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Introduction

Finite-element methods (FEM) are based on some mathematical physics
techniques and the most fundamental of them is the so-called
Rayleigh-Ritz method which is used for the solution of boundary value
problems.

Two other methods which are more appropriate for the implementation

of the FEM will be discussed, these are the collocation method and

the Galerkin method.
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Rayleigh-Ritz method

In the Rayleigh-Ritz (RR) method we solve a boundary-value problem by
approximating the solution with a linear approximation of basis functions.
The method is based on a part of mathematics called calculus of
variations. In this method we try to minimize a special class of functions
called functionals.
The usual form for functional in problems with one variable is

I [y ] =

∫ b

a

F (x , y , y ′)dx (1)

The argument of I [y ] is not a simple variable but a function y = y(x).
The value of I [y ] is varying with y(x), but for fixed y(x) is a scalar
quantity.

** We seek the y(x) that minimizes I [y ].
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Rayleigh-Ritz method: an example I

Let’s find the function y(x) that minimizes the distance between two
points. Although, we know the answer, i.e. that it is a straight line, we
will pretend that we don’t, and that we will choose among the set of
curves yi (x) as in the figure.

The functional is the integral of the distance along any of these curves:

I [y ] =

∫ x2

x1

√
dx2 + dy2 =

∫ x2

x1

√
1 + (dy/dx)2dx (2)

To minimize I [y ], we set its derivatives to zero.

Each curve must pass through the points (x1, y1) and (x2, y2).
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In addition, for the optimal trajectory, the Euler-Lagrange equation
must be satisfied:

d

dx

[
∂

∂y ′
F (x , y , y ′)

]
− ∂

∂y
F (x , y , y ′) = 0 (3)

For the functional of equation (2) we get:

F (x , y , y ′) =
(
1 + (y ′)2

)1/2
Fy = 0

Fy ′ = y ′
(
1 + (y ′)2

)−1/2
(4)

Finally, from the Euler-Lagrange equation (3) we get

d

dx

(
∂F

∂y ′

)
=

d

dx

(
y ′√

1 + (y ′)2

)
=

∂F

∂y
= 0 (5)

From which it follows that :

y ′√
1 + (y ′)2

= c → y ′ =

√
c2

1− c2
= b → y = bx + a (6)
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Rayleigh-Ritz method: an example II

Let’s try a more complicated case: Apply the RR method to the 2nd
order boundary value problem

y ′′ + Q(x)y − F (x) = 0 , y(a) = y0 , y(b) = yn (7)

The above boundary condition are known as Dirichlet conditions.
The functional that corresponds to eqn (7) is:

I [u] =

∫ b

a

[
(u′)2 − Qu2 + 2Fu

]
dx (8)

Note I: when the above functional is optimized (via Euler-Lagrange
equation) leads to the original equation (7).
Note II: we now have only 1st order instead of 2nd order derivatives.
• If we know the solution to the ODE, substituting it for u in eqn (8)
will make I [u] a minimum.
• If the solution is not known, we may try to approximate it by some
arbitrary function and see whether we can minimize the functional by a
suitable choice of the parameters of the approximations.
• The Rayleigh-Ritz method is based on this idea.
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We let u(x), which is the approximation to y(x) (the exact solution), be
a sum:

u(x) = c0v0(x) + c1v1(x) + · · ·+ cnvn(x) =
n∑

i=0

civi (x) (9)

There are two conditions on the trial functions vi (x) :

They must be chosen such that u(x) meets the boundary conditions

The individual vi (x) should be linearly independent

The vi (x) and ci are to be chosen to make u(x) a good approximation to
the true solution of eqn (7).
Since we have no prior knowledge of the true function y(x) we have no
chance to guess the vi (x) that will provide a solution to closely resemble
y(x).
Thus we go for the usual choice that is the use of polynomials! and we
will try to find a way to get the values of the ci .
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These requirements can be fulfilled by using the functional of eqn (8).
If we substitute u(x) as defined by equation (9) into the functional of eqn
(8) we get:

I (c0, c1, . . . , cn) =

∫ b

a

[(
d

dx

∑
civi

)2

− Q
(∑

civi
)2

+ 2F
∑

civi

]
dx

Thus I is a function of the unknown ci . To minimize I we take the partial
derivatives with respect to each unknown ci and set zero.

∂I

∂ci
= 2

∫ b

a

u′
∂u′

∂ci
dx −

∫ b

a

2Qu
∂u

∂ci
dx +

∫ b

a

2F
∂u

∂ci
dx (10)

Thus we led to a system of n equations to solve. This will define the
u(x) of equation (9).

