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Single Step Methods



Single Step Methods : Taylor series

The numerical solution of the ODE

y'=f(x,y) with y(x)=yo (1)

at a given point x can be found by finding the coefficients of the Taylor series
expansion about the initial point xo. More specifically:

A h2 "
y(x) =y (xo+h) =y (x0) +hy () + 5y (x0) +-- (2)
where h = x — xp.

Thus we need to provide the “coefficients”:

y'=f(xy), y'=f"(xy),. .. (3)



Taylor series : Example i

We will find the y(1) for the ODE

y'=x+y with y(x)=1 where x =0. (4)
Y (x) = y'(0)=0+1=1
y" = 1+y/:1+x+y:l+y'
y'(x) = 1+y'(0)=2
nr — 1+y/
¥y (o) = 1+y'(0)=2
y@ = 1ay
(4) _ / _
yo) = 1+y'(0)=2
Thus
(0+h)—1+h+h2+h—3+h—4+ (5)
Y - 312



Taylor series : Example ii

and the error will be

E- Y(S) (5),75
|

= for 0<&<h (6)

X y Analytic Error Error (h=0.1)

0 1 1

0.1 1.110342 1.110342 1.7x 1077 1.7x10°7

0.2 1.24280 1.24281 5.5x107° 3.7x 1077

0.3 1.39968 1.39972 43x107° 6.2x 1077

0.4 1.383467 1.383649 1.8x107* 9.1x10°"

1.0 3.416667 3.436564 2x 1072 42x107°

Table 1: Error in 3rd column assuming a h = x, Error in 4th column assuming step h =0.1



Single Step Methods : Euler-Heun

e EULER We keep only the 1st
term of the Taylor series: 9

y(xo+h)=y(x)+hy'(x) (7)

with and obvious error:

E:YT(f)h2 for 0<&<h

e EULER - HEUN : This is a predictor - corrector method

Iststep : yns1 = yo+ hy,+ O(h) (8)
h 14 I’
ndstep: yni = yats (vn+ yne1) + O(K) (9)

Can you explain the smaller error?



Propagation of Errors

e If we consider the first order ODE y’ = f(x,y), with y(x0) = yo then if Y,
is the calculated value at x, and y, the true value at x, the error at x, will be

En=Yn—Yn (10)

e Let's try to study the propagation of the error for the Euler method:

Ent1 = Yori— Yo1=[Ya+h-f(Xa,¥n)] = [Ya+h-f(xa, Yn)]
f Xn, Yn -f Xn, Yn
= (1+h.kn)5n+%hzy”(in) where kn:(%)xzxn» (11)

implying that the propagation of the error is linear.
e If |1+ hky| > 1 the error increases while if |1 + hk,| < 1 the error decreases.
e This leads to the necessary condition for absolute convergence:

of

-2 < hk, <0 or (@)X:X“ <0. (12)



Convergence

Lets assume an ODE of the form

dy
— =A 13
5 - (13)

which has an obvious solution of the form y = e™*.
Euler's method gives the approximate solution via the recurrence relation:
Yn+1 = Yo+ hAyn = (1 + hA)y, for n=0,1,2,.. (14)
Thus if we use this relation n-times we will get:
Vo1 = (1+hA)" Ny, for n=0,1,2,... (15)
But for small h we know that 1+ hA ~ €™ thus
Yar1 = (14 hA)n+ly0 N e(n+1)hAy0 _ e(x,,+1—xo)Ay0 = P (16)
where h = (xp11 — Xx0)/(n+1).

This means that the numerical solution for small h converges to the analytic
solution: y = ™.



Runge - Kutta Methods i

Let's assume the ODE 4
ly
Z-f 17
e (x,y) (17)

A possible recurrence relation for the estimation of y, can be of the form

Yo+l = Yo + aky + bk (18)
where
ki = hf(xn,yn) (19)
ky = hf(x,+ Ah,y,+ Bki) (20)

Let's try to find the equivalent Taylor expansion we get

h
Vo1 = Yo + hf (Xn, ¥n) + Ef (Xn, yn) + O(R%) (21)
But since df d
y
o B bt (22)



Runge - Kutta Methods ii

we get
2

Yol = Yo+ hfy + % (fc+ ), (23)
By comparing with (18), which can be written as:
Yn+1 = Yn + ahf (Xn, ¥n) + bhf [xn + Ah, yn + Bhf (Xn, yn)] (24)
we can get the Taylor series * expansion
Ye1=Yn+h(a+b)fo+ B (Abf+Bbff,), (25)

thus we get the following relations for the arbitrary constants a, b, A and B :

a+b=1, A-b:1 and B-b:1 (26)
2 2
By setting a = %, %,% ... we can estimate the other 3 unknowns.



