An Introduction to the Finite Element Method

Dr. Erich Gaertig BU Central / Simulation Hilite Germany GmbH

Outline

• Introduction to FEM - Motivation

 Mathematical Description/Numerical Implementation for Linear Elements on Triangular Meshes

• Solving a Simple PDE on an Irregular Domain in 2D/3D - Demo

- Complex problems necessitate the need for a flexible and powerful computational technique
- Most real problems are defined on domains that are geometrically complex and may have different boundary conditions on different portions of the boundary
- It is therefore impossible to find an analytical solution; also Finite Differences (FD) are difficult to adapt for arbitrary geometries
- Solution of problems in structural mechanics by known functions with unknown coefficients (Ritz [1909]), later refined by using nodal shape functions (Courant [1943])
- FEM originally developed mainly by engineers in the aerospace environment (The finite element method in plane stress analysis (1960), *Turner, Clough, Martin, Topp* [1950 1960])
- Thorough mathematical investigations and extensions during the 1960s (variational formulation, *Argyris, Zienkiewicz, Turner, Reissner*)
- First commercial codes showed up in the 1970s (NASAs Nastran commercialized in 1971)

Introduction

Introduction

- Instead of satisfying the PDE point-by-point in the computational domain (FD approach),
 FEM (and other methods as well) uses an weighted integral formulation with test functions,
 that average the PDE globally
- Consider as an example $-\frac{d}{dx}\left(x\frac{du}{dx}\right) + u = 0$, 0 < x < 1u(0) = 1, $\left(x\frac{du}{dx}\right)_{x=1} = 0$
- We seek a solution of the form $U_N = \sum_{j=1}^2 c_j \phi_j(x) + \phi_0(x)$
- Here, all three functions satisfy the homogeneous boundary conditions UNLESS there are non-homogeneous ones; then $\phi_0(x)$ has to obey them as well
- Since in this case, there's only one non-homogeneous BC for the left boundary point, we can make the ansatz

$$U_2 = c_1 \phi_1 + c_2 \phi_2 + \phi_0$$
 with $\phi_0 = 1$, $\phi_1(x) = x^2 - 2x$, $\phi_2(x) = x^3 - 3x$

• For $U_2(x)$ to satisfy the PDE, we need to have

$$-\frac{dU_2}{dx} - x\frac{d^2U_2}{dx} + U_2 = -2c_1(x-1) - 3c_2(x^2-1) - 2c_1x - 6c_2x^2 + c_1(x^2-2x) + c_2(x^3-3x) + 1 = 0$$

• This relation has to hold for all x, comparing powers leads to

1

$$+2c_1 + 3c_2 = 0$$

 $-6c_1 - 3c_2 = 0$
 $c_1 - 9c_2 = 0$
 $c_2 = 0$

- These relations are inconsistent; there is no solution to this linear system at all!!
- Instead, multiply both sides of the PDE with a weight function and integrate over the domain

$$\int_{0}^{1} w(x)R(x)dx = 0 \text{ with } R(x) = -\frac{dU_{2}}{dx} - x\frac{d^{2}U}{dx^{2}} + U_{2}$$

• From this, we obtain as many linearly independent equations as there are linear independent weight functions. Since here we have N = 2, let's choose w = 1 and w = x

• This leads to

٠

٠

$$0 = \int_{0}^{1} 1 \cdot R(x) dx = (1 + 2c_1 + 3c_2) + \frac{1}{2}(-6c_1 - 3c_2) + \frac{1}{3}(c_1 - 9c_2) + \frac{1}{4}c_2$$

$$0 = \int_{0}^{1} x \cdot R(x) dx = \frac{1}{2}(1 + 2c_1 + 3c_2) + \frac{1}{3}(-6c_1 - 3c_2) + \frac{1}{4}(c_1 - 9c_2) + \frac{1}{5}c_2$$

These are two linear equations for two unknowns with the solution

$$c_1 = \frac{222}{23}$$
, $c_2 = -\frac{100}{23}$

- **This is the heart of FEM; if anything, take this from the lecture:** By transforming the system of PDEs into an averaged, weighted integral statement, derive a linear system of equations for the unknown expansion coefficients of your global solution
- Even for moderately sized problems in 2D, it's very easy to get systems with ~ 100.000 unknowns; need for accessible and efficient framework for assembling and solving these systems (2nd part of the talk)

