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Introduction i

• A differential equation involving more than one independent variable is called
a partial differential equations (PDEs)

• Many problems in applied science, physics and engineering are modeled
mathematically with PDE.

• In this course will study finite-difference methods in solving numerically
PDEs, which are based on formulas for approximating the 1st and the 2nd
derivatives of a function.

• In this lecture we present analytical ways for the solution of the simplest
PDEs in order to use them as benchmark of our numerical methods as well as
understanding what type of solutions one should expect.
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Introduction ii
PDEs are classified as one of three types, with terminology borrowed from the
conic sections. For a 2nd-degree polynomial in x and y

Ax 2 + Bxy + Cy 2 + D = 0

the graph is a quadratic curve, and when

• B2 − 4AC < 0 the curve is a ellipse,

• B2 − 4AC = 0 the curve is a parabola

• B2 − 4AC > 0 the curve is a hyperbola

In the same way a PDE of the form

A∂
2u
∂x 2 + B ∂2u

∂x∂y + C ∂2u
∂y 2 + D

(
x , y , u, ∂u

∂x ,
∂u
∂x

)
= 0 (1)

where A, B and C are constants, is called quasilinear.
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Introduction iii
There are 3 types of quasilinear equations:

• If B2 − 4AC < 0, the equation is called elliptic,

• If B2 − 4AC = 0, the equation is called parabolic

• If B2 − 4AC > 0, the equation is called hyperbolic
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Introduction iv
Two classic examples of PDEs are the 2-D Laplace and Poisson eqns:

∇2u = 0 , ∇2u = g(x , y) for 0 < x < 1 and 0 < y < 1 (2)

with boundary conditions:

• u(x , 0) = f1(x) for y = 0 and 0 ≤ x ≤ 1

• u(x , 0) = f2(x) for y = 1 and 0 ≤ x ≤ 1

• u(x , 0) = f3(x) for x = 0 and 0 ≤ y ≤ 1

• u(x , 0) = f4(x) for x = 1 and 0 ≤ y ≤ 1

for which B = 0, A = C = 1 and thus they are elliptic PDEs.
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Introduction v
The wave equation

∂2u
∂x 2 −

1
c2
∂2u
∂t2 = 0 for 0 < x < L and 0 < t <∞ (3)

with a given initial position and velocity functions

• u(x , 0) = f (x) for t = 0 and 0 ≤ x ≤ L

• ut(x , 0) = g(x) for t = 0 and 0 ≤ x ≤ L

is a classic example of hyperbolic PDE.

The 3D form is:
∂2u(~x , t)

c2∂t2 −∇2u(~x , t) = 0 (4)
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Introduction vi

The heat equation which describes how the distribution of heat evolves in
time. It is practically the diffusion equation for solids.

∂u
∂t − α

2 ∂
2u
∂x 2 = 0 (5)

the initial temperature distribution at t = 0 is

• u(x , 0) = f (x) for t = 0 and 0 ≤ x ≤ L

and the boundary conditions at the ends of the rod are

• u(x , t) = c1 for x = 0 and 0 ≤ t ≤ ∞

• u(L, t) = c2 for x = L and 0 ≤ t ≤ ∞

is an example of parabolic PDE.

The 3D form is:
∂u(~x , t)
∂t − α2∇2u(~x , t) = 0 (6)
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Parabolic PDEs i

We will present a simple method in solving analytically parabolic PDEs.

The most important example of a parabolic PDE is the heat equation. For
example, to model mathematically the change in temperature along a rod.
Let’s consider the PDE:

∂u
∂t = α2 ∂

2u
∂x 2 for 0 ≤ x ≤ 1 and for 0 ≤ t <∞ (7)

with the boundary conditions :

u(0, t) = 0, u(1, t) = 0 for 0 ≤ t <∞ (8)

and the initial conditions :

u(x , 0) = φ(x), for 0 ≤ x ≤ 1 . (9)

This is the equation of 1D heat flow, where
ut : is the rate of change with respect to time
uxx : is the concavity of the temperature profile u(t, x) (comparing the
temperature at one point to the temperature at the neighbouring points).
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Parabolic PDEs ii

Figure 1: Arrows indicating change in temperature according to ut = α2uxx .
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Parabolic PDEs iii
In order to find a solution we make the ansatz that u(t, x) can be written as
the product of two functions T (t) and X(x) i.e.

u(t, x) ≡ T (t) · X(x) (10)

Substituting in eqn (7) we get:

T ′(t)X(x) = α2T (t)X ′′(x) (11)

This relation can be written as:

Ṫ (t)
α2T (t) = X ′′(x)

X(x) = λ2 (12)

where λ is a proportionality constant.