Runge - Kutta Methods iii

Here, for simplicity we choose a =1 then b=1 and A=B=1, ie.
1
Yn+1 = Yn + E(kl + k) (27)
where
ki = hf (Xn,¥n), ko=hf(xa+h,y,+ki) (28)

which is Euler-Heun’s method !!!

Here we use: f (xy + Ah,yn + Bhf (xn,yn)) ~ (f + fxAh + fyBhf) .,

10



3rd order Runge - Kutta Method

In a similar way we can derive the 3rd order Runge-Kutta method:

Ve :y,,+%(k1+2k2+2k3)+0(h4) (29)
where
ki = hf (Xa,¥n) (30)
1 1
ky = hf(x,,+§h,yn+§k1) (31)
ks = hf (xa+ h,yn+2ko — k1) (32)
(33)

This method if f = f(x) i.e. independent of y reduces to Simpson’s method.

Exercise: See in the exercises a different writing of the 3rd order RK method

and try to prove it.

11



4th order Runge - Kutta Method

o If we repeat the same procedure for a Taylor series up to h*, we will create a
system of 11 equations with 13 unknowns.

e Then with the appropriate choice of two of them we come to a recurrence
relation of the form :

1
Yn+1 :yn+6(k1+2k2+2k3+k4) (34)
where

ki = hf (xn, yn) (35)
ky = hf(x,,+1h,y,,+1k1) (36)

2 2

1 1
ks = hf(x,,+§h,y,,+§k2) (37)
ka = hf (Xn+h,yn+ks) (38)

This the 4th order Runge - Kutta with local error £ ~ O(h®) and global error

after n steps E ~ O(h*). b



4th order Runge - Kutta - Merson Method

In this method the order is not given by the number of k's, but by the global
error:

ki = hf (xn,yn) (39)
kr = hf (X,, + %h, Y+ %kl) (40)
1 1 1
k3 S hf (Xn ot gh,yn + 6k1 + 6k2) (41)
ke = hf (Xn + %h,yn + %/ﬁ + §k3) (42)
1 3
k5 = hf (X,, + h,yn P Ekl - 5/(3 P 2k4) (43)
1
Vst :y,,+6(k1+4k4+k5)+0(h5) (44)

ERROR: 1
5 = % (2k1 = 9/(3 + 8/(4 = k5) (45)

13



Runge - Kutta - Fehlberg Method i

ki = hf (xa,yn) (46)
ko = hf(xn+%h7yn+%k1) (47)
ks = hf(x,,+%h,y,,+3%kl+?%kz) (48)
DR e T
ks = hf(xn+h,yn+%k1—8k2+356%k3—fl4—0ik4) (50)
ke = hf (x,, + %h,y,, - 2—87k1 + 2ko — 2222 ks + Lll??)i ks — %/@) (51)
Then a first estimation for y,.1 is:
RO N

14



Runge - Kutta - Fehlberg Method i

here the local error is ~ h°.
The next step will include ks and gives:

16 6656 28561, O 2
(22 k ke — — ks + =K
Yre1 = Y +(135 1 ¥ 12825 T 56430 50 ° ' 55 6) (5

with local error » h® and global ~ A°.

