An Introduction to the Finite Element Method

Dr. Erich Gaertig
BU Central / Simulation
Hilite Germany GmbH
Outline

• Introduction to FEM - Motivation

• Mathematical Description/Numerical Implementation for Linear Elements on Triangular Meshes

• Solving a Simple PDE on an Irregular Domain in 2D/3D - Demo
Complex problems necessitate the need for a flexible and powerful computational technique.

Most real problems are defined on domains that are geometrically complex and may have different boundary conditions on different portions of the boundary.

It is therefore impossible to find an analytical solution; also Finite Differences (FD) are difficult to adapt for arbitrary geometries.

Solution of problems in structural mechanics by known functions with unknown coefficients (Ritz [1909]), later refined by using nodal shape functions (Courant [1943]).

FEM originally developed mainly by engineers in the aerospace environment (The finite element method in plane stress analysis (1960), Turner, Clough, Martin, Topp [1950 - 1960]).

Thorough mathematical investigations and extensions during the 1960s (variational formulation, Argyris, Zienkiewicz, Turner, Reissner).

First commercial codes showed up in the 1970s (NASAs Nastran commercialized in 1971).
Introduction
Introduction
Introduction
Introduction
Shell: FPM Gauge Pressure -PE- -0.1
Instead of satisfying the PDE point-by-point in the computational domain (FD approach), FEM (and other methods as well) uses an weighted integral formulation with test functions, that average the PDE globally.

Consider as an example
\[-\frac{d}{dx} \left(x \frac{du}{dx} \right) + u = 0, \quad 0 < x < 1\]

\[u(0) = 1, \quad \left(x \frac{du}{dx} \right)_{x=1} = 0\]

We seek a solution of the form
\[U_N = \sum_{j=1}^{2} c_j \phi_j(x) + \phi_0(x)\]

Here, all three functions satisfy the homogeneous boundary conditions UNLESS there are non-homogeneous ones; then \(\phi_0(x)\) has to obey them as well.

Since in this case, there’s only one non-homogeneous BC for the left boundary point, we can make the ansatz
\[U_2 = c_1 \phi_1 + c_2 \phi_2 + \phi_0 \quad \text{with} \quad \phi_0 = 1, \quad \phi_1(x) = x^2 - 2x, \quad \phi_2(x) = x^3 - 3x\]
• For $U_2(x)$ to satisfy the PDE, we need to have

$$-\frac{dU_2}{dx} - x \frac{d^2U_2}{dx} + U_2 = -2c_1(x - 1) - 3c_2(x^2 - 1) - 2c_1x - 6c_2x^2$$

$$+ c_1(x^2 - 2x) + c_2(x^3 - 3x) + 1 = 0$$

• This relation has to hold for all x, comparing powers leads to

\[1 + 2c_1 + 3c_2 = 0\]
\[-6c_1 - 3c_2 = 0\]
\[c_1 - 9c_2 = 0\]
\[c_2 = 0\]

• These relations are inconsistent; there is no solution to this linear system at all!!

• Instead, multiply both sides of the PDE with a weight function and integrate over the domain

$$\int_{0}^{1} w(x) R(x) \, dx = 0 \quad \text{with} \quad R(x) = -\frac{dU_2}{dx} - x \frac{d^2U_2}{dx^2} + U_2$$

• From this, we obtain as many linearly independent equations as there are linear independent weight functions. Since here we have $N = 2$, let’s choose $w = 1$ and $w = x$
• This leads to

\[
0 = \int_{0}^{1} 1 \cdot R(x) \, dx = (1 + 2c_1 + 3c_2) + \frac{1}{2}(-6c_1 - 3c_2) + \frac{1}{3}(c_1 - 9c_2) + \frac{1}{4}c_2
\]

\[
0 = \int_{0}^{1} x \cdot R(x) \, dx = \frac{1}{2}(1 + 2c_1 + 3c_2) + \frac{1}{3}(-6c_1 - 3c_2) + \frac{1}{4}(c_1 - 9c_2) + \frac{1}{5}c_2
\]

• These are two linear equations for two unknowns with the solution

\[
c_1 = \frac{222}{23}, \quad c_2 = -\frac{100}{23}
\]

• **This is the heart of FEM; if anything, take this from the lecture:** By transforming the system of PDEs into an averaged, weighted integral statement, derive a linear system of equations for the unknown expansion coefficients of your global solution.

