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I. Solving nonlinear equations

A single non-linear equation:

0 = 2 sin(x)− e−x − x2

A system of non-linear equations:

0 = ex − 3y − 1

0 = x2 + y 2 − 4

• Bisection method

• Linear interpolation

• xn+1 = g(xn)

• Newton’s method
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II. Solving systems of linear & non-linear equations

Solve the system: A · x = B, where

A =


a11 · · · · · · a1N

a12 a2N
...

...
a1N · · · · · · aNN

 x =


x1

x2
...
xN

 B =


b1

b2
...
bN


• Gaussian elimination

• Iterative methods

• Matrix inverse

• Eigenvalues & Eigenvectors

• Nonlinear systems
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III. Interpolation, approximation & curve fitting

• Interpolating polynomials

• Spline Curves

• Rational function approximations
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IV. Numerical Differentiation and Integration

I =
∫ xn

x0

y(x)dx

∫ xn

x0

y(x)dx = h
2 (y0 + 2y1 + 2y2 + ...+ 2yn−1 + yn)

− b − a
12 ∆x2y (2)(ξ1)

• Numerical differentiation

• Trapezoidal rule

• Simpson rules

• Gaussian quadrature

• Multiple integrals
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V. Numerical Solution of ODEs

y ′ = f (x , y)

with
y(x0) = y0

y(x) = y (x0 + h) = y (x0)+hy ′ (x0)+ h2

2 y ′′ (x0)+· · ·

• Euler’s method

• Runge-Kutta methods

• Adam’s method

• Prediction-Correction methods
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VI. Numerical Solution of PDEs

• 2-D Laplace and Poisson (elliptic)eqns:

∇2u = 0 , ∇2u = g(x , y) for 0 < x < 1 and 0 < y < 1

• The wave equation

∂2u
∂x2 −

1
c2
∂2u
∂t2 = 0 for 0 < x < L and 0 < t <∞

• The heat equation

α2 ∂
2u
∂x2 −

∂u
∂t = 0 for 0 < x < 1 and 0 < y < 1
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Solving nonlinear equations



Solving nonlinear equations

The classical problem is to find a value r such that for a function f (x) where
x ∈ (a, b)

f (r) = 0 (1)

The typical procedure is to find a recurrence relation of the form:

xn+1 = σ (xn) (2)

which will provide a sequence of values x0, x1, . . . , xκ, . . . and in the limit
κ→∞ to lead in a root of equation (1).

For every method we need to address the following questions:

• Under what conditions a method will converge.

• If it converges, then how fast.

• What is the best choice for the initial guess x0.
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Bisection method (Bolzano) i

Let’s assume that we are looking for the roots of the following equation:

f (x) = 2 sin(x)− x2 − e−x = 0 (3)

then x1 = 0 and x2 = 1 which give f (0) = −1 and f (1) = 0.31506

• x3 = (x0 + x1)/2 = 0.5 → f (0.5) = 0.1023

• x4 = (x0 + x3)/2 = 0.25 → f (0.25) = −0.1732

• x5 = (x4 + x3)/2 = 0.375 → f (0.375) = −0.0954

• x6 = (x5 + x3)/2 = 0.4375 → f (0.4375) = 0.0103

• x7 = (x5 + x6)/2 = 0.40625 → f (0.40625) = −0.0408

• ...

• xn = r1 ≈ 0.4310378790

the other root is r2 = 1.279762546.
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Bisection method (Bolzano) ii
If there exists a root in the interval [a0, b0], then f (a0) · f (b0) < 0. If
µ0 = (a0 + b0)/2, then:

• (I) either f (µ0) · f (a0) < 0

• (II) either f (µ0) · f (b0) < 0

• (III) either f (µ0) = 0 .