• This leads to

• This leads to

٠

٠

$$0 = \int_{0}^{1} 1 \cdot R(x) dx = (1 + 2c_1 + 3c_2) + \frac{1}{2}(-6c_1 - 3c_2) + \frac{1}{3}(c_1 - 9c_2) + \frac{1}{4}c_2$$

$$0 = \int_{0}^{1} x \cdot R(x) dx = \frac{1}{2}(1 + 2c_1 + 3c_2) + \frac{1}{3}(-6c_1 - 3c_2) + \frac{1}{4}(c_1 - 9c_2) + \frac{1}{5}c_2$$

These are two linear equations for two unknowns with the solution

$$c_1 = \frac{222}{23}$$
, $c_2 = -\frac{100}{23}$

- **This is the heart of FEM; if anything, take this from the lecture:** By transforming the system of PDEs into an averaged, weighted integral statement, derive a linear system of equations for the unknown expansion coefficients of your global solution
- Even for moderately sized problems in 2D, it's very easy to get systems with ~ 100.000 unknowns; need for accessible and efficient framework for assembling and solving these systems (2nd part of the talk)

- Note:
 - There are (at least) three problems with this approach (*Ritz method*, 1908)
 - The matrix one needs to solve for the unknown expansion coefficients *c_i* typically is dense, so computations will be slow; even more so, if high accuracies are needed
 - For complicated PDEs, it might be very difficult to find basis functions that automatically satisfy the imposed boundary conditions
 - It is not clear, how to choose the weighting functions for the integration; different choices will naturally lead to different coefficients c_i (you need ALL of them in a sense)
 - All these issues are remedied by a proper formulation of the Finite Element Method; in particular
 - it will lead to a linear system with sparse matrices (so very efficient algorithms for solving these type of systems can be employed)
 - very simple basis functions are used; boundary conditions are transparently encoded in the integral statements as well
 - the very same functions are used as basis for the weights in the FE-formulation

- Note:
 - There are (at least) three problems with this approach (*Ritz method, 1908*)

• the very same functions are used as basis for the weights in the FE-formulation

- Note:
 - There are (at least) three problems with this approach (*Ritz method*, 1908)
 - The matrix one needs to solve for the unknown expansion coefficients *c_i* typically is dense, so computations will be slow; even more so, if high accuracies are needed
 - For complicated PDEs, it might be very difficult to find basis functions that automatically satisfy the imposed boundary conditions
 - It is not clear, how to choose the weighting functions for the integration; different choices will naturally lead to different coefficients c_i (you need ALL of them in a sense)
 - All these issues are remedied by a proper formulation of the Finite Element Method; in particular
 - it will lead to a linear system with sparse matrices (so very efficient algorithms for solving these type of systems can be employed)
 - very simple basis functions are used; boundary conditions are transparently encoded in the integral statements as well
 - the very same functions are used as basis for the weights in the FE-formulation

- There are various reasons for using an integral version of the PDE
 - even for smooth initial data, PDEs may exhibit discontinuous behaviour
 - · discontinuous source functions or irregular domains also lead to non-classical solutions
- Consider as prototype example the Poisson equation $\nabla^2 u = f$ in an open domain Ω
 - a classical solution has continuous second derivatives in the interior ($u \in C^2(\Omega)$) and is continuous up to the boundary ($u \in C^0(\overline{\Omega})$)
- If the source function is discontinuous (e.g. weight placed on parts of a membrane), then $u \notin C^2(\Omega)$
- The same happens for so-called *re-entrant corners* in a non-convex domain

• Our model problem is

٠

$$-\Delta u + cu = f \text{ in } \Omega$$
$$u = g_0 \text{ on } \Gamma_D$$
$$\partial_n u = g_1 \text{ on } \Gamma_N$$

Multiply with test function, integrate and use Green's identity

$$\int_{\Omega} (\Delta u) v + \int_{\Omega} \nabla u \nabla v = \int_{\Gamma} (\partial_n u) v = \int_{\Gamma_D} (\partial_n u) v + \int_{\Gamma_N} (\partial_n u) v$$

• Impose v = 0 on Γ_D and search for solutions $u \in H^1(\Omega)$ such that

 $u = g_0$ on Γ_D

$$\int_{\Omega} \nabla u \nabla v + c \int_{\Omega} u v = \int_{\Omega} f v + \int_{\Gamma_N} g_1 v \quad \forall v \in H^1_{\Gamma_D}(\Omega)$$