• Even for moderately sized problems in 2D, it’s very easy to get systems with ~ 100.000 unknowns; need for accessible and efficient framework for assembling and solving these systems (2nd part of the talk).
• This leads to

\[
0 = \int_0^1 1 \cdot R(x) \, dx = (1 + 2c_1 + 3c_2) + \frac{1}{2}(-6c_1 - 3c_2) + \frac{1}{3}(c_1 - 9c_2) + \frac{1}{4}c_2
\]

• These are two linear equations for two unknowns with the solution

• This is the heart of FEM; if anything, take this from the lecture:

By transforming the system of PDEs into an averaged, weighted integral statement, derive a linear system of equations for the unknown expansion coefficients of your global solution

• Even for moderately sized problems in 2D, it's very easy to get systems with ~ 100,000 unknowns; need for accessible and efficient framework for assembling and solving these systems (2nd part of the talk)
• This leads to

\[
0 = \int_0^1 1 \cdot R(x) dx = (1 + 2c_1 + 3c_2) + \frac{1}{2}(-6c_1 - 3c_2) + \frac{1}{3}(c_1 - 9c_2) + \frac{1}{4}c_2
\]

\[
0 = \int_0^1 x \cdot R(x) dx = \frac{1}{2}(1 + 2c_1 + 3c_2) + \frac{1}{3}(-6c_1 - 3c_2) + \frac{1}{4}(c_1 - 9c_2) + \frac{1}{5}c_2
\]

• These are two linear equations for two unknowns with the solution

\[
c_1 = \frac{222}{23} , \quad c_2 = -\frac{100}{23}
\]

• **This is the heart of FEM; if anything, take this from the lecture:** By transforming the system of PDEs into an averaged, weighted integral statement, derive a linear system of equations for the unknown expansion coefficients of your global solution

• Even for moderately sized problems in 2D, it’s very easy to get systems with ~ 100,000 unknowns; need for accessible and efficient framework for assembling and solving these systems (2nd part of the talk)
Note:

- There are (at least) three problems with this approach (*Ritz method, 1908*):
 - The matrix one needs to solve for the unknown expansion coefficients c_i typically is dense, so computations will be slow; even more so, if high accuracies are needed.
 - For complicated PDEs, it might be very difficult to find basis functions that automatically satisfy the imposed boundary conditions.
 - It is not clear, how to choose the weighting functions for the integration; different choices will naturally lead to different coefficients c_i (you need ALL of them in a sense).

- All these issues are remedied by a proper formulation of the Finite Element Method; in particular:
 - It will lead to a linear system with sparse matrices (so very efficient algorithms for solving these type of systems can be employed).
 - Very simple basis functions are used; boundary conditions are transparently encoded in the integral statements as well.
 - The very same functions are used as basis for the weights in the FE-formulation.
Note:

There are (at least) three problems with this approach (*Ritz method, 1908*)

1. The matrix one needs to solve for the unknown expansion coefficients typically is dense, so computations will be slow; even more so, if high accuracies are needed.
2. For complicated PDEs, it might be very difficult to find basis functions that automatically satisfy the imposed boundary conditions.
3. It is not clear, how to choose the weighting functions for the integration; different choices will naturally lead to different coefficients (you need ALL of them in a sense).

All these issues are remedied by a proper formulation of the Finite Element Method; in particular:

1. it will lead to a linear system with sparse matrices (so very efficient algorithms for solving these type of systems can be employed).
2. very simple basis functions are used; boundary conditions are transparently encoded in the integral statements as well.
3. the very same functions are used as basis for the weights in the FE-formulation.
Note:

- There are (at least) three problems with this approach (*Ritz method, 1908*):
 - The matrix one needs to solve for the unknown expansion coefficients c_i typically is dense, so computations will be slow; even more so, if high accuracies are needed.
 - For complicated PDEs, it might be very difficult to find basis functions that automatically satisfy the imposed boundary conditions.
 - It is not clear how to choose the weighting functions for the integration; different choices will naturally lead to different coefficients c_i (you need ALL of them in a sense).