If (III), then the root has been found or else
we set a new interval

[a1, b1] =


[µ0, b0] if (II)

[a0, µ0] if (I)
(4)
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Bisection method (Bolzano) iii

REPEAT
SET x3 = (x1 + x2)/2
IF f (x3) · f (x1) < 0

SET x2 = x3

ELSE
SET x1 = x3

ENDIF
UNTIL (|x1 − x2| < E) OR f (x3) = 0

Table 1: Procedure to find the root of a nonlinear equations using bisection
method
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Bisection method (Bolzano) iv

ERROR : The error defined as: εn = |r − xn|. For this method

εn ≤
1
2 |an − bn| (5)

and in every step the error is half of the previous step

εn+1 = εn

2 = εn−1

22 = · · · = ε0

2n+1 (6)

and if we demand an error E we can calculate the number of steps needed:

n = log2
ε0

E (7)

CRITISISM

• Slow convergence

• Problem with discontinuities
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Linear interpolation i

Assume that the function is linear in the interval (x1, x2) where f (x1) and f (x2)
are of opposite sign. Then there will be a straight line connecting the points
(x1, f (x1)) and (x2, f (x2)) described by the equation:

y (x) = f (x1) + f (x1)− f (x2)
x1 − x2

(x − x1) (8)

which crosses the axis Ox let say in a point x3 i.e. f (x3) = 0 which will be
given by the following relation

x3 = x2f (x1)− x1f (x2)
f (x1)− f (x2) = x2 −

f (x2)
f (x2)− f (x1) (x2 − x1) (9)

That is we substitute the actual function with a straight line and we assume
that the point where this line crosses the axis Ox is a first approximation to the
root of the equation.

This new point x3 will be used to find a better approximation to the actual root
r .
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Linear interpolation ii

A possible choice of the new points:

• (I) If f (x1) · f (x3) < 0 ⇒ x2 = x3

• (II) If f (x2) · f (x3) < 0 ⇒ x1 = x3

• (III) If f (x3) = 0

Recurrence relation:

xn+2 = xn+1 −
f (xn+1)

f (xn+1)− f (xn) (xn+1 − xn) . (10)
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Linear interpolation iii

Assume that the root is in the interval (x1, x2)
REPEAT

SET x3 = x2 − f (x2) · x2−x1
f (x2)−f (x1)

IF f (x3) · f (x1) < 0
SET x2 = x3

ELSE
SET x1 = x3

ENDIF
UNTIL |f (x3)| < E

Table 2: 1st algorithm

PROBLEM: Examine after how many iterations you will find the root of
equation (3) with an error of the order of E ≈ 10−6.
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Linear interpolation iv

The root is not included in the initial choice of the interval (x1, x2)
REPEAT

SET x3 = x2 − f (x2) · x2−x1
f (x2)−f (x1)

IF |f (x1)| < |f (x2) |
SET x2 = x3

ELSE
SET x1 = x3

ENDIF
UNTIL |f (x3)| < E

Table 3: 1st algorithm
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Linear interpolation v

Convergence
If r is a root of the equation f (x) = 0 and εn = |r − xn| is the error for x = xn,
the the convergence of the method of linear interpolation is

εn+1 = k · ε1.618
n (11)

PROOF : If we assume that xn = r + εn and

f (xn) = f (r + εn) = f (r) + εnf ′ (r) + ε2
n

2 f ′′ (r) (12)

then the relation

xn+2 = xn+1 −
f (xn+1)

f (xn+1)− f (xn) (xn+1 − xn) (13)

becomes

r + εn+2 = r + εn+1 −
εn+1f ′ (r) + ε2

n+1f ′′ (r)/2
f ′ (r) (εn+1 − εn) + 1

2 f ′′ (r)
(
ε2

n+1 − ε2
n
) · (εn+1 − εn)
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Linear interpolation vi
which leads to:

εn+2 = εn+1

[
1−

(
1 + εn

2
f ′′ (r)
f ′(r)

)]
= −εn+1εn

f ′′ (r)
2f ′ (r)

but we are aiming for a relation of the form εn+1 = k · εm
n

εn+1 = k · εm
n

εn+2 = k · εm
n+1

}
⇒ k · εm

n+1 = εn+1εn

(
− f ′′(r)

2f ′(r)

)

εn+1 =
( 1

k

) 1
m−1

ε
1

m−1
n A

1
m−1 where A = − f ′′(r)