In this way we reduced the initial parabolic PDE into 2 ODEs

Ṫ − λ2α2T = 0 (13)

X ′′ − λ2X = 0 (14)
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Parabolic PDEs iv
with obvious solutions:

T (t) = C e−λ
2α2t (15)

X(x) = Ã sin(λx) + B̃ cos(λx) (16)

Then u(t, x) gets the form:

u(t, x) = Ce−λ
2α2t [Ã sin(λx) + B̃ cos(λx)

]
, (17)

by substituting C · Ã→ A and C · B̃ → B we get rid of the integration constant
C .

The two remaining constants of integrationò A and B will be further
constrained by the use of the boundary conditions (8).

• The boundary condition u(0, t) = 0 leads to B = 0, thus the solution
becomes:

u(t, x) = Ae−λ
2α2t sin(λx) , (18)
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Parabolic PDEs v
• The 2nd boundary condition u(1, t) = 0 leads to:

e−λ
2α2t sin(λ) = 0 ⇒ sin(λ) = 0 (19)

with the following allowed values of the constant λ:

λ = ±π,±2π,±3π, . . . i.e. λ = ±nπ for n = ±1,±2, . . . (20)

• Thus all functions of the form:

un(t, x) = Ane−(nπα)2t sin(nπx) for n = ±1,±2, . . . (21)

are solutions of the PDE (7), while the constants of integration An should be
estimated by using the initial conditions provided by (9).

• The general solution will be the sum of all solutions of the form (21), i.e. :

u(t, x) =
∞∑

n=1

Ane−(nπα)2t sin(nπx) for n = ±1,±2, . . . . (22)
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Parabolic PDEs vi

• The initial condition (9), u(0, x) = φ(x), by setting t = 0 into eqn (22),
can be written in the form:

φ(x) = u(0, x) =
∞∑

n=1

An sin(nπx) (23)

The constants An can be found via the initial form of φ(x) by using the
orthonality conditions of trigonometric functions, i.e.:∫ 1

0
sin(nπx) · sin(mπx)dx =

{
0, m 6= n
1/2, m = n

(24)

thus if we multiply (23) with sin(mπx) (where m is any integer) and integrate
from 0 to 1 we get:∫ 1

0
φ(x) · sin(mπx)dx = Am

∫ 1

0
sin2(mπx)dx = 1

2 Am . (25)

14



Parabolic PDEs vii

Thus the constants An can be calculated by integration constants of the form:

An = 2
∫ 1

0
φ(x) sin(nπx)dx (26)

and obviously they depend in a unique way on the initial form of the function
φ(x).
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Parabolic PDEs viii

Figure 2: Evolution in time of u1(t, x) (for t = 0...0.4) and φ(x) = sin(x).
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Parabolic PDEs ix

Evolution in time (t = 0...0.4) of

u(t, x) =
4∑

n=1

Ane−(nπα)2t sin(nπx) . (27)

Here the coefficients An get the values: A1 = 0.596, A2 = −0.275, A3 = 0.181, A4 = −0.135.
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Hyperbolic PDEs - 1D i

Here we will present an analytic method for solving 1D hyperbolic PDEs (1D
wave equation)

utt = c2uxx (28)

This PDE can represent the oscillations of a string.

• The function u(t, x) represents the deviation from equilibrium and the
constant c the propagation velocity of the waves.

• For simplicity, we will consider that the string is fixed on both ends and its
length is ` = 1.