- All these issues are remedied by a proper formulation of the Finite Element Method; in particular:
 - it will lead to a linear system with sparse matrices (so very efficient algorithms for solving these type of systems can be employed).
 - very simple basis functions are used; boundary conditions are transparently encoded in the integral statements as well.
 - the very same functions are used as basis for the weights in the FE-formulation.
• There are various reasons for using an integral version of the PDE

• even for smooth initial data, PDEs may exhibit discontinuous behaviour

• discontinuous source functions or irregular domains also lead to non-classical solutions

• Consider as prototype example the Poisson equation $\nabla^2 u = f$ in an open domain Ω

• a classical solution has continuous second derivatives in the interior ($u \in C^2(\Omega)$) and is continuous up to the boundary ($u \in C^0(\overline{\Omega})$)

• If the source function is discontinuous (e.g. weight placed on parts of a membrane), then $u \notin C^2(\Omega)$

• The same happens for so-called re-entrant corners in a non-convex domain

\[
\Omega = [-1, 1]^2 \setminus [-1, 0]^2, \quad \Gamma_D = \Gamma, \quad f = 0, \quad g = u|_{\Gamma}, \quad u = r^{2/3} \sin \left(\frac{2\theta + \pi}{3} \right)
\]
• Our model problem is

\[-\Delta u + cu = f \quad \text{in} \quad \Omega \]
\[u = g_0 \quad \text{on} \quad \Gamma_D \]
\[\partial_n u = g_1 \quad \text{on} \quad \Gamma_N \]

• Multiply with test function, integrate and use Green’s identity

\[\int_{\Omega} (\Delta u) v + \int_{\Omega} \nabla u \nabla v = \int_{\Gamma} (\partial_n u) v = \int_{\Gamma_D} (\partial_n u) v + \int_{\Gamma_N} (\partial_n u) v \]

• Impose \(v = 0 \) on \(\Gamma_D \) and search for solutions \(u \in H^1(\Omega) \) such that

\[u = g_0 \quad \text{on} \quad \Gamma_D \]
\[\int_{\Omega} \nabla u \nabla v + c \int_{\Omega} uv = \int_{\Omega} f v + \int_{\Gamma_N} g_1 v \quad \forall v \in H^1_{\Gamma_D}(\Omega) \]

(weak formulation)

\[H^1(\Omega) = \left\{ u \in L^2(\Omega) \mid \frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2} \in L^2(\Omega) \right\} \]

\[H^1_{\Gamma_D}(\Omega) = \{ v \in H^1(\Omega) \mid v = 0 \quad \text{on} \quad \Gamma_D \} \]
Our model problem is

\[-\Delta u + cu = f \text{ in } \Omega\]
\[u = g_0 \text{ on } \Gamma_D \text{ essential BC}\]
\[\partial_n u = g_1 \text{ on } \Gamma_N \text{ natural BC}\]

Multiply with test function, integrate and use Green’s identity

\[\int_{\Omega} (\Delta u) v + \int_{\Omega} \nabla u \nabla v = \int_{\Gamma} (\partial_n u) v = \int_{\Gamma_D} (\partial_n u) v + \int_{\Gamma_N} (\partial_n u) v\]

Impose \(v = 0 \) on \(\Gamma_D \) and search for solutions \(u \in H^1(\Omega) \) such that

\[u = g_0 \text{ on } \Gamma_D\]
\[\int_{\Omega} \nabla u \nabla v + c \int_{\Omega} u v = \int_{\Omega} f v + \int_{\Gamma_N} g_1 v \quad \forall v \in H^1_{\Gamma_D}(\Omega)\]

(weak formulation)

\[H^1(\Omega) = \left\{ u \in L^2(\Omega) \middle| \frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2} \in L^2(\Omega) \right\}\]
\[H_{\Gamma_D}^1(\Omega) = \{ v \in H^1(\Omega) \middle| v = 0 \text{ on } \Gamma_D \}\]
By reducing the smoothness of the solution variable required by the weak formulation (i.e. $C^1(\Omega)$ instead of $C^2(\Omega)$), we can get a weak solution, that is not smooth enough to be a classical solution.

One even extends the admissible function space to include $C^0(\Omega)$ - functions as well via so-called weak derivatives:

- for $v \in C^0_0(\Omega)$, the partial integration relation in 1D reads
 \[\int_\Omega u'v = -\int_\Omega uv' \]
- idea: use this as the definition for the weak derivative of u

- we call $\partial_x u|_w$ the weak derivative of u, if
 \[\int_\Omega \partial_x u|_w v = -\int_\Omega uv' \quad \forall v \in C^0_0(\Omega) \]

This means, differentiation is also defined via integration over test functions.