(weak formulation)

$$H^{1}(\Omega) = \left\{ u \in L^{2}(\Omega) \middle| \frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}} \in L^{2}(\Omega) \right\}$$

 $H^{1}_{\Gamma_{D}}(\Omega) = \left\{ v \in H^{1}(\Omega) \middle| v = 0 \text{ on } \Gamma_{D} \right\}$

Mathematical Description/Numerical Implementation

• Our model problem is

٠

Multiply with test function, integrate and use Green's identity

$$\int_{\Omega} (\Delta u) v + \int_{\Omega} \nabla u \nabla v = \int_{\Gamma} (\partial_n u) v = \int_{\Gamma_D} (\partial_n u) v + \int_{\Gamma_N} (\partial_n u) v$$

• Impose v = 0 on Γ_D and search for solutions $u \in H^1(\Omega)$ such that

 $u = g_0$ on Γ_D

$$\int_{\Omega} \nabla u \nabla v + c \int_{\Omega} u v = \int_{\Omega} f v + \int_{\Gamma_N} g_1 v \quad \forall v \in H^1_{\Gamma_D}(\Omega)$$

(weak formulation)

$$H^{1}(\Omega) = \left\{ u \in L^{2}(\Omega) \middle| \frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}} \in L^{2}(\Omega) \right\}$$

 $H^1_{\Gamma_D}(\Omega) = \left\{ v \in H^1(\Omega) \middle| v = 0 \text{ on } \Gamma_D \right\}$

- By reducing the smoothness of the solution variable required by the weak formulation (i.e. $C^1(\Omega)$ instead of $C^2(\Omega)$), we can get a weak solution, that is not smooth enough to be a classical solution
 - One even extends the admissible function space to include $C^0(\Omega)$ functions as well via socalled weak derivatives:
 - for $v \in C_0^{\infty}(\Omega)$, the partial integration relation in 1D reads

$$\int_{\Omega} u' v = -\int_{\Omega} u v'$$

- idea: use this as the definition for the weak derivative of u
- we call $\partial_x u|_w$ the weak derivative of u, if

٠

$$\int_{\Omega} \partial_x u|_w v = -\int_{\Omega} uv' \quad \forall v \in C_0^{\infty}(\Omega)$$

- This means, differentiation is also defined via integration over test functions
- Advantage: functions, that are classically not differentiable nevertheless are weakly differentiable, e.g. u(x) = |x|

- Similar definitions for weak derivatives exist for all differential operators, e.g. div, rot etc.; these are used for computational electrodynamics for example
 - example: a function $\nabla \cdot \mathbf{u}|_{w} \in L^{2}(\Omega)$ is called *weak divergence* of $\mathbf{u} \in \mathbf{L}^{2}(\Omega)$, if for any function $v \in C_{0}^{\infty}(\Omega)$

$$\int_{\Omega} \nabla \cdot \mathbf{u}|_{w} v = -\int_{\Omega} \mathbf{u} \cdot \nabla v$$

(hint: use Gauss' theorem)

٠

The test space $H^1_{\Gamma_D}(\Omega) = \{v \in H^1(\Omega) | v = 0 \text{ on } \Gamma_D\}$ with weak derivatives and equipped with

$$\langle u, v \rangle := \int_{\Omega} (uv + \nabla u \cdot \nabla v) \, dx$$

is a special Hilbert space, a so-called Sobolev space

- Now keep in mind that the so defined *function* and *test-spaces* $H^1(\Omega)$ and $H^1_{\Gamma_D}(\Omega)$ are infinitedimensional vector spaces (the latter being a proper sub-vectorspace of the former)
- This makes it difficult for a direct numerical implementation of the weak formulation (computers can't handle infinities very well...)
- We need to restrict ourselves (and set up) a convenient, finite-dimensional version of the two different Sobolev-spaces involved here
- These surrogates, being finite-dimensional vector-spaces, therefore feature a finite basis as well
 - The weak formulation can then be recast in terms of a cleverly chosen basis (*"hat-functions"*)
 - This leads to a linear system of equations for the approximate solution of the PDE within the particular function space
- An obvious question then is: How well does this approximation represent the true solution of the original problem (existence and uniqueness, convergence behavior, refinement, etc.)
 - We're not going to delve into this; see literature list at the end of this talk