In other words the boundary conditions will be:

u(t, 0) = u(t, 1) = 0 for t ≥ 0 (29)

while the initial conditions are:

u(0, x) = φ(x) and ut(0, x) = ψ(x) for 0 ≤ x ≤ 1 . (30)
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Hyperbolic PDEs - 1D ii

We will apply again the ansatz used earlier for parabolic PDEs, i.e. we will
write the function u(t, x) as:

u(t, x) = T (t) · X(x) (31)

where T is function of time t and X is function of the spatial dimension x .

By substitution in (28) we get:

T̈ · X = c2T · X ′′ (32)

if we separate the terms of the above equation appropriately we get:

1
c2

T̈
T = X ′′

X = λ2 where λ = constant (33)

Which leads to two ODEs:

T̈ − λ2c2T = 0 (34)

X ′′ − λ2X = 0 . (35)
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Hyperbolic PDEs - 1D iii

The general solutions if the previous equations are:

T (t) = α1 cos(cλt) + α2 sin(cλt) (36)

X(x) = β1 cos(λx) + β2 sin(λx) . (37)

Due to the boundary condition u(t, 0) = u(t, 1) = 0 we will get
X(0) = X(1) = 0 which means that:

X(0) = β1 = 0 (38)

X(1) = β2 sin(λ) = 0 . (39)

The last equation will be satisfied , when

λ = nπ where n = 0, 1, 2, . . . (40)
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Hyperbolic PDEs - 1D iv

This leads to an infinite number of potential solutions

Xn(x) = β2 sin(nπx) . (41)

Based on the previous discussion the expression for T (t) will be:

Tn(t) = α1,n cos(nπct) + α2,n sin(nπct) (42)

As a result of (41) and (42) the wave equation is satisfied by an infinite
number of solutions, which have the form:

un(t, x) = Tn(t) Xn(x)

= Ancos(nπct)sin(nπx) + Bnsin(nπct)sin(nπx) (43)

where An = α1,nβ2 and Bn = α2,nβ2.
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Hyperbolic PDEs - 1D v

In order to find a solution that satisfies the initial contitions (30) we will
assume that the solution is given as a superposition of an infinite number of
solutions (or a subset of them) i.e. the solutions will be of the form

u(t, x) =
∞∑

n=1

un(t) =
∞∑

n=1

Tn(t) Xn(x)

=
∞∑

n=1

[Ancos(nπct)sin(nπx) + Bnsin(nπct)sin(nπx)] (44)

From the 1st of the initial conditions (30) [u(0, x) = φ(x)] we get:

u(0, x) =
∞∑

n=1

Ansin(nπx) = φ(x) (45)

22



Hyperbolic PDEs - 1D vi

The constants An can be found in terms of the function describing the initial
deformation of the string i.e. the φ(x) by using the orthogonality properties of
trigonometric functions i.e.∫ 1

0
sin(nπx) sin(mπx)dx =

{
0, m 6= n
1/2, m = n

(46)

Thus if we multiply (45) with sin(mπx) (where m is any number) and integrate
from 0 to 1 we get:∫ 1

0
φ(x) sin(mπx)dx = Am

∫ 1

0
sin2(mπx)dx = 1

2 Am (47)

Thus we conclude that the constants An will be found from integral equations
of the form:

An = 2
∫ 1

0
φ(x) sin(nπx)dx (48)

and obviously depend on a unique way on the form of φ(x).
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Hyperbolic PDEs - 1D vii

The 2nd initial condition will lead us in calculating the other unknown
constant i.e. the Bn. Thus by taking the derivative of (44) we get:

ut(t, x) = πc
∞∑

n=1

n [Bncos(nπct) sin(nπx)− Ansin(nπct) sin(nπx)] (49)

which for t = 0 will give us:

ut(0, x) = πc
∞∑

n=1

nBn sin(nπx) = ψ(x) (50)

And thus:

Bn = 2
nπ

∫ 1

0
ψ(x) sin(nπx)dx for n = 1, 2, . . . (51)

Which means that the solutions has been fully determined.
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Elliptic PDEs

Poisson’s equation
∇2u(x , y , z) = f (x , y , z) (52)

is a fundamental elliptic PDE that can be met in various branches of physics
e.g. gravity, electromagnetism etc

We will study this equation based on the techniques developed earlier for the
other two types of PDEs (parabolic, hyperbolic).