Advantage: functions, that are classically not differentiable nevertheless are weakly differentiable, e.g. $u(x) = |x|$
• Similar definitions for weak derivatives exist for all differential operators, e.g. div, rot etc.; these are used for computational electrodynamics for example

• example: a function $\nabla \cdot u|_w \in L^2(\Omega)$ is called weak divergence of $u \in L^2(\Omega)$, if for any function $\nu \in C_0^\infty(\Omega)$

$$\int_\Omega \nabla \cdot u|_w \nu = -\int_\Omega u \cdot \nabla \nu$$

(hint: use Gauss’ theorem)

• The test space $H^1_{\Gamma_D}(\Omega) = \{ \nu \in H^1(\Omega) | \nu = 0 \text{ on } \Gamma_D \}$ with weak derivatives and equipped with

$$\langle u, \nu \rangle := \int_\Omega (uv + \nabla u \cdot \nabla \nu) \, dx$$

is a special Hilbert space, a so-called Sobolev space
Now keep in mind that the so defined function- and test-spaces $H^1(\Omega)$ and $H^1_D(\Omega)$ are infinite-dimensional vector spaces (the latter being a proper sub-vectorspace of the former)

This makes it difficult for a direct numerical implementation of the weak formulation (computers can’t handle infinities very well...)

We need to restrict ourselves (and set up) a convenient, finite-dimensional version of the two different Sobolev-spaces involved here

These surrogates, being finite-dimensional vector-spaces, therefore feature a finite basis as well

- The weak formulation can then be recast in terms of a cleverly chosen basis ("hat-functions")
- This leads to a linear system of equations for the approximate solution of the PDE within the particular function space

An obvious question then is: How well does this approximation represent the true solution of the original problem (existence and uniqueness, convergence behavior, refinement, etc.)

We’re not going to delve into this; see literature list at the end of this talk
• In order to solve our test problem numerically, we need to discretize the physical domain (triangulation), the function space (finite elements) and the weak formulation (assembly).

• A triangulation \mathcal{T}_h of Ω is a subdivision of this domain into triangles, so that
 • if two triangles have some intersection, it is either on a common vertex or a common full edge. In particular, two triangles do not overlap
 • the triangulation has to respect the partition of the boundary into Dirichlet and Neumann boundary

![valid triangulation](image1)
![hanging nodes](image2)
![improper partitioning](image3)
Consider bi-linear functions on one of these triangles

\[p \in \mathbb{P}_1 = \{ a_0 + a_1 x_1 + a_2 x_2 \mid a_0, a_1, a_2 \in \mathbb{R} \} \]

They are uniquely determined by

- either from its three defining coefficients
- or from its values on the three vertices of a triangle \(K \)
- in particular, the value of \(p \in \mathbb{P}_1 \) on any edge of the triangle depends only on the values of \(p \) at the two attached vertices

Two piecewise linear functions on triangles sharing a common edge can be continuously glued together. Do this globally and arrive at the \(\mathbb{P}_1 \)-finite element space

\[V_h = \{ u_h \in C^0(\Omega) \mid u_h|_K \in \mathbb{P}_1 \forall K \in \mathcal{T}_h \} \]

Any element of this space is uniquely determined by its values on the nodes of the triangulation (here, nodes = vertices)

This space will serve as finite-dimensional surrogate for the function space \(H^1(\Omega) \)
· Remark: There is a whole 'zoo' of tailor-made elements (Periodic Table of Finite Elements)
• Let’s denote the nodes with \(p_j, j = 1 \ldots N = \#\{\text{vertices}\} \). For a fixed node, consider the unique function
\[
\varphi_i(p_j) = \delta_{ij} = \begin{cases}
1, & j = i \\
0, & j \neq i \end{cases}
\]

• Now take any \(u_h \in V_h \); it is easy to see (why?) that
\[
u_h = \sum_{j=1}^{N} u_h(p_j)\varphi_j
\]

• Therefore \(\{ \varphi_i \mid i = 1 \ldots N \} \) is a basis of \(V_h \) and
\[
dim V_h = N = \#\{\text{vertices}\}
\]

• It’s even a very special basis, since the expansion coefficients are values of the function on nodes
\[
u_h = \sum_{j=1}^{N} c_j\varphi_j \text{ with } c_j = u_h(p_j)
\]
The boundary needs a separate treatment

- a Dirichlet edge is an edge of a triangle that lies on \(\Gamma_D \); its vertices are the Dirichlet nodes
- a Neumann edge is an edge of a triangle that is contained in \(\Gamma_N \)
- if a node belongs to \(\Gamma_D \) and \(\Gamma_N \), its a Dirichlet node

The finite element representation of \(H^1_{\Gamma_D}(\Omega) \) is

\[
V_h^{\Gamma_D} = V_h \cap H^1_{\Gamma_D} = \{ v_h \in V_h \mid v_h = 0 \text{ on } \Gamma_D \}
\]

\(v_h \in V_h^{\Gamma_D} \) if and only if it vanishes on all Dirichlet nodes (why?). Can we find a basis for \(V_h^{\Gamma_D} \)?