Finite-Elements Method 10



EXAMPLE: Solve the ODE y ′′ + y − 3x2 = 0 with the boundary
conditions (0,0) and (2,3.5).
We will use polynomials up to 3rd order, we can define u(x) as:

u(x) =
7

4
x + c2x(x − 2) + c3x

2(x − 2) (11)

note that the functions v are linearly independent and that u(x) satisfies
the boundary conditions.
The following terms are needed for the evaluation of equations (10):

u′ =
7

4
+ 2c2(x − 1) + c3(3x2 − 4x)

∂u′

∂c2
= 2x − 2 and

∂u′

∂c3
= 3x2 − 4x

∂u

∂c2
= x(x − 2) and

∂u

∂c3
= x2(x − 2) (12)

By substituting the above equations into equation (10) we get two

equations for the two constants c2 and c3.
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The results which come from trivial integrations are:

∂I

∂c2
:

16

5
c2 +

16

5
c3 =

74

15
∂I

∂c3
:

16

5
c2 +

128

21
c3 =

36

15

From their solution we get the values of c2 and c3 and we come to the
approximate solution:

u(x) =
119

152
x3 − 46

57
x2 +

53

228
x (13)

NOTE: The exact solution is: y(x) = 6 cos x + 3(x2 − 2).
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The Collocation Method

The collocation method uses an alternative method in approximating
the solution y(x) of the BVP defined in (7).
We define the residual function R(x) as:

R(x) = y ′′ + Qy − F (14)

We approximate again y(x) with u(x) equal to a sum of trial functions
(linearly independent polynomials) as with the RR method, and we try to
make R(x) = 0 by suitable choice of the coefficients.

Of course this is not possible to be achieved everywhere in the interval

and thus we may choose arbitrarily to make R(x) = 0 at a number of

points inside the interval. The number of interior points should be the

same as the number of the unknowns.
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The Collocation Method : Example

We will solve the previous example using the collocation method.

We take again

u(x) =
7

4
x + c2x(x − 2) + c3x

2(x − 2) (15)

The residual is defined as:

R(x) = u′′ + u − 3x2 (16)

and when we differentiate u(x) we get:

R(x) = 2c2 + 2c3(x −2) + 4c3x + (7/4)x + c2x(x −2) + c3x
2(x −2)−3x2

Since we have 2 unknown constants we will use 2 points in the interval
[0, 2], e.g x = 0.7 and x = 1.3.
Then by setting R(x) = 0 for these two choices we get:

x = 0.7 : 1090c2 − 437c3 − 245 = 0

x = 1.3 : 1090c2 + 2617c3 − 2795 = 0
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The Collocation Method : Example

and by solving for c2 and c3 we get

u(x) =
425

509
x3 − 61607

55481
x2 +

140023

221924
x (17)
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The Galerkin Method

This method can be considered as a variation of the collocation
method i.e. is a ”residual method” that use the function R(x)
defined in (14). The difference is that here we multiply with
weighting functions Wi (x) which can be chosen in many ways.

Galerkin showed that the individual trial functions vi (x) used in (9)
are a good choice.

Once we have selected the vi (x) from eqn (9) we compute the
unknown coefficients by setting the integral of the weighted residual
to zero:∫ b

a

Wi (x)R(x)dx = 0 , i = 0, 1, . . . , n where Wi (x) = vi (x)

(18)

Notice that using the Dirac delta functions for the Wi (x) we reduce
to the collocation method.
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The Galerkin Method: Example

We will solve the previous example using the Galerkin method.

We take again

u(x) =
7

4
x + c2x(x − 2) + c3x

2(x − 2) (19)

so that v2 = x(x − 2) and v3 = x2(x − 2) .
The residual is

R(x) = u′′ + u − 3x2 (20)

and after substituting u′′ and u we get

R(x) = 2c2 + c3(6x − 4) + 7x/4 + c2x(x − 2) + c3x
2(x − 2)− 3x2 (21)

We carry out two integrations:

If v2 →Wi :

∫ 2

0

[x(x − 2)]R(x)dx = 0

If v3 →Wi :

∫ 2

0

[
x2(x − 2)

]
R(x)dx = 0
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These intergrations give two equations for the ci :

24c2 + 24c3 − 37 = 0

21c2 + 40c3 − 45 = 0

and by solving for c2 and c3 we get

u(x) =
101

152
x3 − 103

228
x2 − 1

128
x (22)

COMMENT: Although the RR method is more accurate than the others
the Galerkin method is much easier to be implemented since we don’t
need to find the variational form.
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Finite Elements for ODEs

In order to improve the accuracy and also to be able to treat longer
intervals [a, b], we follow the steps bellow:

Subdivide [a = x0, b = xn]into n subintervals, the elements, that
join at the nodes x1, x2,..., xn−1

Apply the Galerkin method to each element separately to
interpolate between the end point nodal values u(xi−1) and u(xi )

Use a low-degree polynomial for u(x), e.g. even a 1st degree can do
the work (higher order polynomials are better but too complicated
to be implemented)

When Galerkin’s method is applied to element (i) we get a pair of
eqns with unknowns the nodal values at the ends of the element (i),
the ci .