A formula for the estimation of error of the Runge - Kutta - Fehlberg method is

1 128 2197, 1 2
= fgo = g S et Sk 54
360 ¢ 4275 7524 ¢ T 50°° T 55°C &)

Since the ki, ko, ..., k¢ are known in every step we can always test the accuracy
of the method and if is worst than the demanded we subdivide the step h.

e See an extensive analysis in:

http://wwv.mathematik.uni-stuttgart.de/studium/infomat/Numerische-Mathematik-II-SS11/Matlab/ode_4.pdf

15


http://www.mathematik.uni-stuttgart.de/studium/infomat/Numerische-Mathematik-II-SS11/Matlab/ode_4.pdf

Multistep Methods




Adams’s Method i

e The principle behind a multistep method is to utilize the past values of y
and/or y' to construct a polynomial that approximates the derivative function,
and extrapolate this into the next interval.

e The number of past points that are used sets the degree of the polynomial
and is therefore responsible for the truncation error.

e The order of the method is equal to the power of h in the global error term of
the formula, which is also equal to one more than the degree of the polynomial.

e We will write the ODE in the form:

dy

- f(x,y) then dy=f(x,y) dx (55)
Ix

and then we integrate between x, and Xpi1 :

Xn+1 Xn+1
f dy = Yns1 = Yn = f f(x,y)dx (56)

16



Adams’s Method ii

We can use the trapezoidal rule for the integration

Xn+1 h h3 7
yor=ya= [ G y) = 2 [ Oy Can)) + F(xa+ by (ot )]+ 2 (€)

(57)
thus the new scheme will be:
h, , h
Yn+1 = Yn t+ 5 (yn+yn+1)_ Ey”/(é') (58)
alternatively:
A 1 4 h3 nr
Yy = yathyp+ Syl 57"
yn+1 yn h "r 2 h3 nr
= n h n -3 h =
ey 3 [ By e
1 7 7 h3 1723
Yo+ 5 (Y + yan) = 577 (©) (59)

Did you ever met this relation again?

17



Adams’s Method iii

NOTE: Can you prove the following expression?

h 4 ! ! h4
Yn+1 = Yn + R (5yn+1 +8y, - yn—l) - ﬂy(‘l) (60)
or .
h h
Yot = Yo+ o (5fpe1 + 8y = foo1) - ﬂy“) (61)
HINT

The previous relations suggest that we can use (appropriately) the methods
that we developed for the numerical evaluation of integrals in order to derive

more accurate relations.

The typical way was to integrate the term on the right of (56) by using an
approximate form of f(x,y) e.g. using an interpolating polynomial in x.

NOTE: In deriving this we have to use several " past points”.

18



3rd order Adams’s Method i

Here we use quadratic approximation

Xn+1
/ dy = Yor1—Yn

[ Xn+1 [fn N (s +21) SN L+ Error] dx

s=1
= h [ﬁ, +sAfp_1 +

s=0

=l s(s+1)(s+2) ,3.m
+hfs:0 ST (¢)ds

(s +21)5A2fn_2] ds

then

Yost — ¥ h[a+1Am+3A2mg]+ o (")

h[ S(f=for) + (f—2f,,1+f,,2)]+0(h4)
h 3 4 111
Yntl = Yo + 1 [23f, — 16fp-1 + 5fp2] + §h (&) (62)

19



3rd order Adams’s Method i

If we use cubic approximation we get:

Ynt1 = Yn + % [55f, — 59f, 1 + 37f, > — 9, 3] + O (h°) (63)

ERROR TERM : We get the error term of the 4th order Adams formula by
integrating the error of the cubic interpolating polynomial

251
Ex oohy® (O, s €< (64)

20



Milne’s Method

This is an alternative method to Adams. We follow the same procedure but we
use different limits of integration. Thus the ODE

dx

= _f 65
dy (x,y) (65)
can be written as:
Xn+1 Xn+1
[ dy =y —ya = [ () dix (66)
Xp—3 Xn-3
and if we replace f (x,y) with a 2nd order polynomial
4h 5
Yor1 = Yoz + = (2fa = fo1 + 2fo2) + O (K°) (67)
ERROR TERM 5
Ex %h‘gy(S) (¢), Xn-3 < & < Xns1 (68)

21



Predictor - Corrector Methods




Predictor - Corrector Meth

We estimate the value of yi.1 = y(xx+1) by using two successive
approximations.