If we separate the number of nodes into free/independent nodes and Dirichlet nodes, a basis of \(V_h^{\Gamma_D} \) is given by (why?)

\[
v_h = \sum_{j \in \text{Ind}} v_j \varphi_j, \text{ with } v_j = v_h(p_j)
\]

This proves that

\[
\dim V_h^{\Gamma_D} = \#\{\text{Ind}\} = \#\{\text{nodes}\} - \#\{\text{Dirichlet nodes}\}
\]
After all these preliminaries, we’re finally able to derive the FEM-version of our model problem. Recall, that our objective is to

- find \(u \in H^1(\Omega) \), such that

\[
 u = g_0 \quad \text{on } \Gamma_D
\]

\[
 \int_{\Omega} \nabla u \nabla v + c \int_{\Omega} uv = \int_{\Omega} f v + \int_{\Gamma_N} g_1 v \quad \forall v \in H^1_{\Gamma_D}(\Omega)
\]

- The associated discrete problem is then given by

- find \(u_h \in V_h \), such that

\[
 u_h(p_j) = g_0(p_j) \quad \forall j \in \text{Dir}
\]

\[
 \int_{\Omega} \nabla u_h \nabla v_h + c \int_{\Omega} u_h v_h = \int_{\Omega} f v_h + \int_{\Gamma_N} g_1 v_h \quad \forall v_h \in V_h^{\Gamma_D}
\]

- This means especially

- we look for solutions in the finite-dimensional FE-space instead of the whole (infinite-dimensional) Sobolev space \(\dim V_h = N = \#\{\text{vertices}\} \)
- the values on Dirichlet nodes are already fixed (only \(\#\{\text{Ind}\} \) unknowns)
- testing space is reduced to \(V_h^{\Gamma_D} \) (and \(\dim V_h^{\Gamma_D} = \#\{\text{Ind}\} \))
• Since we know a basis for $V_h^{Γ_0}$, this is equivalent to

$$\int_Ω \nabla u_h \nabla \varphi_i + c \int_Ω u_h \varphi_i = \int_Ω f \varphi_i + \int_{Γ_N} g_1 \varphi_i \quad ∀i \in \text{Ind}$$

• Next, let’s write

$$u_h = \sum_{j \in \text{Ind}} u_j \varphi_j + \sum_{j \in \text{Dir}} u_j \varphi_j$$

$$= \sum_{j \in \text{Ind}} u_j \varphi_j + \sum_{j \in \text{Dir}} g_0(p_j) \varphi_j$$

• Taking the gradient, inserting and rearranging the Dirichlet-data to the right leads to

$$\sum_{j \in \text{Ind}} \left(\int_Ω \nabla \varphi_j \nabla \varphi_i + c \int_Ω \varphi_j \varphi_i \right) u_j = \int_Ω f \varphi_i + \int_{Γ_N} g_1 \varphi_i$$

$$- \sum_{j \in \text{Dir}} \left(\int_Ω \nabla \varphi_j \nabla \varphi_i + c \int_Ω \varphi_j \varphi_i \right) g_0(p_j)$$

• This represents a matrix-vector equation which can be inverted to solve for the $∀\{\text{Ind}\}$ unknowns u_j

• Of course, the matrix- and righthand side-entries need to be computed numerically (assembly)
• Consider for example the matrix contributions (RHS works similar)

\[
w_{ij} = \int_{\Omega} \nabla \varphi_i \nabla \varphi_j = \sum_{K \in T_h} \int_{K} \nabla \varphi_i \nabla \varphi_j = \sum_{K \in T_h} w^K_{ij}
\]

\[
m_{ij} = \int_{\Omega} \varphi_i \varphi_j = \sum_{K \in T_h} \int_{K} \varphi_i \varphi_j = \sum_{K \in T_h} m^K_{ij}
\]

• In theory, the indices \(i, j\) run over all independent nodes, **but**

 • due to the special form of our nodal basis functions, only basis functions corresponding to the nodes of the triangle contribute (why?)