- In order to solve our test problem numerically, we need to discretize the physical domain (**triangulation**), the function space (**finite elements**) and the weak formulation (**assembly**)
 - A triangulation \mathcal{T}_h of Ω is a subdivision of this domain into triangles, so that
 - if two triangles have some intersection, it is either on a common vertex or a common full edge. In particular, two triangles do not overlap
 - the triangulation has to respect the partition of the boundary into Dirichlet and Neumann boundary

valid triangulation

٠

hanging nodes

improper partitioning

 \mathbf{x}_2 不

Mathematical Description/Numerical Implementation

3

Κ

Κ

K'

• Consider bi-linear functions on one of these triangles

$$p \in \mathbb{P}_1 = \{a_0 + a_1x_1 + a_2x_2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$$

• They are uniquely determined by

٠

٠

- either from its three defining coefficients
- or from its values on the three vertices of a triangle K
- in particular, the value of $p \in \mathbb{P}_1$ on any edge of the triangle depends only on the values of p at the two attached vertices
- Two piecewise linear functions on triangles sharing a common edge can be continuously glued together. Do this globally and arrive at the \mathbb{P}_1 finite element space x_2

$$V_h = \left\{ u_h \in \mathcal{C}^0(\overline{\Omega}) \mid u_h |_{\mathcal{K}} \in \mathbb{P}_1 \; \forall \, \mathcal{K} \in \mathcal{T}_h \right\}$$

- Any element of this space is uniquely determined by its values on the nodes of the triangulation (here, nodes = vertices)
 - This space will serve as finite-dimensional surrogate for the function space $H^1(\Omega)$

• Remark: There is a whole ,zoo' of tailor-made elements (Periodic Table of Finite Elements)

Mathematical Description/Numerical Implementation

13

• Let's denote the nodes with \mathbf{p}_j , $j = 1 \dots N = \#\{\text{vertices}\}$. For a fixed node, consider the unique function

$$\varphi_i(\mathbf{p}_j) = \delta_{ij} = \begin{cases} 1, & j = i \\ 0, & j \neq i \end{cases}$$

• Now take any $u_h \in V_h$; it is easy to see (why?) that

$$u_h = \sum_{j=1}^N u_h(\mathbf{p}_j)\varphi_j$$

• Therefore
$$\{\varphi_i \mid i = 1...N\}$$
 is a basis of V_h and

$$\dim V_h = N = \#\{\text{vertices}\}$$

 It's even a very special basis, since the expansion coefficients are values of the function on nodes

$$u_h = \sum_{j=1}^N = c_j \varphi_j$$
 with $c_j = u_h(\mathbf{p}_j)$

Mathematical Description

- The boundary needs a separate treatment
 - a Dirichlet edge is an edge of a triangle that lies on Γ_D ; its vertices are the Dirichlet nodes
 - a Neumann edge is an edge of a triangle that is contained in Γ_N
 - if a node belongs to Γ_D and Γ_N , its a Dirichlet node
- The finite element representation of $H^1_{\Gamma_D}(\Omega)$ is

$$V_h^{\Gamma_D} = V_h \cap H^1_{\Gamma_D} = \{ v_h \in V_h \mid v_h = 0 \text{ on } \Gamma_D \}$$

- $v_h \in V_h^{\Gamma_D}$ if and only if it vanishes on all Dirichlet nodes (why?). Can we find a basis for $V_h^{\Gamma_D}$?
- If we separate the number of nodes into free/independent nodes and Dirichlet nodes, a basis of $V_h^{\Gamma_D}$ is given by (why?)

$$v_h = \sum_{j \in \text{Ind}} v_j \varphi_j$$
, with $v_j = v_h(\mathbf{p}_j)$

• This proves that

 $\dim V_h^{\Gamma_D} = \#\{\operatorname{Ind}\} = \#\{\operatorname{nodes}\} - \#\{\operatorname{Dirichlet nodes}\}$

- After all these preliminaries, we're finally able to derive the FEM-version of our model problem. Recall, that our objective is to
 - find $u \in H^1(\Omega)$, such that

$$u = g_0$$
 on Γ_D

$$\int_{\Omega} \nabla u \nabla v + c \int_{\Omega} u v = \int_{\Omega} f v + \int_{\Gamma_N} g_1 v \quad \forall v \in H^1_{\Gamma_D}(\Omega)$$