2f ′(r) (14)

k · εm
n =

(A
k

) 1
m−1

ε
1

m−1
n

∣∣∣∣∣∣ ⇒
k =

(A
k

)1/(m−1)

m = 1
m−1 ⇒ m2 −m − 1 = 0

m = 1±
√

5
2 = 1.618 and km = A = − f ′′ (r)

2f ′ (r)
εn+1 = k · ε1.618

n (15)
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Method xn+1 = g(xn) i

Write the nonlinear equation in a form xn+1 = g (xn) such as
lim

n→∞
xn = r (n = 1, 2, 3, . . . )
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Method xn+1 = g(xn) ii

THEOREM: If g(x) and g ′(x) are continuous on an interval about a root r of
the equation x = g(x), and if |g ′(x)| < 1 for all x in the interval, then the
recurrence xn+1 = g(xn) (n = 1, 2, 3, . . . ) will converge to the root x = r ,
provided that x1 is chosen in the interval.

• Note that this is a sufficient condition only, since for some equations
convergence is secured even though not all the conditions hold.

• In a computer program it is worth checking whether |x3 − x2| < |x2 − x1|

ERROR After n steps the error will be εn = r − xn

εn+1 = r − xn+1 = g (r)− g(xn) = g ′(r)(r − xn) = g ′ (r) εn

I.e. linear convergence.

The rate of convergence is rapid if |g ′(x)| is small in the interval. If the
derivative is negative the errors alternate in sign giving oscillatory convergence.
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Method xn+1 = g(xn) iii

Example
Find the root of equation f (x) = x + ln(x) in
the interval [0.1, 1] (r=0.567143).

We will try various forms of rewriting the
equation:

• xn+1 = − ln(xn) but |g ′(x)| =
∣∣ 1

x

∣∣ ≥ 1 on [0.1, 1] : no convergence.

• xn+1 = e−xn then |g ′(x)| =
∣∣e−x

∣∣ ≤ e−0.1 ≈ 0.9 < 1 : convergence.

• another writing : xn+1 = xn+e−xn
2 then

|g ′(x)| = 1
2 |1− e−x | ≤ 1

2 |1− e−1| = 0.316 : better convergence.

• finally xn+1 = xn+2e−xn
3 thus |g ′(x)| = 1

3 |1− 2e−x | ≤ 1
3 |1− 2e−1| = 0.03 :

even better convergence.
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Method xn+1 = g(xn) iv
Thus the obvious choice is:

xn+1 = xn + 2e−xn

3 .

Results: x0 = 1, x1 = 0.578586, x2 = 0.566656, x3 = 0.567165, x4 = 0.567142,
x5 = 0.567143
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Method xn+1 = g(xn) v
Aitken’s improvement
If a method is converging linearly (e.g. εn+1 = g ′(r)εn) then it can be
“improved” to produce even more accurate results without extra iterations.
The error the method xn+1 = g ′(xn) after n iterations is:

r − xn+1 ≈ g ′(r)(r − xn)

after n + 1 is:
r − xn+2 ≈ g ′(r)(r − xn+1)

and by division we get

r − xn+1

r − xn+2
= g ′(r)(r − xn)

g ′(r)(r − xn+1)

Then by solving for r we get:

r = xn −
(xn − xn−1)2

xn − 2xn−1 + xn−2
(16)

This relation improves considerably the accuracy of the final result, especially in
the case of slow convergence.
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Newton’s method i

If near the root r of an equation f (x) = 0 the 1st and 2nd derivatives of f (x)
are continuous we can develop root finding techniques which converge faster
than any method presented till now.

Let’s assume that after n iterations we reached a
value xn+1 which is the root of the equation and
xn is a nearby value such as: xn+1 = xn + εn.
Then:

f (xn+1) = f (xn + εn)

= f (xn) + εnf ′ (xn) + ε2
n

2 f ′′ (xn) + · · ·

but since f (xn+1) = 0 → 0 = f (xn) + εnf ′ (xn) i.e.

εn = − f (xn)
f ′(xn) → xn+1 = xn −

f (xn)
f ′(xn) (17)
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Newton’s method ii
.