If we do it for each element we end up with a system of equations
involving all the nodal values

The equations adjusted to take into account the boundary
conditions and the solution is an approximation to y(x) at the
nodes; intermediate values can be taken by interpolation.
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We will describe step by step the procedure for solving the following
boundary value problem:

y ′′ + Q(x)y = F (x) with BC at x = a and x = b (23)

STEP 1 : Subdivide the interval [a, b] into n elements, and for a specific
element between xi−1 and xi name the left node as L and the right as R.

STEP 2 : Write u(x) for the element (i):

u(x) = cLNL +cRNR = cL
x − R

L− R
+cR

x − L

R − L
= cL

x − R

−hi
+cR

x − L

−hi
(24)

Notice that the N’s are 1st-degree Lagrange polynomials usually called
hat functions. The following figure sketches the NL and NR for the (i)
element.
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STEP 3 : Apply the Galerkin method to element (i), the residual is

R(x) = y ′′ + Qy − F = u′′ + Qu − F (25)

The Galerkinn method sets the integral of R weighted with each of the N∫ R

L

NLR(x)dx = 0∫ R

L

NRR(x)dx = 0

(26)These lead to the integrals∫ R

L

u′′NLdx +

∫ R

L

QuNLdx −
∫ R

L

FNL = 0∫ R

L

u′′NRdx +

∫ R

L

QuNRdx −
∫ R

L

FNR = 0
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STEP 4 : Transform the previous equations by applying integration by
parts (how?) to the first integral. In the 2nd integral take Q out from
the integrant as Qav (an average value within the element). We do the
same also for the 3rd integral.∫ R

L

u′N ′Ldx −Qav

∫ R

L

uNLdx + Fav

∫ R

L

NLdx −NLu
′|x=R + NLu

′|x=L = 0

(27)
Remember that NL = 1 at L and 0 at R. Thus the equation can be
written as:∫ R

L

u′N ′Ldx − Qav

∫ R

L

uNLdx + Fav

∫ R

L

NLdx − u′|x=L = 0 (28)

and similarly the other equation:∫ R

L

u′N ′Rdx − Qav

∫ R

L

uNRdx + Fav

∫ R

L

NRdx + u′|x=R = 0 (29)
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STEP 5 : Substitute in the previous integrals u, u′, N ′L and N ′R and
carry out the integrations.∫ R

L

u′N ′Ldx = · · · = (cL − cR) /hi (30)

−Qav

∫ R

L

uNLdx = · · · = −Qavhi (2cL − cR) /6 (31)

Fav

∫ R

L

NLdx = · · · = Favhi/2 (32)

and we do the same for equation (29)
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STEP 6 : Substitute the results of the previous steps into equations (28)
and (29) and by rearrangement we get 2 equations of the unknowns cL
and cR :(

1

hi
− Qavhi

3

)
cL −

(
1

hi
+

Qavhi
6

)
cR = −Favhi

2
− u′|x=L (33)(

−1

hi
− Qavhi

3

)
cL +

(
1

hi
− Qavhi

6

)
cR = −Favhi

2
+ u′|x=L (34)

These are the so called element equations.

** We do the same for each element to get n such pairs. **
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STEP 7 :
• We assemble all the element equations to form a system of linear
equations for the problem.
• Notice that the point R in the element (i) is the same as the point L
in the element (i + 1).
• Renumber the c as c0, c1, . . . cn
• Notice that the gradient u′ must be the same on either side of the
elements i.e. u′x=R in the element (i) equals u′x=L in element (i + 1).
Thus these terms will cancel when we assemble except in the first and
last equations.
• The results is a system of n + 1 equations of the form

K~c = ~b (35)

The matrix K contains combination of the quantities Qav ,i and hi .
The matrix K is tridiagonal
The vector ~c contains the c0, c1, . . . cn
The vector ~b contains combinations of Fav ,i and hi .

Finite-Elements Method 26



STEP 8 : Adjust the set of the equations for the boundary conditions
which can be either Dirichlet or Neumann.

STEP 9 : Solve the system and find the c0, c1, . . . cn.

*** Then relax :-)

EXAMPLE: Solve y ′′ − (x + 1)y = e−x(x2 − x + 2) with the Neumann
conditions y ′(2) = 0 and y ′(4) = −0.036631. (The exact solution is
y(x) = e−x(x − 2)).
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Finite Elements for PDEs

Quite complicated.
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Finite Elements for PDEs

Solving the wave equation

Finite-Elements Method 29



Finite Elements for PDEs
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