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Lagrange Equations for a system of particles i

Lagrangian formalism for a system of fields is a generalization of the
formalism for a system of particles.

• A system of particles can be described by a finite set of generalized
coordinates qi (t), (i = 1, 2, 3, ...,N).

• The Lagrangian formalism rests on the assumption that the dynamical
equations of motion can be derived from Hamilton’s variational principle.

• That is, we define the integral I

I =
∫ t2

t1

L (qi (t), q̇i (t)) dt (1)

where the Lagrangian is a function of the coordinates qi and the velocities
q̇i = dqi/dt.

• The equations of motion can be derived by requiring that the action
remains stationery for infinitesimal variations of the functions qi (t).
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Lagrange Equations for a system of particles ii

• These variations are arbitrary except for the constraint that they vanish at
the times t1 and t2.

• If the variation of qi at the time t is δqi (t), then the velocities will change
accordingly as δq̇i (t) = (d/dt)δqi (t) and the action will change as

δI =
∫ t2

t1

N∑
i=1

(
∂L
∂qi

δqi + ∂L
∂q̇i

δq̇i

)
dt (2)

the second term (in blue color) can be written as ∂L
∂q̇i

( d
dt δqi ) and be integrated

by parts. Since the variation δqi vanishes at t = t1 and at t = t2 we get

δI =
∫ t2

t1

N∑
i=1

(
∂L
∂qi
− d

dt
∂L
∂q̇i

)
δqi dt (3)

• The action will be stationary for arbitrary choices of the functions δqi (t) if
and only if all these functions have zero coefficients, that is, if
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Lagrange Equations for a system of particles iii

d
dt

∂L
∂q̇i
− ∂L
∂qi

= 0 (4)

These are the Euler-Lagrange equations for the system.

• The number of eqns is the same as the degrees of freedom of the system (N).

• In eqn(4) we may use also the canonical momentum (conjugate to δqi )

πi = ∂L
∂q̇i

→ d
dt πi −

∂L
∂qi

= 0. (5)

• Note that here we used the time t as independent coordinate but later we
will use the proper time τ

Based on the above we can prove that the Hamiltonian is a constant of motion.

The Hamiltonian is:
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Lagrange Equations for a system of particles iv

H =
N∑

i=1

[
q̇i
∂L
∂q̇i

]
− L ≡

N∑
i=1

q̇iπi − L (6)

Then

dH
dt =

N∑
i=1

[
�
��@
@@

q̈i
∂L
∂q̇i

+ q̇i
d
dt

∂L
∂q̇i

]
−

N∑
i=1

[
∂L
∂qi

q̇i +
�
��@
@@

∂L
∂q̇i

q̈i

]

=
N∑

i=1

q̇i

[
d
dt

∂L
∂q̇i
− ∂L
∂qi

]
= 0 (7)

• The conservation law of the Hamiltonian is directly related to invariance
under time translation (dH/dt = 0) which is direct consequence of the
absence of an explicit time dependence in the Lagrangian (it depends only
implicit via δqi (t)).
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Lagrange Equations for a system of particles v

• Momentum conservation is a direct consequence of invariance under
space translations (dπi/dt = 0) if L is independent of qi (see eqn (5)).

Thus the conservation of energy and momentum is intimately connected
with symmetry under time and space translations (Noether’s Theorem).
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The Lagrange Equations for fields i

Let’s assume the case of one-component field, a scalar field.

• A one-component field is described by a function ψ(x, t).

• At a given time, the function ψ(x, t) gives the amplitude of the field at
the point x. This analogous to the set of the generalized coordinates qi

used earlier.

• To describe the field system we must specify ψ(x, t) for all x; to describe
the particle system we must specify qi for all i . The correspondence can
be used if we try to prescribe the field in a discretized set of points.

• If we divide the space in cubical shells of volume ∆V and consider only
the amplitudes of the field at the centers of the cubes which have
coordinates x1, x2, x3, ... then we can replace the field by a set of
generalized coordinates

qi = ψ(x) i = 1, 2, 3, ... (8)
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The Lagrange Equations for fields ii

• In this way we replace approximately the field equations by a set of
Euler-Lagrange equations given by (4). The exact field can me recovered
in the limit ∆V → 0.

The action integral for the field can be written by analogy to the point particle
case

L =
∫
L
(
ψ, ∂ψ/∂t, ∂ψ/∂x k) d3x (9)

where L
(
ψ, ∂ψ/∂t, ∂ψ/∂x k) is the Lagrangian density.