NOTE: The solutions of elliptic PDEs are completly determined by the
boundary conditions and thus we call them also boundary value problems
(BVP).
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Elliptic PDEs: Boundary Conditions

• Dirichlet problem: we define the values of the function u on the
boundaries of the domain.

For example, consider the problem on finding the temperature at the various
points of a 2D domain from the values that one can measure on the
boundaries.

• Neumann Problem: in this case we define the values of ∂u/∂n on the
boundaries of the domain.

For example, consider finding the continuous flow of e.g. electrons, energy etc,
in the interior of domain where the flow is known only on the boundaries.

Figure 3: (left): Dirichlet problem with u(ρ, θ) = sin θ, (right): Neumann problem
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Elliptic PDEs: 2D - Cartesian grid i

Here we will present a solution of Poisson equation in Cartesian coordinates
with Dirichlet boundary conditions.

∇2u = uxx + uyy = 0 (53)
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Elliptic PDEs: 2D - Cartesian grid ii
Dirichlet boundary conditions on a square.

u(0, y) = u(1, y) = 0 0 ≤ y ≤ 1 (54)

u(x , 0) = 0 0 ≤ x ≤ 1 (55)

u(x , 1) = g(x) 0 ≤ x ≤ 1 (56)

We assume that the solution can be written in the form:

u(x , y) = X(x) · Y (y) (57)

Then by substituting in Poisson equation (53) we get:

X ′′(x)Y (y) + X(x)Y ′′(y) = 0 (58)

which leads to
−X ′′(x)

X(x) = Y ′′(y)
Y (y) = const (59)

Thus we will consider the solution of two independent boundary value problems.
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Elliptic PDEs: 2D - Cartesian grid iii
• BVP-1

X ′′(x) + λ2X(x) = 0 where 0 < x < 1 and X(0) = X(1) = 0 ,
(60)

this problems has the following eigenvalues:

λk = kπ , k = 1, 2, . . . , (61)

and the corresponding eigenfunctions:

Xk (x) = sin(kπx) , k = 1, 2, . . . , (62)

• BVP-2

Y ′′(y)− β2Y (y) = 0 where 0 < y < 1 and Y (0) = Y (1) = 0 ,
(63)

The general solution of (63), will be a linear combination of eβy and of
e−βy and due to the boundary condition at y = 0 the solution will get the
form:

Y (y) = sinh(βy) (64)
29



Elliptic PDEs: 2D - Cartesian grid iv

Thus the partial solutions (β2 ≡ λ2) will have the form:

uk (x , y) = sin(kπx) · sinh(kπy) , k = 1, 2, . . . , (65)

and the general solution will be a linear combination of the partial ones:

u(x , y) =
∞∑

k=1

ck sin(kπx) sinh(kπy) (66)

where ck are arbitrary real constants.

If we take into account the boundary condition given by (56) [u(x , 1) = g(x)]

Then we get

g(x) = u(x , 1) =
∞∑

k=1

gk sin(kπx) where gk = ck sinh(kπ) (67)
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Elliptic PDEs: 2D - Cartesian grid v

where the coefficients gk , will be

gk = 2
∫ 1

0
g(x) sin(kπx)dx (68)

and obviously
ck = gk/ sinh(kπ) for k = 1, 2, . . . (69)
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Elliptic PDEs - 2D - Polar i

We will study the interior Dirichlet problem for disk.

The Poisson equation for the disk is:

∇2u ≡ urr + 1
r ur + 1

r 2 uθθ = 0 for 0 < r < ρ (70)

With boundary condition:

u(ρ, θ) = g(θ) for 0 ≤ θ < 2π (71)

We will solve the problem by using the method developed in earlier sections

32



Elliptic PDEs - 2D - Polar ii
We will assume that the function g(θ) is periodic and thus it can be written in
the form of a Fourier series

g(θ) = a0

2 +
∞∑

k=1

[ak cos(kθ) + bk sin(kθ)] , (72)

where

ak = 1
π

∫ π

−π
g(θ) cos(kθ)dθ (73)

bk = 1
π

∫ π

−π
g(θ) sin(kθ)dθ (74)
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Elliptic PDEs - 2D - Polar iii

We will use again the ansatz :

u(r , θ) = R(r) ·Θ(θ) , (75)

and then equation (70) will be written as:

R ′′Θ + 1
r R ′Θ + 1

r 2 RΘ′′ = 0 (76)

r 2 R ′′

R + r R ′

R = −Θ′′

Θ ≡ λ (77)

where λ is a constant independent from r and θ.