 • the matrices \(w^K_{ij}, m^K_{ij}\) therefore only have 9 entries in total, on positions depending on the global numbering of the nodes

 • all these local contributions from the various cells need to be assembled to the global system matrix and righthand-side

• This leads to a sparse linear system, which is the reason why it is possible to solve problems with millions/billions of unknowns (use CG for example)
• Consider for example the matrix contributions (RHS works similar)

\[w_{ij} = \int_\Omega \nabla \varphi_i \nabla \varphi_j = \sum_{K \in T_h} \int_K \nabla \varphi_i \nabla \varphi_j = \sum_{K \in T_h} w_{ij}^K \]

• In theory, the indices run over all independent nodes, but due to the special form of our nodal basis functions, only basis functions corresponding to the nodes of the triangle contribute (why?)

• The matrices therefore only have 9 entries in total, on positions depending on the global numbering of the nodes

• All these local contributions from the various cells need to be assembled to the global system matrix and righthand-side

• This leads to a sparse linear system, which is the reason why it is possible to solve problems with millions/billions of unknowns (use CG for example)
• For efficient evaluation of the nodal basis functions and their gradients (and also to increase performance and accuracy), all calculations are performed on a reference cell.

• The Jacobian of the map $x(\xi)$ is J.

• We then have for example:

$$\int_K f \varphi_i \, dx = \int_{\hat{K}} \hat{f}(\xi) \hat{\varphi}_i(\xi) |\det J| \, d\xi$$

$$\int_K \varphi_i \varphi_j \, dx = \int_{\hat{K}} \hat{\varphi}_i(\xi) \hat{\varphi}_j(\xi) |\det J| \, d\xi$$

• The gradients are more tricky...

$$\int_K \nabla \varphi_i \nabla \varphi_j \, dx = \int_{\hat{K}} J^{-1} \nabla \hat{\varphi}_i(\xi) J^{-1} \nabla \hat{\varphi}_j(\xi) |\det J| \, d\xi$$

• The integrals are numerically evaluated using Gauss quadrature with quadrature points ξ_e and weights w_e, e.g.

$$\int_{\hat{K}} \hat{f}(\xi) \hat{\varphi}_i(\xi) |\det J| \, d\xi = \sum_{e=1}^N \hat{f}(\xi_e) \hat{\varphi}_i(\xi_e) |\det J(\xi_e)| w_e$$
- Want to do it from scratch? How does the assembly process might look like for \mathbb{P}_1-elements?

- Take as an example $w_{ij} = \int_\Omega \nabla \varphi_i \nabla \varphi_j = \sum_{K \in T_h} \int_K \nabla \varphi_i \nabla \varphi_j = \sum_{K \in T_h} w^K_{ij}$

- For each triangle, assign a number to its vertices p^K_1, p^K_2, p^K_3

- Consider the three functions $N^K_1, N^K_2, N^K_3 \in \mathbb{P}_1$ with

$$N^K_\alpha (p^K_\beta) = \delta_{\alpha \beta} \quad \alpha, \beta = 1, 2, 3$$

- Let n_α be the global node number of the local node with number α of the triangle K. Then

$$N^K_\alpha = \varphi_{n_\alpha} \text{ on } K$$

- This allows us to compute

$$k^K_{\alpha \beta} = \int_K \nabla N^K_\alpha \cdot \nabla _\beta = w^K_{n_\alpha n_\beta} \quad \alpha, \beta = 1, 2, 3$$

- The global matrix is then assembled by all sub-matrices $W = \sum_{K \in T_h} W^K$
• As previously described, use reference elements to do the calculations. For triangles, it is
\[
\hat{p}_1 = (0, 0), \quad \hat{p}_2 = (1, 0), \quad \hat{p}_3 = (0, 1)
\]

• The functions \(\hat{N}_\alpha (\hat{p}_\beta) = \delta_{\alpha \beta} \) are given by
\[
\hat{N}_1 = 1 - \xi - \eta, \quad \hat{N}_2 = \xi, \quad \hat{N}_3 = \eta
\]

• For the triangle \(K \) with \(p_1^K = (x_1, y_1), \quad p_2^K = (x_2, y_2), \quad p_3^K = (x_3, y_3) \), we have the bijective affine transformation \(F_K : (\xi, \eta) \to (x, y) \)
\[
\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix}
 x_2 - x_1 & x_3 - x_1 \\
 y_2 - y_1 & y_3 - y_1
\end{pmatrix}
\begin{pmatrix} \xi \\ \eta \end{pmatrix} + \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}
\]