Prediction : we use the m previous points

Vir1 = P (Vkoms Yk-mi1s s Vi) (69)

Correction : we include the " predicted” value of yx.1

Yk+1 :C(yk—my_yk—m+17"'7ykayk+1) (70)

This 2nd step can be repeated a few times until the two “corrected” values
converge i.e. until

&, - 9P| < €

Yis1 = Yir1

where j is the number of iterations and &£ is the maximum allowed error.

22



Predictor - Corrector Methods : Milne - Simpson

A corrector formula for Milne's method can be derived by just shifting the
integration limits
Xp+1 Xn+1
f dy = yns1 = Yn-1 = f f(x,y)dx (71)
Xp—1 Xp—1

and by using Simpson’s rule for the integral we get

h
Yn+l = Yn-1 + 3 (for1 + 4F5 + fro1) (72)

with error:

h5
Ew %y(‘r’) (&) where xp-1 <& < Xps1 (73)
Milne’s Predictor-Corrector formulas

4h 28
Yk+1 = Yk-3 + 3 (2fk—p — fie1 + 2f1) + %hSY(S)(&) (Xk-3 < &1 < xk41)  (74)
B h 1 5 (5
Yk+1 = Yk-1 + 3 (fue1 + &fi + fir1) — %h y (&) (o1 <& <xke1)  (75)

23



Predictor - Corrector Methods : Adams - Bashford - Moulton

PREDICTION (xc_3 < & < Xk41)
Yk+1 —yk+f(55fk—59fk 1+37fk g—gfk 3)+ h5 (5)(f ) (76)

CORRECTION (Xk,2 < 52 < Xk+1)

19

ey O&) ()

yk+1:yk+ (9fk+1+19fk—5fk 1+ fe2) —
NOTE The correction formula can be derived assuming integration from xx to
Xk+1 and demanding as in Gauss integration method that the formula is exact
for 3rd order polynomials and using the points xk11, Xk, Xk-1 and xx—2. In this
way we will get the formula:

Xkt h
[ F(de ~ o (9 + 19 - iy + o) (78)
X

In a similar way one may derive also the correction term using Gauss method
for the points xk, Xk-1, Xk—2 and xx—3. Even thought using Newtons
interpolating polynomial it is easier, as it was shown earlier.

24



Predictor - Corrector Methods : Hamming

The Hamming method (1959) is a stable predictor-corrector method for ODEs.
It was developed for replacing the classical Milne - Simpson method by
replacing unstable corrector rule by a stable one.

PREDICTION (xk3 < &1 < xks1)°

4h 14
Yot = Y3+ = (2fk—2 = frer + 2f;) + EhSY(S)(fl) (79)

CORRECTION (%2 < & < Xcs1)

1 3h 1
Yk+1 = 3 (9yk — Yk—2) + ) (—fre1 + 2fk + fis1) — 4—Oh5y(5)(£1) (80)

2It is Milne’s prediction formula

25



Systems of ODE

For the numerical solution of systems of ODEs we follow the methods

developed earlier.

For example, the 4th order Runge-Kutta will look like:

1
Yn+1 = Ynt 6 (k1 ot 2/(2 oy 2k3 ot k4) (81)
1
Zn+l = Zn t+ 6 (/1 oty 2/2 S 2/3 ot l4) (82)
where
ki = hf(xn,yn,zn) (83)
1 1 1
ky = hf(x,,+5h,yn+£k1,zn+;/1) (84)
h 1 1
k3 = hf(xn+5.y,7+5k2,zn+5/2) (85)
kg = hf(xp+h,yn+ks,zn+13) (86)
= heglxn,yn,zn) (87)
1 1 1
h = hg(Xn+§h‘yn+5k1WZn+;/1) (88)
1 1 1
I3 = hg(xn+5h,yn+5k2,z,,+512) (89)
Iy = hg(xn+h,yn+ks,zn+13) (90)

26



Lorenz Attractor

The Lorenz attractor can be derived via the following systems ODEs

x' = 10(y -x) (91)
y' = x(28-2)-y (92)
zZ = xy- §z (93)
8
Here with the following initial conditions x(0) =1, y(0) =0, z(0) =0 and

t=0...100

27




Stiff Systems of ODEs

28



Instabilities in the numerical schemes i

We show that Milne's method can become unstable even for simple ODEs.
Consider the ODE

d . . Xn—X(
d—y = Ay with general solution for x=x, the y,= yoeA( n0)
Ix

If we solve this ODE with Milne's method we will use the corrector formula

h
Yo+l = Yn-1 t 3 (y/:+1 + 4%: + }’r:—l)

where by substituting y, = Ay, we get
h
Yn+1 = Yn-1 + 5 (Ayn+1 + 4Ayn + Ayn—l)

and by rearranging, we get

hA 4hA hA
1-— n - ——F=Yn— 1 - n-1 =
( 3)“1 3y(+3)y10

This is a 2nd order difference equation.