Thus we end up with the ODEs

Θ′′ + λΘ = 0 (78)

and
r 2R ′′ + rR ′ − λR = 0 (79)
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Elliptic PDEs - 2D - Polar iv

Obviously, the function Θ must be periodic with period 2π with respect to θ.
While for the ODE (78) we set the conditions:

Θ(−π) = Θ(π) and Θ′(−π) = Θ′(π) (80)

We these conditions we get the eigenvalues:

λk = k2 for k = 0, 1, 2, . . . (81)

with eigenfunctions

Θk (θ) = c1 cos(kθ) + c2 sin(kθ) for k = 0, 1, 2, . . . (82)

where c1 and c2 are arbitrary constants.

• The ODE (79) is known as Cauchy-Euler’s equation and admits solutions
of the form:

R(r) = rβ (83)
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Elliptic PDEs - 2D - Polar v
which can be substituted in (79) to get:

β(β − 1)rβ + βrβ − k2rβ = 0 , (84)

which leads to the relation:
β = ±k (85)

Then for k ≥ 1 we get a solution which will be a linear combination of r−k and
r k i.e.

R(r) = c1r k + c2r−k (86)

While for k = λ = 0 the solution will be of the form:

R(r) = c1 ln(r) + c2 (87)

Since, physically, the interior solutions cannot be divergent the solutions of the
form r−k and ln(r) that diverge at r = 0 are discarted. Thus the acceptable
solution will be of the form:

Rk (r) = c1r k for k = 0, 1, 2, . . . (88)

36



Elliptic PDEs - 2D - Polar vi

Thus the general solution will be:

u(r , θ) = ã0

2 +
∞∑

k=1

r k (ãk cos(kθ) + b̃k sin(kθ)
)

(89)

where ãk and b̃k are constants which should be extimated via the boundary
condition u(r , θ) = g(θ).

Then from the equations (72), (73) and (74) we find that:

ãk = ak r−k and b̃k = bk r−k (90)
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Problems for Elliptic PDEs

• What is the solution of the interior Dirichlet problem

urr + 1
r ur + 1

r 2 uθθ = 0 0 < r < 1

for the following boundary conditions:
1. u(1, θ) = 1 + sin(θ) + 1

2 cos θ
2. u(1, θ) = 2
3. u(1, θ) = sin θ
4. u(1, θ) = sin 3θ

Can you draw the solution?

• What is the solution of the interior Dirichlet problem

urr + 1
r ur + 1

r 2 uθθ = 0 0 < r < 2

for the boundary condition u(2, θ) = sin θ. Can you draw the solution?

• What would have been the solution o fthe previous problem if the
boundary condition was u(2, θ) = sin(2θ). Can you draw the new solution?
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Hyperbolic PDEs - 2D i

The PDE for the motion of a membrane is:

∂2u
∂t2 = c2

(
∂2u
∂x 2 + ∂2u

∂y 2

)
(91)

where c is the propagation velocity.

Eqn (91) is a 2nd order hyperbolic PDE and for the solution we need to define
initial and the boundary conditions in order to find the unique solution.

• Here we will assume a circular membrane with fixed ends e.g. a drum:

∂2u
∂t2 = c2

[
1
r 2

∂

∂r

(
r ∂u
∂r

)
+ 1

r 2
∂2u
∂φ2

]
(92)

The boundary condition will be

u(r = R, φ, t) = 0. (93)

39



Hyperbolic PDEs - 2D ii

We will also assume, for simplicity, that the radius of the drum is R = 1, and
thus the boundary condition (93) will be written as:

u(r = 1, φ, t) = 0. (94)

We will assume that u(r , φ, t) can be written as the product of two functions
one describing the spatial part and the other one the temporal part of the
solution i.e.:

u(r , φ, t) = G(r , φ)D(t). (95)

If we substitute (95) in (92) we can divide the spatial and the temporal part of
the wave equation

1
D

d2D(t)
dt2 = c2 1

G(r , φ)

[
1
r 2

∂

∂r

(
r ∂G
∂r

)
+ 1

r 2
∂2G
∂φ2

]
= constant ≡ −ω2 (96)
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Hyperbolic PDEs - 2D iii
• Since the left part of the equation is function only of the time and the
right hand side only of the spatial coordinates, they two relations should be
equal to a constant −ω2.