• It is easy to show, that
\[
F_K(\hat{p}_\alpha) = p_\alpha, \quad \alpha = 1, 2, 3
\]

• Furthermore
\[
\hat{N}_\alpha = N^K_\alpha \circ F_K, \quad \alpha = 1, 2, 3
\]

\[
N^K_\alpha = \hat{N}_\alpha \circ F_K^{-1}, \quad \alpha = 1, 2, 3 \quad \text{i.e.} \quad N^K_\alpha(x, y) = \hat{N}_\alpha(F_K^{-1}(x, y))
\]

• Since the inverse affine transformation is straightforward to compute, this is a simple way of evaluating the functions \(N^K_\alpha \) needed for the FE-integrals
Evaluating gradients needs more care, since one has to use the chain rule.

For \(\nabla = \left(\frac{\partial x}{\partial y} \right) \) and \(\hat{\nabla} = \left(\frac{\partial \xi}{\partial \eta} \right) \), it is for an arbitrary function \(\phi \)

\[
B_K^T (\nabla \phi \circ F_K) = \hat{\nabla} (\phi \circ F_K)
\]

or (with \(\phi = N^K_{\alpha} \))

\[
\nabla N^K_{\alpha} = B_K^{-T} ((\hat{\nabla} \hat{N}_{\alpha}) \circ F_K^{-1})
\]

Here, we have

\[
B_K^{-T} = \frac{1}{\det B_K} \begin{bmatrix}
 y_3 - y_1 & -(y_2 - y_1) \\
 -(x_2 - x_1) & x_2 - x_1
\end{bmatrix}
\]

with

\[
\det B_K = (x_2 - x_1)(y_3 - y_1) - (y_2 - y_1)(x_3 - x_1)
\]

Luckily, for this elementary method here, the gradients are constant vectors

\[
\hat{\nabla} \hat{N}_1 = \left(\begin{array}{c} -1 \\ -1 \end{array} \right), \quad \hat{\nabla} \hat{N}_2 = \left(\begin{array}{c} 1 \\ 0 \end{array} \right), \quad \hat{\nabla} \hat{N}_3 = \left(\begin{array}{c} 0 \\ 1 \end{array} \right)
\]
Integration is also performed on the reference element; we therefore have

\[
\int_K \mathbf{N}_\beta^K \mathbf{N}_\alpha^K = |\text{det} B_K| \int_{\hat{K}} \hat{\mathbf{N}}_\beta \hat{\mathbf{N}}_\alpha
\]

We’re done here since only the determinant is dependent on the current triangle and

\[
\hat{\mathbf{K}}_0 = \left[\int_{\hat{K}} \hat{\mathbf{N}}_\beta \hat{\mathbf{N}}_\alpha \right]_{\alpha,\beta} = \frac{1}{24} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}
\]

For the gradients, it is

\[
\int_K \nabla \mathbf{N}_\beta^K \cdot \nabla \mathbf{N}_\alpha^K = |\text{det} B_K| \int_{\hat{K}} (B_{-1}^{-T} \hat{\mathbf{N}}_\beta) \cdot (B_{-1}^{-T} \hat{\mathbf{N}}_\alpha)
\]

\[
= |\text{det} B_K| \int_{\hat{K}} \mathbf{C}_K \hat{\mathbf{N}}_\beta \cdot \hat{\mathbf{N}}_\alpha
\]

where

\[
\mathbf{C}_K = B_{-1}^{-1} B_{-1}^{-T} = \begin{bmatrix} c_{11}^K & c_{12}^K \\ c_{12}^K & c_{22}^K \end{bmatrix}
\]

is a symmetric 2x2 matrix that depends only on the triangle
• If we write

\[
\hat{K}_{\xi\xi} = \left[\int_K \partial_\xi \hat{N}_\beta \partial_\xi \hat{N}_\alpha \right]_{\alpha,\beta} = \frac{1}{2} \begin{bmatrix}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\hat{K}_{\eta\eta} = \left[\int_K \partial_\eta \hat{N}_\beta \partial_\eta \hat{N}_\alpha \right]_{\alpha,\beta} = \frac{1}{2} \begin{bmatrix}
1 & 0 & -1 \\
0 & 0 & 0 \\
-1 & 0 & 1 \\
\end{bmatrix}
\]

\[
\hat{K}_{\xi\eta} = \left[\int_K \partial_\xi \hat{N}_\beta \partial_\eta \hat{N}_\alpha \right]_{\alpha,\beta} = \frac{1}{2} \begin{bmatrix}
1 & 0 & -1 \\
-1 & 0 & 1 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

we finally arrive at

\[
\left[\int_K \nabla \hat{N}_\beta^K \cdot \nabla \hat{N}_\alpha^K \right]_{\alpha,\beta} = \left| \det B_K \right| (c_{11}^{K} \hat{K}_{\xi\xi} + c_{22}^{K} \hat{K}_{\eta\eta} + c_{22}^{K} (\hat{K}_{\xi\eta} + \hat{K}^T_{\xi\eta}))
\]