The action integral is then

I =
∫ t2

t1

L dt =
∫ t2

t1

∫
L
(
ψ, ∂ψ/∂t, ∂ψ/∂x k) d3x dt (10)

The variation δψ(x, t) in the field produces corresponding variations

δ
(
∂ψ

∂t

)
= ∂

∂t δψ and δ
(
∂ψ

∂x k

)
= ∂

∂x k δψ (11)
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The Lagrange Equations for fields iii

Then the action can be written:

δI =
∫ t2

t1

∫ [
∂L
∂ψ

δψ + ∂L
∂(∂ψ/∂t)δ

(
∂ψ

∂t

)
+ ∂L
∂(∂ψ/∂x k )δ

(
∂ψ

∂x k

)]
d3xdt

=
∫ t2

t1

∫ [
∂L
∂ψ

δψ + ∂L
∂(∂ψ/∂t)

∂

∂t δψ + ∂L
∂(∂ψ/∂x k )

∂

∂x k δψ

]
d3xdt (12)

By integrating the 2nd term (in blue) by parts and imposing the constraint that
δψ = 0 at t = t1 and at t = t2 and the 3rd term (in red) by parts using the
assumption that δψ = 0 at the limits of the spatial domain we get:

δI =
∫ t2

t1

∫ [
∂L
∂ψ
− ∂

∂t
∂L

∂(∂ψ/∂t) −
∂

∂x k
∂L

∂(∂ψ/∂x k )

]
δψ d3x dt (13)

Since δψ is an arbitrary function, the action will be stationary if and only
if the term in brackets is zero.
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The Lagrange Equations for fields iv

The previous statement leads to the equations of motion for the fields, which
contain both space and time derivatives (µ = 0, ..., 3) and resembles to eq (4)

∂

∂xµ

(
∂L
∂ψ,µ

)
− ∂L
∂ψ

= 0 (14)

The Hamiltonian for a system of fields resembles Eq (6), but the summation is
replaced by integration over x .

H =
∫
ψ,0

∂L
∂ψ,0

d3x − L =
∫ (

ψ,0
∂L
∂ψ,0

− L
)

d3x (15)

From the field equations one can show that dH/dt = 0, which says that the
Hamiltonian of a closed system is the total energy of the system.
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Correspondence between particle and field systems

Particle System Field System
State of the system
described by qi (t) ψ(x, t)

Independent variables i , t x , t

Lagrangian L = L(qi , q̇i ) L =
∫
L
(
ψ, ∂ψ/∂t, ∂ψ/∂x k) d3x

Equations of motion d
dt
∂L
∂q̇i
− ∂L

∂qi
= 0 ∂

∂xµ
∂L
∂ψ,µ

− ∂L
∂ψ

= 0

Hamiltonian Energy H =
∑N

i=1

[
q̇i
∂L
∂q̇i

]
− L H =

∫ (
ψ,0

∂L
∂ψ,0
− L
)

d3x
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The Energy-Momentum Tensor i

Since H is the energy, the integrant appearing in (15) can be regarded as the
energy density

t0
0 = ψ,0

∂L
∂ψ,0

− L (16)

which leads to an educated guess for the complete energy-momentum tensor

tµν = ψ,µ
∂L
∂ψ,ν

− L (17)

This tensor is called the canonical energy-momentum tensor.

The next step is to prove that obeys to the conservation law

tµν,ν = 0 (18)

The proof is as follows:

tµν,ν =
�
��
��HH
HHH

ψ,µν
∂L
∂ψ,ν

+ψ,µ
∂

∂xν

(
∂L
∂ψ,ν

)
− ψ,µ

∂L
∂ψ
−
��

�
��H

HHHH
ψ,αµ

∂L
∂ψ,α

(19)
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The Energy-Momentum Tensor ii

The 1st and 4th term cancel out while the remaining terms are zero due to
(14).

The differential conservation law (18)

∂

∂t t0
0 + ∂

∂x k t0
k = 0 (20)

implies the conservation of energy (Hamiltonian)

dH
dt = d

dt

∫
t0

0d3x =
∫

∂

∂t t0
0d3x = −

∫
∂

∂x k t0
k d3x (21)

By using the Gauss’ theorem, we can change the volume integral of the
divergence term (∂/∂x k )t0

k into a surface integral.

• Under the assumption that tk
0 is exactly zero beyond some large distance or

at least tends to zero faster than 1/r 2, the surface integral vanishes implying
that H is constant.
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The Energy-Momentum Tensor iii

In a similar way it can be shown that the total momentum

Pk =
∫

t0
k d3x (22)

is constant. (HOW?)

DISCUSSION ...

14



The Energy-Momentum Tensor for Scalar Fields i

Let us consider the case of the one-component field ψ(x, t) with the
Lagrangian density

L = 1
2
(
ψ,αψ

,α −m2ψ2) = 1
2
(
ηαβψ,αψ,β −m2ψ2) (23)

where m is a constant.