- The associated discrete problem is then given by
 - find $u_h \in V_h$, such that

$$u_h(\mathbf{p}_j) = g_0(\mathbf{p}_j) \ \forall \ j \in \text{Dir}$$
$$\int_{\Omega} \nabla u_h \nabla v_h + c \int_{\Omega} u_h v_h = \int_{\Omega} f v_h + \int_{\Gamma_N} g_1 v_h \quad \forall v_h \in V_h^{\Gamma_D}$$

• This means especially

٠

- we look for solutions in the finite-dimensional FE-space instead of the whole (infinite-dimensional) Sobolev space (dim $V_h = N = \#$ {vertices})
- the values on Dirichlet nodes are already fixed (only #{Ind}unknowns)
- testing space is reduced to $V_h^{\Gamma_D}$ (and dim $V_h^{\Gamma_D} = \#\{\text{Ind}\}$)

• Since we know a basis for $V_h^{\Gamma_D}$, this is equivalent to

$$\int_{\Omega} \nabla u_h \nabla \varphi_i + c \int_{\Omega} u_h \varphi_i = \int_{\Omega} f \varphi_i + \int_{\Gamma_N} g_1 \varphi_i \quad \forall i \in \mathsf{Ind}$$

• Next, let's write

$$u_h = \sum_{j \in \text{Ind}} u_j \varphi_j + \sum_{j \in \text{Dir}} u_j \varphi_j$$

$$=\sum_{j\in \mathrm{Ind}}u_j\varphi_j+\sum_{j\in \mathrm{Dir}}g_0(\mathbf{p}_j)\varphi_j$$

• Taking the gradient, inserting and rearranging the Dirichlet-data to the right leads to

$$\sum_{j \in \text{Ind}} \left(\int_{\Omega} \nabla \varphi_j \nabla \varphi_i + c \int_{\Omega} \varphi_j \varphi_i \right) u_j = \int_{\Omega} f \varphi_i + \int_{\Gamma_N} g_1 \varphi_i$$
$$- \sum_{j \in \text{Dir}} \left(\int_{\Omega} \nabla \varphi_j \nabla \varphi_i + c \int_{\Omega} \varphi_j \varphi_i \right) g_0(\mathbf{p}_j)$$

- This represents a matrix-vector equation which can be inverted to solve for the $\#{Ind}$ unknowns u_j
- Of course, the matrix- and righthand side-entries need to be computed numerically (**assembly**)

Mathematical Description/Numerical Implementation

• Consider for example the matrix contributions (RHS works similar)

$$w_{ij} = \int_{\Omega} \nabla \varphi_i \nabla \varphi_j = \sum_{K \in \mathcal{T}_h} \int_{K} \nabla \varphi_i \nabla \varphi_j = \sum_{K \in \mathcal{T}_h} w_{ij}^K$$

$$m_{ij} = \int_{\Omega} \varphi_i \varphi_j = \sum_{K \in \mathcal{T}_h} \int_{K} \varphi_i \varphi_j = \sum_{K \in \mathcal{T}_h} m_{ij}^K$$

In theory, the indices *i*, *j* run over all independent nodes, **but**

٠

- due to the special form of our nodal basis functions, only basis functions corresponding to the nodes of the triangle contribute (why?)
- the matrices w_{ij}^{K} , m_{ij}^{K} therefore only have 9 entries in total, on positions depending on the global numbering of the nodes
- all these local contributions from the various cells need to be assembled to the global system matrix and righthand-side
- This leads to a sparse linear system, which is the reason why it is possible to solve problems with millions/billions of unknowns (use CG for example)

Mathematical Description/Numerical Implementation

CFDL

• Consider for example the matrix contributions (RHS works similar)

•

$$w_{ij} = \int_{\Omega} \nabla \varphi_i \nabla \varphi_j = \sum_{K \in \mathcal{T}_h} \int_{\mathcal{K}} \nabla \varphi_i \nabla \varphi_j = \sum_{K \in \mathcal{T}_h} w_{ij}^K$$

• This leads to a sparse linear system, which is the reason why it is possible to solve problems with millions/billions of unknowns (use CG for example)

- For efficient evaluation of the nodal basis functions and their gradients (and also to increase performance and accuracy), all calculations are performed on a **reference cell**
- The Jacobian of the map $x(\xi)$ is J