29



Instabilities in the numerical schemes ii

The difference equation admits a solution of the form
Yn = Clzln + 5222"

where Z; and Z are the roots of the quadratic equation:
hA\ _. 4hA ( hA)
1-— |1 Z7-—Z-|1+—]=0
( 3 ) 3 "3

If we set r = hA/3
(1-r)Z°-4rZ-(1+r)=0

the roots of the above quadratic equation will be

2r+V3r2 +1

VAR 1 w1+3r~,e3'+0(r2):ehA
-r
_ /3,2
22 = wm_1+r%_e*’+o(r2):_efh/4/3
=

30



Instabilities in the numerical schemes iii

Hence the Milne solution is represented by

Yo = ClenhA 4 C2e—nhA/3 _ CleA(x,,—xo) 4 CQG—A(XN—XO)/3  Xn— X0 = nh
e The 1st term is as expected
e The 2nd term is parasitic :
— for A> 0 dies out as x, increases, BUT
— for A< 0 it will grow exponentially with x,.

EXAMPLES

1. Solve numerically the ODE
y'=-10y, with y(0)=1
from x =0 to x = 2 by using Milne's and Adams-Multon’s methods. What
are your conclusions about the error?
2. Use Milne's method to solve numerically the ODE
y' =2(x+1), with y(1)=3
Is there any indication of instability?

31



ence Criteria i

We will look for a criterion to show how small h should be in the
Adams-Multon method so that re-corrections are not necessary.
Let :

e y, = value of y,.1 from predictor formula

e y. = value of y,;1 from corrector formula

® Ve, Vece, ... = value of y,.1 if successive re-corrections are made,
® Y. = values to which successive re-corrections converge

e D=yc.—yp

The change of y. by re-correcting would be
h ! ! ! !
Yee=Ye = Wt oy (9ye +19y, = 5ynp_1 + Yn2)
h 9h
= o+ 5 (0 + 19 - 8via +via) | = 54 (- 3)

Y

32



Convergence Criteria ii

By manipulating the difference (y. - y,) we get:

’ ’ f(xn s Ye — f(xn 5
Vvh = Fwt,ye) — Pl yp) = ) = PO yo) ()
Ye=Yp
= f,(&)D where y.<& <y, (94)
Hence oh oh
cc = Ye = c,_ o) = —f, D 95
Yee = Ye = 5 (6= ¥p) = 5,5 (&) (95)

If recorrected again, the result is

YooY = 330 =¥D) = 50H(€) (e - ye) = 36 (&) T H()]
(33) seoro (96)

33



Convergence Criteria iii

On further re-corrections we will have a similar relation. Finally, we get y.. by
adding all the corrections of y, together:

Yoo = Yp+(¥Ve—Yp)+ (Ve —Ye) + (Vece = Yec) + -
~ Ohf, (€) 9hf,(£)\? 9hf,(€)\*
= y+D+ 2y4 D+( 2y4 )D+(#)D+...

D
+D[1+r+r?+r+...]= + —,
Yp [ ] Yp 1—r

where oh
=—f(&).
r 24 y(€)
The above geometrical series will converge only if the r is smaller than unity:

BB _ HEGa |

M= 24/9
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Convergence Criteria - Adams-Multon Method

Thus the 1st convergence criterion will be:

24/9
£y (Xn, yn)
If we wish to have y. and y., the same to within one in the Nth decimal places,
then D o
rl -N
o — Yec = P D = 1
Yoo = ¥ (yp+ 14) (yo+ D)= 7— <10

