµ = q
c FµνUν (84)

where the “coeffeicients” Fµν in this linear relation must be tensorial to make it
Lorenz-invariant if we take the charge q of the particle in question to be a
scalar invariant.

If we demand that the force fµ to be pure, we need

fµUµ = q
c FµνUµUν = 0 (85)

for all Uµ, and hence
Fµν = −Fνµ (86)

i.e. the field tensor must be anti-symmetric.
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