Convergence I
If r is a root of f (x) = 0. Then xn = r + εn and xn+1 = r + εn+1, thus:

r + εn+1 = r + εn −
f (r + εn)
f ′ (r + εn) = r + εn −

f (r) + εnf ′ (r) + 1
2ε

2
nf ′′ (r)

f ′ (r) + εnf ′′ (r)

but since f (r) = 0 and

1
1 + εf ′′(r)/f ′(r) ≈ 1− εn

f ′′(r)
f ′(r)

we get the following relation:

εn+1 = f ′′ (r)
2f ′ (r) · ε

2
n (18)

Notice that the convergence of the method is quadratic
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Newton’s method iii
.

Convergence II
An alternative way for studying the convergence of Newton’s method (17) is
based on the method xn+1 = g(xn) i.e. successive iterations will converge if
|g ′(x)| < 1 . Here:

g(x) = x − f (x)
f ′(x) ⇒ g ′(x) = f (x)f ′′(x)

[f ′(x)]2 (19)

since εn = xn − r = g(xn)− g(r) we get

g(xn) = g(r + εn) = g(r) +���XXXg ′(r)εn + g ′′(ξ)
2 ε2

n (20)

= g(r) + g ′′(ξ)
2 ε2

n , ξ ∈ [r , xn] (21)

This leads to:

g(xn)− g(r) = g ′′(ξ)
2 ε2

n ⇒ xn+1 − r ≡ εn+1 = g ′′(ξ)
2 ε2

n (22)
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Newton’s method iv
Algorithm

COMPUTE f (x1), f ′(x1)
SET x2 = x1

IF (f (x1) 6= 0) END (f ′(x1) 6= 0)
REPEAT

SET x2 = x1

SET x1 = x1 − f (x1)/f ′(x1)
UNTIL (|x1 − x2| < E) OR (|f (x2)| < E ′)
ENDIF

EXAMPLE : Find the square root of a number a.
We will solve the equation f (x) = x2 − a , obviously f ′(x) = 2x . Then

xn+1 = xn −
x2

n − a
2xn

or in a better form xn+1 = 1
2

(
xn + a

xn

)
. (23)

For a = 9 and x0 = 4.5, x1 = 3.25, x2 = 3.009615384, x3 = 3.000015360,
x4 = 3.00000000004
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Newton’s method v

EXAMPLE: Fractals

The complex roots 1, (−0.5,±0.866) of
equation z3 − 1 = 0 can be a very good
example of fractal structure.
The root finding algorithm (Newton) is:

zn+1 = zn −
z3

n − 1
3z2

n
(24)
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Newton’s method : Halley i

Remember that εn = xn+1 − xn, then

f (xn+1) = f (xn + εn) = f (xn) + εnf ′ (xn) + ε2
n

2 f ′′ (xn) + . . .

f (xn) + εn

[
f ′ (xn) + εn

2 f ′′ (xn)
]

= 0

εn = − f (xn)
f ′ (xn) + εn

2 f ′′ (xn)
from the 1st order result we substitute

εn ≈ −
f (xn)
f ′ (xn)

xn+1 = xn −
f (xn)

f ′ (xn)− f ′′(xn)·f (xn)
2f ′(xn)

= xn −
2f (xn) f ′ (xn)

2f ′2 (xn)− f ′′ (xn) f (xn) (25)

obviously for f ′′(xn)→ 0 we get the Newton-Raphson method.
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Newton’s method : Halley ii
Convergence
Halley’s methods achieves cubic convergence:

εn+1 = −

[
1
6

f ′′′ (ξ)
f ′ (ξ) −

1
4

(
f ′′ (ξ)
f ′ (ξ)

)2
]
· ε3

n (26)

EXAMPLE: The square root of a number Q (here Q = 9) with Halley’s
method is given by (compare with eq. (23):

xn+1 = x3
n + 3xnQ
3x2

n + Q (27)