If r < 1 the fraction will be approximately r/(1—-r) ~ r we can write a 2nd
convergence criterion which ensures that the 1st corrected value is adequate
(i.e. it will not changed in the Nth decimal place by further corrections)

D.10" < |2

r

o 24/9
hif, (xn, yn)l

35



Convergence Criteria - Milne Method

Similar criteria can be found for the Milne method :
1st convergence criterion :

3
h< ————
|y (Xn, yn)
2nd convergence criterion :
D10V < |- 3 _
ri hlfy(xn, )l

NOTE: These criteria are for a single 1st order ODE only. A similar analysis for
a system is much more complicated.
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Typical Sources of Error

e  The previous error analysis examined the error of a single step only, the so
called local truncation error.

e  The accumulation of these errors, termed as the global truncation error is

important.
There are other sources of error in addition to the truncation error.

e Original data errors : If the initial conditions are not known exactly or
exressed inexactly as terminated decimal number, the solution will be affected
to a greater or lesser degree depending on the sensitivity of the equation.

e  Round-off errors : Both floating-point and fixed-point calculations in

computers are subject to round off errors.

e Truncation errors of the method: These are the types of error due to
the use of truncated series for approximation in our work, when infinite series is

needed for exactness.

37



Error Propagation i

When we solve ODEs numerically we must worry about the propagation of the
previous errors through the subsequent steps.

If we consider the 1st order ODE y' = f(x,y), with y(x0) = yo then if Y, is the
calculated value at x, and y, the true value, then the error in Y, will be:
En=Yn— Yn (97)

By the Euler algorithm :

1, ,
En+l = Y+l — Yn+1 :yn+hf (Xn,yn)_ Yn_hf (X,,,Yn)-l- E/fy (( )

f(Xnvyn)_f(XmYn) 1, 1"

= ep+h En+ —h" &n
n yn_yn n 5 ,‘/(\)

1, "
= e, (1+hf, (xn,nn))+§h’y (£,)  wheren, between y,, Y,

= (1+hk)5n+%hgy”(‘\”) where k=g—;. (98)

38



Error Propagation ii

l.e. the error propagation is linear. If |1 + hk| > 1 the error increases while for
|1+ hk| <1 decreases. This observation leads to the condition:

-2<hk<0 or Of/dy<0 (99)

eni1 = (1+hk) e, + %h2y"(§n) (100)

Since Yo = yo we get:

o = 0

e < (1+hkjeo+ 3 Ly ”(50)_7h2y”(50)

2 < (ehi[; 2”<5o>]+ Ry (&) = 5 [(1+ BR)y " (€0) + " (60)]
e < SR ARY (@) + L+ b)Y (&) + ()]

en < SR[(L4H)™Y(60) + (14 hR)" 2y (€) + oty (E0ms)]

2
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Error Propagation iii

e If k>0 the truncation error at every step is propagated to the next step
after being “amplified” by the factor (1 + hk). Finally, for h — 0 the error at any
point is the sum of all previous errors.

e If the f, is negative and of magnitude such that kh < 2 the errors are
propagated with diminishing effect. We now show that the accumulated error
after n steps is O(h); that is the global error of the simple Euler method after
n steps is O(h).

If |y (x)| < M with M > 0 then the previous equation will be written as:
P
lens1| < (1 + hk)len| + §h M
which is a difference equations of the form:
Zni1 = (1+ hk)Z, + %hZM with Z, =0

With obvious solution

40



Error Propagation iv

z, 77(1 hk)" -%

since 1+ hk < e™ for k >0 we get

Z, < 2 ey B otk _y) < BT (et 1) - 0y

2k 2k

It follows that the global error =, is O(h)

41



Comparison of the Numerical Methods

e The advantages of Runge-Kutta method (single step)

e Easy application
e Single-step i.e. no need for a “starting” method
e Step-size can be changed during the integration to match accuracy

needs (variable step-size)

e Advantages of Multi-step & Predictor-Corrector Methods (Adams ,
e More efficient than one-step methods (Adams-Moulton is about
twice that of the Runge-Kutta-Felberg method) ©
e Local truncation error is easily estimated, so it can be adjusted.
e Changes of step size with multistep methods is considerably more
awkward. ©
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