• Thus the problem reduced to the solution of the following two equations:

d2D
dt2 = −ω2D (97)

1
r 2

∂

∂r

(
r ∂G
∂r

)
+ 1

r 2
∂2G
∂φ2 = −ω

2

c2 G = −k2G (98)

where k = ω/c is the wavenumber.

• We will assume that G(r , φ) can be split into two functions. One of the
radial coordinate and the other of the angular coordinate, i.e.
G(r , φ) = h(r)g(φ). By substitution in (98) we get

r 2

h
d2h
dr 2 + r

h
dh
dr + k2r 2 = − 1

g
d2g
dφ2 = constant = m2 (99)
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Hyperbolic PDEs - 2D iv

Thus the problem has been reduced to the solution of two ODEs

d2g
dφ2 + m2g = 0 (100)

d2h
dr 2 + 1

r
dh
dr +

(
k2 − m2

r 2

)
h = 0 (101)

The equation (100) is an ODE which describes a canonical oscillation, with
respect to the angular coordinate φ. The general solution is:

g(φ) = A sin(mφ) + B cos(mφ) (102)

The second equation, (101), reduced to the known Bessel equation by
considering the change of variable x = kr

h′′ + 1
x h′ +

(
1− m2

x 2

)
h = 0 (103)
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Hyperbolic PDEs - 2D v

Then the solution of the equation (103) for the oscillating membrane is:

h(x) = Jm(x) = Jm(kr) for m = 0, 1, 2, ... (104)

where Jm(x) is the Bessel function of 1st kind which in the form of series can
be given as:

Jm(x) = 1
m!

(x
2

)m
[

1− 1
m + 1

(x
2

)2
+ 1

(m + 1)(m + 2)
1
2!

(x
2

)4
− · · ·

]
=

∞∑
i=0

(−1)i

i! Γ(m + i + 1)

(x
2

)m+2i
(105)

? ? ? Bessel functions obey orthogonality relations like the ones of the
Legendre functions.
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Hyperbolic PDEs - 2D vi

If Jm(kx) and Jm(lx) (or their derivatives) vanish at the points a and b then∫ b

a
Jm(kx)Jm(lx)xdx = 0 for k 6= l (106)

while∫ b

a
Jm(kx)Jm(lx)xdx = x 2

2
[
J ′m(kx)

]2 |ba = x 2

2 [Jm+1(kx)]2 |ba for k = l

(107)
? ? ? These orthogonality relations are used typically for the estimation of

the coefficients in expansions of special functions here Bessel.

J0(z) = 1 −
1
4

x2 +
1

64
x4
. . .

J1(z) =
1
2

x −
1

16
x3 +

1
384

x5
. . .

J2(z) =
1
8

x2 −
1

96
x4 + . . .
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Hyperbolic PDEs - 2D vii

Figure 4: The Bessel functions J0(x), J1(x) and J2(x).
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Hyperbolic PDEs - 2D viii

Thus the solution of (98) will be written in the form

Gm(r , φ) = Jm(kr) [A sin(mφ) + B cos(mφ)] (108)

The index m in Gm(r , φ) shows that there are differnt solutions for different
values of m.

Up to now we have not used the boundary conditions (94) or (95), which
according to the splitting of the function will be written as:

G(r = 1, φ) = h(r = 1) · g(φ) = 0 (109)

and thus

Jm(k) = 0 . (110)
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I.e. the estimation of the eigenvalues k has been reduced in finding the roots of
the equation (110) or better the roots of the Bessel functions.

• Bessel functions have infinite number of roots and thus for every value of m
we have to calculate an infinite number of eigenvalues k from equation (110).