The Lagrangian field equation is:

∂

∂xα η
µαψ,α + m2ψ = 0 that is ψ,µ

,µ + m2ψ =
(
� + m2)ψ = 0 (24)

This is a very well known equation in quantum mechanics, is the Klein-Gordon
equation, for a free scalar field.

The corresponding canonical energy-momentum tensor (according to eqn
(17)) is

tµν = ψ,µη
ναψ,α − δµνL = ψ,µψ

,ν − 1
2δ

ν
µ

(
ψ,αψ

,α −m2ψ2) (25)
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The Energy-Momentum Tensor for Scalar Fields ii

and the energy density is

t0
0 = 1

2 (ψ,0)2 + 1
2 (∇ψ)2 + 1

2 m2ψ2 (26)

16



The Energy-Momentum Tensor for Electromagnetic Fields i

For multi-component fields (e.g. Aµ, hµν) if we perform the variation of the
action we end up with equations of the type (13) for every component.

Since the different components have independent variations, each of these
terms must vanish separately.

Thus we get as many equations as they are the components of the field.

For a 4-component (vector) field we get

∂

∂xµ
∂L
∂Aν ,µ

− ∂L
∂Aν = 0 for ν = 0, 1, 2, 3 (27)

Then equation (27) yields the field equations for a free EM field provided we
take

L(em) = − 1
16π (Aµ,ν − Aν,µ) (Aµ,ν − Aν,µ) = − 1

16πFµνFµν (28)

17



The Energy-Momentum Tensor for Tensor Fields i

For a 16-component (tensor) field we get

∂

∂xµ
∂L

∂hαβ,µ
− ∂L
∂hαβ = 0 for α, β = 0, 1, 2, 3 (29)

Equation (29) yields the linear field equations for the free gravitational field (in
the linear approximation) provided we take 1

L(0) = 1
4
(

hµν,λhµν,λ − 2hµν,µhνλ,λ + 2hµν,µh,ν − h,νh,ν
)

(30)

The canonical energy-momentum tensors can be calculated from the
generalization of (15):

t(em)µ
ν = Aα,µ

∂L(em)

∂Aα,ν
− δµνL(em) (31)
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The Energy-Momentum Tensor for Tensor Fields ii

t(0)µ
ν = hαβ,µ

∂L(1)

∂hαβ,ν
− δµνL(1) (32)

Then by combining equations (28) and (31) we get:

t(em)µ
ν = − 1

4π

[
−Aα,µF να −

1
4δµ

νFαβFαβ
]

(33)

where
Fαβ = Aα,β − Aβ,α (34)

In the same way by using equations (30) and (32) plus the gauge condition
hµν,ν − (1/2)h,ν = 0 we get:

t(1)µ
ν = 1

4

[
2hαβ,µhαβ,ν − h,µh,ν − δµν

(
hαβ,λhαβ,λ −

1
2 h,λh,λ

)]
(35)

this equation is identical to the one used in Chapter 2 if we substitute
hαβ = φαβ − (1/2)ηαβφ.
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The Energy-Momentum Tensor for Tensor Fields iii

DISCUSSION

The equation (33) for the energy momentum-tensor of the EM field is similar
to the equation (28) of the second set of slides i.e.

Tµν = 1
4π

(
FµαF νβηαβ −

1
4η

µνFαβFαβ
)

(36)

and it is not gauge invariant. But by adding an extra term

1
4π

∂

∂xα (AµF να) (37)

to t(em)µ
ν of equation (33) everything can be repaired (HOW?)

1The subscript (0) indicates that we are dealing with the linear approximation
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The Variational Principle for Einstein’s Equations i

In the previous section we have seen that we could take the field equations for
gravitation (linear approximation) from the variational principle with the
Lagrangian L(0) of eqn (30).

In the same way the exact nonlinear Einstein equations can also be obtained
from a variational principle by taking the following Lagrangian

LG = 1
κ2 R
√
−g (38)

where R is the curvature scalar and κ2 = 16πG/c4.

This Lagrangian contains both 1st and 2nd derivatives of the fields gµν .
Analytically it can be written as:

R
√
−g =

[
gµν
√
−g
(
−Γαµν + δµ

αΓβνβ
)]
,α
− gµν

√
−g
(

ΓβµαΓανβ − ΓαµνΓβαβ
)

(39)
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The Variational Principle for Einstein’s Equations ii

The first term contains 2nd derivatives of gµν , but since it is a divergence its
contribution to the action

I = 1
κ2

∫
R
√
−gd3x dt (40)

is of the form

1
κ2

∫ ∫
∂

∂xα
[
gµν
√
−g
(
−Γαµν + δαµΓβνβ

)]
d3x dt (41)

which is the 4-dim volume integral of a divergence and can be converted to a
surface integral over the boundary of the volume.