Newton Error Halley Error
x0=15 ε0 = 12 x0=15 ε0 = 12
x1=7.8 ε1 = 4.8 x1=5.526 ε1 = 2.5
x2=4.477 ε2 = 1.477 x2=3.16024 ε2 = 0.16
x3=3.2436 ε3 = 0.243 x3=3.00011 ε3 = 1.05× 10−4

x4=3.0092 ε4 = 9.15× 10−3 x4=3.0000000... ε4 = 3.24× 10−14
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Newton’s method : Multipole roots i

If f (x) = (x − r)mq(x) where m is the multiplicity of root r then

f ′(x) = (x − r)m−1 [mq(x) + (x − r)q′(x)
]

i.e. both f (r) = 0 and f ′(r) = 0. Thus the ratio [f (x)/f ′(x)]x→r will diverge.
To avoid the problem we construct a new function

φ(x) = f (x)
f ′(x) = (x − r)q(x)

mq(x) + (x − r)q′(x)

which obviously has r as root with multiplicity m = 1 and the recurrence
relation is:

xn+1 = xn −
φ(xn)
φ′(xn) = xn −

f (xn)/f ′(xn)
{[f ′(xn)]2 − f (xn)f ′′(xn)} /[f ′(xn)]2

= xn −
f (xn) f ′(xn)

[f ′(xn)]2 − f (xn)f ′′(xn) (28)

The convergence is quadratic since we applied Newton-Raphson method for
finding the roots of φ(x) = 0 for which r is a simple root.
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Newton’s method : Multipole roots ii

EXAMPLE
Find the multipole root of f (x) = x4 − 4x2 + 4 = 0 (r =

√
2 = 1.414213...).

Standard Newton-Raphson

xn+1 = xn −
x2

n − 2
4xn

(A)

Modified Newton-Raphson

xn+1 = xn −
(x2

n − 2)xn

x2
n + 2 (B).

x (A) Error (A) (B) Error (B)
x0 1.5 8.6×10−2 1.5 8.6×10−2

x1 1.458333333 4.4×10−2 1.411764706 -2.4×10−3

x2 1.436607143 2.2×10−2 1.414211439 -2.1×10−6

x3 1.425497619 1.1×10−2 1.414213562 -1.6×10−12

33



Convergence tests i

We will compare the convergence rate of a method with linear and one with
quadratic convergence (Bisection and Newton)
For linear convergence we have::

lim
n→∞

|εn+1|
|εn|

= a ⇒ |εn| ≈ a|εn−1| ≈ a2|εn−2| ≈ ... ≈ an|ε0|

then by solving the above equation for n we come to a relation which gives the
number of iterations, n, needed to achieve a given accuracy |εn|:

n ≈ log10 |εn| − log10 |ε0|
log10 |a|

(29)

In the same way for quadratic convergence we get:

lim
n→∞

|ε̃n+1|
|ε̃n|2

= b ⇒ |ε̃n| ≈ b|ε̃n−1|2 ≈ b3|ε̃n−2|4 ≈ ... ≈ b2n+1−1|ε̃0|2
n+1
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Convergence tests ii
and by solving the above relation for n in order to achieve a given accuracy |εn|
we get:

2n+1 ≈ log10 |ε̃n|+ log10 |b|
log10 |ε̃0|+ log10 |b|

(30)

If for a given problem we ask that the error after n iterations to be smaller than
10−6 i.e. εn ≤ 10−6 with an initial error ε0 = 0.5 and for a = b = 0.7 the
relation (29) gives:

n ≈ log10 |10−6| − log10 |0.5|
log10 |0.7|

≈ 37 iterations

The same assumptions for quadratic convergence will give:

2n+1 ≈ log10 |10−6|+ log10 |0.7|
log10 |0.5|+ log10 |0.7|

≈ 13.5

i.e. the number of iterations is only 3!

The difference becomes more pronounce if we demand even higher accuracy
e.g. εn ≤ 10−14 then bisection will need 89 iterations while Newton’s method
will need only 4!
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Selected problems I

1. Find the eigenvalues λ of the differential equation y ′′ + λ2y = 0 with the
following boundary conditions y(0) = 0 and y(1) = y ′(1).

2. Find the inverse of a number without using division

3. If a is a given number find the value of 1/
√

a.