• Doing this calculations for all elements of the triangulation completes the assembly of the system matrix; the same has to be done for the righthand-sides (and possible boundary integrals due to Neumann - conditions...)
• Most commercially available codes contain sophisticated routines for pre-processing...
 • automated meshing with tets, quads or mixed elements
 • simple ways of local mesh refinement
 • defeaturing

• running the simulation...
 • apply boundary conditions, forces, stresses etc.
 • implicit and explicit solvers for time-evolution, stationary solver

• and post-processing the results
 • visualization of the solution(s)
 • animations and arbitrary XY-plots

• We will try to solve a simple Poisson equation with similar OpenSource tools
 • Gmsh for meshing, deal.II as FE library, VisIt for visualization
There are a couple of sophisticated OpenSource FE libraries available:

- MOOSE framework (Multiphysics Object-Oriented Software Environment)
- OpenFOAM (OpenSource Field Operation and Manipulation), mainly used for CFD
- The Fenics Project (uses Python scripting for solving PDEs)
- Agros2D (application package with GUI support for meshing and post-processing)
- libmesh (used by MOOSE under the hood)
- deal.ii (Differential Equations Analysis Library, used by Agros2D under the hood)

The former four provide an additional abstraction layer to the more low-level APIs found in libmesh and deal.ii
Demo


```cpp
// Implementation of the assemble_system member function */

void FEM_Example<dim>::assemble_system()
{
  // use Gauss quadrature with two quadrature points for every dimension
  Quadrature<dim> quadrature_formula(2);

  // get values for shape functions, their gradients, the quadrature points and transformation coefficients
  FEValues<dim> fe_values(fe, quadrature_formula, update_values | update_gradients | update_quadrature_points | update_JxW_values);

  // get number of DoFs per cell, number of quadrature points, instantiate objects for rhs and coefficient arrays etc.
  const unsigned int dofs_per_cell = fe.dofs_per_cell;
  const unsigned int n_q_points = quadrature_formula.size();

  FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
  Vector<double> cell_rhs(dofs_per_cell);

  std::vector<types::global_dof_index> local_dof_indices(dofs_per_cell);

  const RightHandSide<dim>_rhs(righthandside);

  // loop over all cells, quadrature points and DoFs to assemble the local matrices
  for (const auto &cell : dof_handler.active_cell_iterators())
  {
    fe_values.reinit(cell);
    cell_matrix = 0;
    cell_rhs = 0;

    right_handside.value_list(fe_values.get_quadrature_points(), right_handside_values);

    for (unsigned int q_point = 0; q_point < n_q_points; ++q_point)
    {
      for (unsigned int i = 0; i < dofs_per_cell; ++i)
      {
        for (unsigned int j = 0; j < dofs_per_cell; ++j)
        {
          cell_matrix(i, j) += -1.0 * fe_values.shape_grad(i, q_point) * fe_values.shape_grad(j, q_point) * fe_values.JxW(q_point);
        }
        cell_rhs(i) += fe_values.shape_value(i, q_point) * right_handside_values[q_point] * fe_values.JxW(q_point);
      }
    }

    // copy the local contributions to the global matrix and rhs
    cell->get_dof_indices(local_dof_indices);
    constraints.distribute_local_to_global(cell_matrix, cell_rhs, local_dof_indices, system_matrix, system_rhs);
  }
}
```
Demo
Demo
• Zhangxin Chen
 Finite Element Methods and Their Applications
 Springer, 2005

• Susanne C. Brenner, L. Ridgway Scott
 The Mathematical Theory of Finite Element Methods
 Springer, 2007

• J. N. Reddy
 An Introduction to the Finite Element Method
 McGraw Hill, 2006

• Dietrich Braess
 Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics
 Cambridge University Press, 2007

• Young W. Kwong, Hyochoong Bang
 The Finite Element Method using MATLAB
 CRC Press, 1996