Since the variational principle assumes that the variation δgµν vanishes on the
boundary it follows that the equation (41) gives no-contribution to the
variation of the action and we will use the following form of the (effective)
Lagrangian which includes only 1st derivatives of gµν
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The Variational Principle for Einstein’s Equations iii

LG = 1
κ2 gµν

√
−g
(

ΓβµαΓανβ − ΓαµνΓβαβ
)
. (42)

Einstein’s equations can be derived using this Lagrangian (after a lengthy
calculation).

It is easier to show it by using the linear approximation

The Euler-Lagrange equations for our case will be tensor equations.

This can be seen by writing the variation of the action in the form:

δ

∫
1
κ2 R
√
−gd3x dt =

∫ [
1√
−g

(
∂LG

∂gµν
− ∂

∂xα
∂LG

∂gµν,α

)
δgµν

]
√
−g d3x dt

(43)
• Since R is a scalar the quantity in the brackets should be also a scalar but
δgµν is an arbitrary tensor and thus the quantity in the parenthesis (in blue) is
also a tensor

1√
−g

(
∂LG

∂gµν
− ∂

∂xα
∂LG

∂gµν,α

)
. (44)
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The Variational Principle for Einstein’s Equations iv

We want to check whether the Einstein’s equations coincide with the
Euler-Lagrance equations derived from equation (42).

• The tensor character of this equation guarantees that if agreement is
obtained in a special coordinate system this will hold in general coordinates.

• We choose the local geodesic coordinates, in these coordinates, the field
equations will contain only 2nd-order derivatives linearly.

To single out these terms we write:

gµν = ηµν + κhµν and Γαµν = κ

2 η
αβ (hνβ,µ + hβµ,ν − hµν,β) (45)

and the Lagrangian (42) is expresses as

LG = −1
4η

µν
[(

hαβ,µ + hβµ,α − hµα,β
) (

hβα,ν + hαν,β − hνβ,α
)]

+ 1
4η

µν
(

hνα,µ + hαµ,ν − h,αµν
)

hββ,α + . . . (46)
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The Variational Principle for Einstein’s Equations v

the dots stand for non relevant terms. By expanding the above relation we get

LG = 1
4
(

hαβ,µhαβ,µ − 2hαβ,µhµα,β + 2hµα,µh,α − h,αh,α
)

+ . . . (47)

The above Lagrangian agrees with L(0) in eqn (30) except from the term
(1/2)hµν,µhνλ,λ which is replaced by the term (1/2)hαβ,µhµα,β . But it does
not makes any difference for the differential equations derived at the end.

In this way we establish that in the local geodesic coordinates the
Euler-Lagrange equations obtained from (42) agree with the usual equations of
the linear approximation.

A coordinate transformation from geodesic to general coordinates then tells us
that the Euler-Lagrange equations always coincide with the Einstein equations
in vacuum.

1
√g

(
∂L
∂gµν

− ∂

∂xα
∂L

∂gµν,α

)
= − 1

κ2

(
Rµν − 1

2 gµνR
)

= 0 (48)
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Var. Principle for Einstein’s Equations (Palatini method) i

Einstein’s equations can be derived also via the Palatini method, according to
which the metric tensor gµν and the Christoffel symbols Γλµν are treated as
independent variables.

In terms of these the Lagrangian (38) can rewritten

L = 1
κ2
√
−g gβαRβα

= 1
κ2
√
−g gβα (Γµβµ,α − Γµβα,µ + ΓσβµΓµσβ − ΓσβαΓµσµ) (49)

The variation of the action I =
∫
Ld3xdt is therefore

δI = 1
κ2

∫
Rβα

[
∂
(

gβα
√
−g
)

∂gµν

]
δgµν d3x dt (50)

+ 1
κ2

∫ [
√
−ggβα ∂Rβα

∂Γλµν
− ∂

∂xρ

(
√
−ggαβ

∂Rβα
∂Γλµν,ρ

)]
δΓλµν d3x dt
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Var. Principle for Einstein’s Equations (Palatini method) ii

The first of the previous integrals can be reduced to (use also
∂g/∂gµν = −ggµν)

1
κ2

∫ (
Rµν −

1
2 gµνR

)√
−gδgµνd3xdt (51)

and the condition that this vanish for an arbitrary variation δgµν leads to the
Einstein equations

Rµν −
1
2 gµνR = 0

The other term of the variation (51) leads to a condition that the covariant
derivative of the metric tensor is zero (HOW?), and practically restores the
relation between the Christoffel symbols and the metric that we abandoned
initially.
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Var. Principle for Einstein’s Equations (Palatini method) iii

NOTICE: According to (40) we can say that the Einstein equations represent
the condition for an extremum in the (4-dim) volume integral of the curvature.

”Gravitation simply represents a continuum effort of the universe to
straighten itself out” (Whittaker).
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