• We will write k, as km,n where the index n stands for the n-th root of the
m Bessel function.

• In a similar way we will represent ω = ck i.e. as ωm,n.

• Some characterist values of the roots of the Bessel functions are:

J0(k) = 0 : k0,n ∼ 2.408, 5.520, 8.654, 11.791

J1(k) = 0 : k1,n ∼ 3.832, 7.016, 10.174, 13.324

J2(k) = 0 : k2,n ∼ 5.136, 8.417, 11.620, 14.796
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The lower frequencies and the corresponding eigenfunctions will be:

k0,1 = 2.40 ω0,1 = 2.40c G0 ∼ J0(2.40r)

k1,1 = 3.83 ω1,1 = 3.83c G1 ∼ J1(3.83r) [A sin(φ) + B cos(φ)]

k2,1 = 5.14 ω2,1 = 5.14c G2 ∼ J2(5.14r) [A sin(2φ) + B cos(2φ)]

k0,2 = 5.52 ω0,2 = 5.52c G0 ∼ J0(5.52r)

The time dependent solution of (92) for specific values of m and n will be:

um,n(r , φ, t) = Jm(km,nr) × [Am,n sin(mφ) + Bm,n cos(mφ)] (111)

× [Γm,n sin(ωm,nt) + ∆m,n cos(ωm,nt)]

where ωm,n = ckm,n.
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Since equation (92) is a linear equation of motion, the general solution can be
written as a superposition of solutions described in (112).

Thus by summing on m and n we get:

u(r , φ, t) =
∞∑

m=0

∞∑
n=0

Cm,num,n(r , φ, t) (112)

or in analytic form

u(r , φ, t) =
∞∑

m,n=0

Km,nJm(km,nr) sin(mφ) [Γm,n sin(ωm,nt) + ∆m,n cos(ωm,nt)]

+
∞∑

m,n=0

Lm,nJm(km,nr) cos(mφ) [Γm,n sin(ωm,nt) + ∆m,n cos(ωm,nt)](113)

where Km,n = Cm,nAm,n and Lm,n = Cm,nBm,n.

49
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The unknown quantities in (113) are the (time independent) coefficients
Km,nΓm,n, Km,n∆m,n, Lm,nΓm,n and Lm,n∆m,n.

By using properly the initial conditions we can get the coefficients from the
relations:

Km,nΓm,n = 1
ωm,nπJm,n

[Im,n
2 Im,n

3 + Im,n
1 Im,n

4 ] (114)

Lm,nΓm,n = 1
ωm,nπJm,n

[Im,n
2 Im,n

5 + Im,n
1 Im,n

6 ] (115)

Km,n∆m,n = 1
πJm,n

Im,n
1 Im,n

3 (116)

Lm,n∆m,n = 1
πJm,n

Im,n
1 Im,n

5 (117)
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Where the following integrals should be calculated:

Jm,n =
∫ 1

0
J2

m(km,nr)rdr (118)

Im,n
1 =

∫ 1

0
h1(r)Jm(km,nr)rdr (119)

Im,n
2 =

∫ 1

0
h2(r)Jm(km,nr)rdr (120)

Im,n
3 =

∫ 2π

0
g1(φ) sin(mφ)dφ (121)

Im,n
4 =

∫ 2π

0
g2(φ) sin(mφ)dφ (122)

Im,n
5 =

∫ 2π

0
g1(φ) cos(mφ)dφ (123)

Im,n
6 =

∫ 2π

0
g2(φ) cos(mφ)dφ (124)
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Vibrating circular membrane i

Figure 5: Normal modes of oscillation of a circular membrane. (Kyle Forinash)
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Vibrating circular membrane ii

Concluding the steps needed for the solution of the problem are:

1. Calculate the roots of Bessel functions.

2. Calculate the integrals Im,n
i .

3. Sum a large (depending on the computer) number of terms.

Animations:
http://resource.isvr.soton.ac.uk/spcg/tutorial/tutorial/Tutorial files/Web-standing-membrane.htm

https://www.youtube.com/watch?v=Zkox6niJ1Wc

http://commons.wikimedia.org/wiki/Category:Drum vibration animations
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