• We then have for example

$$\int_{\mathcal{K}} f\varphi_i \, dx = \int_{\hat{\mathcal{K}}} \hat{f}(\boldsymbol{\xi}) \hat{\varphi}_i(\boldsymbol{\xi}) |\det J| \, d\boldsymbol{\xi}$$

$$\int_{\mathcal{K}} \varphi_i \varphi_j \, dx = \int_{\hat{\mathcal{K}}} \hat{\varphi}_i(\boldsymbol{\xi}) \hat{\varphi}_j(\boldsymbol{\xi}) |\det J| \, d\boldsymbol{\xi}$$

• The gradients are more tricky...

$$\int_{\mathcal{K}} \nabla \varphi_i \nabla \varphi_j \, dx = \int_{\hat{\mathcal{K}}} J^{-1} \hat{\nabla} \hat{\varphi}_i(\boldsymbol{\xi}) J^{-1} \hat{\nabla} \hat{\varphi}_j(\boldsymbol{\xi}) |\det J| \, d\boldsymbol{\xi}$$

• The integrals are numerically evaluated using Gauss quadrature with quadrature points ξ_e and weights w_e , e.g.

$$\int_{\hat{K}} \hat{f}(\xi) \hat{\varphi}_i(\xi) |\det J| \, d\xi = \sum_{e=1}^N \hat{f}(\xi_e) \hat{\varphi}_i(\xi_e) |\det J(\xi_e)| w_e$$

Mathematical Description/Numerical Implementation 7

17

9

2 2

15

11

10

12 14

12

Κ

16

1

3

Κ

2

10

9

21 4

13

10

• Want to do it from scratch? How does the assembly process might look like for \mathbb{P}_1 - elements

• Take as an example
$$w_{ij} = \int_{\Omega} \nabla \varphi_i \nabla \varphi_j = \sum_{K \in \mathcal{T}_h} \int_K \nabla \varphi_i \nabla \varphi_j = \sum_{K \in \mathcal{T}_h} w_{ij}^K$$

- For each triangle, assign a number to its vertices \mathbf{p}_1^K , \mathbf{p}_2^K , \mathbf{p}_3^K
- Consider the three functions N_1^K , N_2^K , $N_3^K \in \mathbb{P}_1$ with

$$N_{\alpha}^{K}\left(\mathbf{p}_{\beta}^{K}\right) = \delta_{\alpha\beta} \ \alpha, \beta = 1, 2, 3$$

• Let n_{α} be the global node number of the local node with number α of the triangle K. Then

$$N_{\alpha}^{K} = \varphi_{n_{\alpha}}$$
 on K

• This allows us to compute

$$k_{\alpha\beta}^{\kappa} = \int_{\kappa} \nabla N_{\alpha}^{\kappa} \cdot \nabla_{\beta}^{\kappa} = w_{n_{\alpha}n_{\beta}}^{\kappa} \quad \alpha, \beta = 1, 2, 3$$

• The global matrix is then assembled by all sub-matrices $\mathbf{W} = \sum_{K \in \mathcal{T}_h} \mathbf{W}^K$

• As previously described, use reference elements to do the calculations. For triangles, it is

$$\hat{\boldsymbol{p}}_1=(0,0)$$
 , $\hat{\boldsymbol{p}}_2=(1,0)$, $\hat{\boldsymbol{p}}_3=(0,1)$

• The functions $\hat{N}_{\alpha}(\hat{\mathbf{p}}_{\beta}) = \delta_{\alpha\beta}$ are given by

$$\hat{N}_1=1-\xi-\eta$$
 , $\hat{N}_2=\xi$, $\hat{N}_3=\eta$

• For the triangle K with $\mathbf{p}_1^K = (x_1, y_1)$, $\mathbf{p}_2^K = (x_2, y_2)$, $\mathbf{p}_3^K = (x_3, y_3)$, we have the bijective affine transformation $F_K : (\xi, \eta) \to (x, y)$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \underbrace{\begin{bmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{bmatrix}}_{\mathsf{B}_{\mathsf{K}}} \begin{pmatrix} \xi \\ \eta \end{pmatrix} + \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

• It is easy to show, that

$$F_{\mathcal{K}}(\hat{\mathbf{p}}_{lpha}) = \mathbf{p}_{lpha}$$
 , $lpha = 1, 2, 3$

• Furthermore

$$\hat{N}_{lpha}=N_{lpha}^{K}\circ F_{K}$$
 , $lpha=$ 1, 2, 3

$$N_{\alpha}^{\kappa} = \hat{N}_{\alpha} \circ F_{\kappa}^{-1}$$
, $\alpha = 1, 2, 3$ i.e. $N_{\alpha}^{\kappa}(x, y) = \hat{N}_{\alpha}(F_{\kappa}^{-1}(x, y))$