4. Find the root of equation ex − sin(x) = 0 (r = −3.183063012). If the
initial interval is [−4,−3] estimate the number of iteration needed to
reach an accuracy of 4 digits i.e. |xn − r | < 0.00005.

5. Repeat the previous estimation for using the methods of linear
interpolation and

6. Find a few of the roots of F = sin3(2x)
(

1− 2x2) e−2x2
.
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Solving nonlinear equations



Non-linear systems of equations

We will present two methods based on the techniques of the previous section in
solving systems of non-linear equations. The two methods are based on
Newton’s method and in the xn+1 = g(xn) method.

An example of two non-linear equations is the
following:

f (x , y) = ex − 3y − 1

(31)

g(x , y) = x2 + y 2 − 4

it is obvious that f (x , y) = 0 and g(x , y) = 0
are two curves on the xy plane as in the Figure
on the right.
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Newton’s method for 2 equations i

We will develop the method for a system of two non-linear equations while the
extension to n nonlinear equations will become obvious.

Let’s assume:
f (x , y) = 0 , g (x , y) = 0

Let’s assume that after n + 1 iteration the method converged to the solution
(xn+1, yn+1) i.e. f (xn+1, yn+1) ≈ 0 and g(xn+1, yn+1) ≈ 0. Then by assuming
that xn+1 = xn + εn and yn+1 = yn + δn we can Taylor expand around the
solution i.e.

0 ≈ f (xn+1, yn+1) = f (xn + εn, yn + δn) ≈ f (xn, yn) + εn

(
∂f
∂x

)
n

+ δn

(
∂f
∂y

)
n

0 ≈ g(xn+1, yn+1) = g(xn + εn, yn + δn) ≈ g(xn, yn) + εn

(
∂g
∂x

)
n

+ δn

(
∂g
∂y

)
n
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Newton’s method for 2 equations ii

And by solving the system with respect to εn and δn we get :

εn =
−f ∂g

∂y + g ∂f
∂y

∂f
∂x

∂g
∂y −

∂g
∂x

∂f
∂y

and δn =
−g ∂f

∂x + f ∂g
∂x

∂f
∂x

∂g
∂y −

∂g
∂x

∂f
∂y

(32)

Since xn+1 = xn + εn and yn+1 = yn + δn we come to the following pair of
recurrence relations, which are generalizations of Newton’s method:

xn+1 = xn −
(

f · gy − g · fy

fx · gy − gx · fy

)
n

(33)

yn+1 = yn −
(

g · fx − f · gx

fx · gy − gx · fy

)
n

(34)
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Newton’s method n non-linear equations i

If we assume the following system of N equations

f1(x1, x2, ..., xN) = 0
...
...

fn(x1, x2, ..., xN) = 0

with N unknowns (x1, x2, ..., xN). Then by considering a solution of the system
(x1

n+1, x2
n+1, ..., xN

n+1) for which we assume the following relations

x1
n+1 = x1

n + ∆x1
n

...
...

xN
n+1 = xN

n + ∆xN
n
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Newton’s method n non-linear equations ii
We can create expansion of the form:

0 ∼= f1(x1
n+1, ..., xN

n+1) = f1(x1
n + ∆x1

n , ..., xN
n + ∆xN

n )

≈ f1 + ∂f1

∂x1 ∆x1
n + ...+ ∂f1

∂xN ∆xN
n

...
... (35)

0 ∼= fN(x1
n+1, ..., xN

n+1) = fN(x1
n + ∆x1

n , ..., xN
n + ∆xN

n )

≈ fN + ∂fN

∂x1 ∆x1
n + ...+ ∂fN

∂xN ∆xN
n

Then the quantities ∆x i
n will be found as solutions of the linear system


∂f1
∂x1

∂f1
∂x2 · · · ∂f1

∂xN

...
...

∂fN
∂x1

∂fN
∂x2 · · · ∂fN

∂xN

 ·


∆x1
n

...