• Since the inverse affine transformation is straightforward to compute, this is a simple way of evaluating the functions N_{α}^{κ} needed for the FE-integrals

• Evaluating gradients needs more care, since one has to use the chain rule

• For
$$\nabla = \begin{pmatrix} \partial_x \\ \partial_y \end{pmatrix}$$
 and $\hat{\nabla} = \begin{pmatrix} \partial_\xi \\ \partial_\eta \end{pmatrix}$, it is for an arbitrary function ϕ

$$B_{K}^{T} (\nabla \phi \circ F_{K}) = \hat{\nabla} (\phi \circ F_{K})$$

or (with $\phi = N_{\alpha}^{K}$)

$$\nabla N_{\alpha}^{K} = B_{K}^{-T} \left((\hat{\nabla} \hat{N}_{\alpha}) \circ F_{K}^{-1} \right)$$

• Here, we have

$$B_{K}^{-T} = \frac{1}{\det B_{K}} \begin{bmatrix} y_{3} - y_{1} & -(y_{2} - y_{1}) \\ -(x_{2} - x_{1}) & x_{2} - x_{1} \end{bmatrix}$$

with

$$\det B_{\mathcal{K}} = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1)$$

• Luckily, for this elementary method here, the gradients are constant vectors

$$\hat{\nabla}\hat{N}_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$
, $\hat{\nabla}\hat{N}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\hat{\nabla}\hat{N}_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

• Integration is also performed on the reference element; we therefore have

$$\int_{\mathcal{K}} N_{\beta}^{\mathcal{K}} N_{\alpha}^{\mathcal{K}} = |\det B_{\mathcal{K}}| \int_{\hat{\mathcal{K}}} \hat{N}_{\beta} \hat{N}_{\alpha}$$

• We're done here since only the determinant is dependent on the current triangle and

$$\hat{\mathbf{K}}_{0} = \left[\int_{\hat{\mathcal{K}}} \hat{\mathcal{N}}_{\beta} \hat{\mathcal{N}}_{\alpha} \right]_{\alpha,\beta} = \frac{1}{24} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$

• For the gradients, it is

$$\int_{\mathcal{K}} \nabla N_{\beta}^{\mathcal{K}} \cdot \nabla N_{\alpha}^{\mathcal{K}} = |\det B_{\mathcal{K}}| \int_{\hat{\mathcal{K}}} \left(B_{\mathcal{K}}^{-T} \hat{\nabla} \hat{N}_{\beta} \right) \cdot \left(B_{\mathcal{K}}^{-T} \hat{\nabla} \hat{N}_{\alpha} \right)$$
$$= |\det B_{\mathcal{K}}| \int_{\hat{\mathcal{K}}} C_{\mathcal{K}} \hat{\nabla} \hat{N}_{\beta} \cdot \hat{\nabla} \hat{N}_{\alpha}$$

where

$$C_{K} = B_{K}^{-1} B_{K}^{-T} = \begin{bmatrix} c_{11}^{K} & c_{12}^{K} \\ c_{12}^{K} & c_{22}^{K} \end{bmatrix}$$

is a symmetric 2x2 matrix that depends only on the triangle

• If we write

$$\hat{\mathbf{K}}_{\xi\xi} = \left[\int_{\hat{\mathcal{K}}} \partial_{\xi} \hat{\mathcal{N}}_{\beta} \, \partial_{\xi} \hat{\mathcal{N}}_{\alpha} \right]_{\alpha,\beta} = \frac{1}{2} \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\hat{\mathbf{K}}_{\eta\eta} = \left[\int_{\hat{\mathcal{K}}} \partial_{\eta} \hat{\mathcal{N}}_{\beta} \, \partial_{\eta} \hat{\mathcal{N}}_{\alpha} \right]_{\alpha,\beta} = \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$

$$\hat{\mathbf{K}}_{\xi\eta} = \left[\int_{\hat{\mathcal{K}}} \partial_{\xi} \hat{\mathcal{N}}_{\beta} \, \partial_{\eta} \hat{\mathcal{N}}_{\alpha} \right]_{\alpha,\beta} = \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

we finally arrive at

$$\left[\int_{\mathcal{K}} \nabla N_{\beta}^{\mathcal{K}} \cdot \nabla N_{\alpha}^{\mathcal{K}}\right]_{\alpha,\beta} = |\det B_{\mathcal{K}}| \left(c_{11}^{\mathcal{K}} \hat{\mathbf{K}}_{\xi\xi} + c_{22}^{\mathcal{K}} \hat{\mathbf{K}}_{\eta\eta} + + c_{22}^{\mathcal{K}} (\hat{\mathbf{K}}_{\xi\eta} + \hat{\mathbf{K}}_{\xi\eta}^{\mathcal{T}})\right)$$

 Doing this calculations for all elements of the triangulation completes the assembly of the system matrix; the same has to be done for the righthand-sides (and possible boundary integrals due to Neumann - conditions...)

- Most commercially available codes contain sophisticated routines for pre-processing...
 - automated meshing with tets, quads or mixed elements
 - simple ways of local mesh refinement
 - defeaturing
- running the simulation...

٠

- apply boundary conditions, forces, stresses etc.
- implicit and explicit solvers for time-evolution, stationary solver
- and post-processing the results
 - visualization of the solution(s)
 - animations and arbitrary XY-plots
- We will try to solve a simple Poisson equation with similar OpenSource tools
 - Gmsh for meshing, deal.II as FE library, VisIt for visualization

- There are a couple of sophisticated OpenSource FE libraries available:
 - MOOSE framework (Multiphysics Object-Oriented Software Environment)

MOOSE

• OpenFOAM (OpenSource Field Operation and Manipulation), mainly used for CFD

Open∇FOAM

• The Fenics Project (uses Python scripting for solving PDEs)

 \cdot Agros2D (application package with GUI support for meshing and post-processing)

• libmesh (used by MOOSE under the hood)

٠

• deal.ii (Differential Equations Analysis Library, used by Agros2D under the hood)

The former four provide an additional abstraction layer to the more low-level APIs found in libmesh and deal.ii


```
/* implementation of the assemble_system member function */
template <int dim>
void FEM_Example<dim>::assemble_system()
 // use Gauss quadrature with two quadrature points for every dimension
 QGauss<dim> quadrature_formula(2);
 // get values for shape functions, their gradients, the quadrature points and transformation coefficients
 FEValues<dim> fe_values(fe, quadrature_formula, update_values | update_gradients | update_quadrature_points | update_JxW_values);
 // get number of DoFs per cell, number of quadrature points, instantiate objects for rhs and coefficient arrays etc.
 const unsigned int dofs_per_cell = fe.dofs_per_cell;
 const unsigned int n_q_points = quadrature_formula.size();
 FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
 Vector<double>
                      cell_rhs(dofs_per_cell);
  std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);
  const RightHandSide<dim> righthandside;
 std::vector<double> righthandside_values(n_g_points);
  // loop over all cells, quadrature points and DoFs to assemble the local matrices
  typename DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(), endc = dof_handler.end();
  for(; cell != endc; ++cell) {
   fe_values.reinit(cell);
   cell_matrix = 0;
   cell_rhs = 0;
   righthandside.value_list(fe_values.get_quadrature_points(), righthandside_values);
   for(unsigned int q_point = 0; q_point < n_q_points; ++q_point) {</pre>
     for(unsigned int i = 0; i < dofs_per_cell; ++i) {</pre>
       for(unsigned int j = 0; j < dofs_per_cell; ++j)</pre>
         cell_matrix(i,j) += -1.0*fe_values.shape_grad(i,q_point) * fe_values.shape_grad(j,q_point) * fe_values.JxW(q_point);
         cell_rhs(i)
                           += fe_values.shape_value (i, q_point) * righthandside_values[q_point] * fe_values.JxW(q_point);
     }
     // copy the local contributions to the global matrix and rhs
     cell->get_dof_indices(local_dof_indices);
     constraints.distribute_local_to_global(cell_matrix, cell_rhs, local_dof_indices, system_matrix, system_rhs);
   }
 }
```


Zhangxin Chen **Finite Element Methods and Their Applications** *Springer, 2005*

٠

٠

- Susanne C. Brenner, L. Ridgway Scott **The Mathematical Theory of Finite Element Methods** *Springer, 2007*
- J. N. Reddy
 An Introduction to the Finite Element Method
 McGraw Hill, 2006
- Dietrich Braess
 Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics
 Cambridge University Press, 2007
- Young W. Kwong, Hyochoong Bang
 The Finite Element Method using MATLAB
 CRC Press, 1996