∆xN
n


= −


f1

...

fN

 (36)
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Newton’s method n non-linear equations iii

Thus if we start with N initial values (x1
0 , x2

0 , ..., xN
0 ) then from the solution of

the above system we will calculate the quantities ∆x i
n which lead to the “new”

values (x1
1 , x2

1 , ..., xN
1 ) via the relations:

x1
1 = x1

0 + ∆x1
0

...
... (37)

xN
1 = xN

0 + ∆xN
0

This procedure will be repeated till the a given accuracy is reached i.e.
max |∆x i

n| < E .
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Methods of type x = g(x) i

Let’s assume the system on N nonlinear equations:

f1 (x1, x2, . . . , xN) = 0
...

... (38)

fN (x1, x2, . . . , xN) = 0

The system can be rewritten in the form:

x1 = F1 (x1, x2, . . . , xN)
...
... (39)

xN = FN (x1, x2, . . . , xN)

A SIMPLE CHOICE: Give some N initial values (x1, . . . , xN)(0) in the right
hand side of the equations and find a set on N new values (x1, . . . , xN)(1).
Repeat the procedure till you reach a solution with a given accuracy.
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Methods of type x = g(x) ii
AN IMPROVED APPROACH:

Give some N initial values (x1, . . . , xN)(0) in the right hand side of the 1st of
the equations (39) and find a new value (x1)(1).

Then in the right hand side of the 2nd equations apply the following set of
“guess” values (x1)(1), (x2, . . . , xN)(0) and estimate (x2)(1). Continue in the third
equation by applying the improved set of values : (x1, x2)(1), (x3, . . . , xN)(0) and
so on.

CONVERGENCE: The system xi = Fi (x1, x2, . . . , xN) with i = 1, . . . ,N will
converge to a solution, if near this solution the following criterion is satisfied:∣∣∣∂F1

∂x1

∣∣∣+
∣∣∣∂F1

∂x2

∣∣∣+ · · ·+
∣∣∣ ∂F1

∂xN

∣∣∣ < 1

...
... (40)∣∣∣∂FN

∂x1

∣∣∣+
∣∣∣∂FN

∂x2

∣∣∣+ · · ·+
∣∣∣∂FN

∂xN

∣∣∣ < 1
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Methods of type x = g(x) iii
Example
The non-linear system of equations

x2 + y 2 = 4 and ex − 3y = 1

with solutions (1.5595,1.2522) & (-1.9793,-0.2873) can be written in the form:

xn+1 = −
√

4− y 2
n and yn+1 = 1

3 (exn − 1)

for an initial choice (−1, 0), we create the following sequence of solutions

n 0 1 2 3 4 5
x -1 -2 -1.9884 -1.9791 -1.9792 -1.9793
y 0 -0.2107 -0.2882 -0.2877 -0.2873 -0.2873

which after 5 iterations approaches the exact solution.
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Methods of type x = g(x) iv

Example II
If we use the 2nd method then the results are:

n 0 1 2 3
x -1 -2 -1.9791 -1.9793
y 0 -0.2882 -0.2873 -0.2873

i.e. the same accuracy has been achieved with only 3 iterations.

In order to find the 2nd solution of the system we modify the recurrence
relations as follows:

xn+1 =
√

4− y 2
n and yn+1 = 1

3 (exn − 1)

If we start with values close to the exact solution e.g. x0 = 1.5 and y0 = 1 the
results are :
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Methods of type x = g(x) v

n 0 1 2 3 4 5
x 1.5 1.7321 1.2630 1.8126 1.0394 1.9050
y 1 1.5507 0.8453 1.7087 0.6092 1.9064

we notice that we diverge from the solution and the reason is that the criteria
for convergence set earlier are not satisfied.

While if we write the recurrence relation in the form

yn+1 =
√

4− x2
n

xn+1 = ln(1 + 3yn)

after some iterations we will find the 2nd solution.
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Selected problems

1. Solve the following system of equations using both methods and estimate
the rate of convergence:

ex − y = 0 and xy − ex = 0

2. Consider the nonlinear system of equations

f1(x , y) = x2 + y 2 − 2 = 0, and f2(x , y) = xy − 1 = 0 .

It is obvious that the solutions are (1, 1) and (−1,−1), examine the
difficulties that might arise if we try to use Newton’s method to find the
solution.
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