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• Complex problems necessitate the need for a flexible and powerful computational 
technique 

• Most real problems are defined on domains that are geometrically complex and may have 
different boundary conditions on different portions of the boundary 

• It is therefore impossible to find an analytical solution; also Finite Differences (FD) are 
difficult to adapt for arbitrary geometries 

• Solution of problems in structural mechanics by known functions with unknown coefficients 
(Ritz [1909]), later refined by using nodal shape functions (Courant [1943]) 

• FEM originally developed mainly by engineers in the aerospace environment (The finite 
element method in plane stress analysis (1960), Turner, Clough, Martin, Topp [1950 - 1960]) 

• Thorough mathematical investigations and extensions during the 1960s (variational 
formulation, Argyris, Zienkiewicz, Turner, Reissner) 

• First commercial codes showed up in the 1970s (NASAs Nastran commercialized in 1971)
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Introduction

• Instead of satisfying the PDE point-by-point in the computational domain (FD approach), 
FEM (and other methods as well) uses an weighted integral formulation with test functions, 
that average the PDE globally 

• Consider as an example 

• We seek a solution of the form  

• Here, all three functions satisfy the homogeneous boundary conditions UNLESS there are 
non-homogeneous ones;  then           has to obey them as well  

• Since in this case, there’s only one non-homogeneous BC for the left boundary point, we can 
make the ansatz
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Introduction

• For           to satisfy the PDE, we need to have   

• This relation has to hold for all    , comparing powers leads to 

• These relations are inconsistent; there is no solution to this linear system at all!!  

• Instead, multiply both sides of the PDE with a weight function and integrate over the domain 

• From this, we obtain as many linearly independent  equations as there are linear 
independent weight functions. Since here we have           , let’s choose            and 
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Introduction

• This leads to 

• These are two linear equations for two unknowns with the solution 

• This is the heart of FEM; if anything, take this from the lecture: By transforming the system 
of PDEs into an averaged, weighted integral statement, derive a linear system of equations 
for the unknown expansion coefficients of your global solution 

• Even for moderately sized problems in 2D, it’s very easy to get systems with ~ 100.000 
unknowns; need for accessible and efficient framework for assembling and solving these 
systems (2nd part of the talk)

0 =

1Z

0

1 · R(x)dx = (1 + 2c1 + 3c2) +
1

2
(�6c1 � 3c2) +

1

3
(c1 � 9c2) +

1

4
c2

0 =

1Z

0

x · R(x)dx =
1

2
(1 + 2c1 + 3c2) +

1

3
(�6c1 � 3c2) +

1

4
(c1 � 9c2) +

1

5
c2

c1 =
222

23
, c2 = �

100

23



Introduction

• This leads to 

• These are two linear equations for two unknowns with the solution 

• This is the heart of FEM; if anything, take this from the lecture: By transforming the system 
of PDEs into an averaged, weighted integral statement, derive a linear system of equations 
for the unknown expansion coefficients of your global solution 

• Even for moderately sized problems in 2D, it’s very easy to get systems with ~ 100.000 
unknowns; need for accessible and efficient framework for assembling and solving these 
systems (2nd part of the talk)

0 =

1Z

0

1 · R(x)dx = (1 + 2c1 + 3c2) +
1

2
(�6c1 � 3c2) +

1

3
(c1 � 9c2) +

1

4
c2

0 =

1Z

0

x · R(x)dx =
1

2
(1 + 2c1 + 3c2) +

1

3
(�6c1 � 3c2) +

1

4
(c1 � 9c2) +

1

5
c2

c1 =
222

23
, c2 = �

100

23



Introduction

• This leads to 

• These are two linear equations for two unknowns with the solution 

• This is the heart of FEM; if anything, take this from the lecture: By transforming the system 
of PDEs into an averaged, weighted integral statement, derive a linear system of equations 
for the unknown expansion coefficients of your global solution 

• Even for moderately sized problems in 2D, it’s very easy to get systems with ~ 100.000 
unknowns; need for accessible and efficient framework for assembling and solving these 
systems (2nd part of the talk)

0 =

1Z

0

1 · R(x)dx = (1 + 2c1 + 3c2) +
1

2
(�6c1 � 3c2) +

1

3
(c1 � 9c2) +

1

4
c2

0 =

1Z

0

x · R(x)dx =
1

2
(1 + 2c1 + 3c2) +

1

3
(�6c1 � 3c2) +

1

4
(c1 � 9c2) +

1

5
c2

c1 =
222

23
, c2 = �

100

23



• Note: 

• There are (at least) three problems with this approach (Ritz method, 1908) 

• The matrix one needs to solve for the unknown expansion coefficients     typically is 
dense, so computations will be slow; even more so, if high accuracies are needed 

• For complicated PDEs, it might be very difficult to find basis functions that 
automatically satisfy the imposed boundary conditions 

• It is not clear, how to choose the weighting functions for the integration; different 
choices will naturally lead to different coefficients     (you need ALL of them in a sense) 

• All these issues are remedied by a proper formulation of the Finite Element Method; in 
particular 

• it will lead to a linear system with sparse matrices (so very efficient algorithms for 
solving these type of systems can be employed) 

• very simple basis functions are used; boundary conditions are transparently encoded 
in the integral statements as well 

• the very same functions are used as basis for the weights in the FE-formulation  
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• There are various reasons for using an integral version of the PDE 

• even for smooth initial data, PDEs may exhibit discontinuous behaviour 

• discontinuous source functions or irregular domains also lead to non-classical solutions 

• Consider as prototype example the Poisson equation                in an open domain   

• a classical solution has continuous second derivatives in the interior (                 ) and is 
continuous up to the boundary (                 ) 

• If the source function is discontinuous (e.g. weight placed on parts of a membrane), then 

• The same happens for so-called re-entrant corners in a non-convex domain
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Mathematical Description/Numerical Implementation

• Our model problem is 

• Multiply with test function, integrate and use Green’s identity 

• Impose           on       and search for solutions                    such that

Lesson 1

Linear triangular elements

1 The model problem

All along this course we will be working with a simple model boundary value problem,
which will allow us to put the emphasis on the numerical method rather than on the
intricacies of the problem itself. For some of the exercises and in forthcoming lessons we
will complicate things a little bit.

In this initial section there is going to be a lot of new stuÆ. Take your time to read it
carefully, because we will be using this material during the entire course.

1.1 The physical domain

The first thing we have to describe is the geometry (the physical setting of the problem).
You have a sketch of it in Figure 1.1.

Ω

ΓD
ΓN

Figure 1.1: The domain ≠ and the Dirichlet and Neumann boundaries

We are thus given a polygon in the plane R2. We call this polygon ≠. Its boundary
is a closed polygonal curve °. (There is not much diÆerence if we suppose that there is
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• By reducing the smoothness of the solution variable required by the weak formulation        
(i.e.            instead of           ), we can get a weak solution, that is not smooth enough to be a 
classical solution 

• One even extends the admissible function space to include            - functions as well via so-
called weak derivatives: 

• for                    , the partial integration relation in 1D reads 

• idea: use this as the definition for the weak derivative of  

• we call            the weak derivative of    , if  

• This means, differentiation is also defined via integration over test functions 

• Advantage: functions, that are classically not differentiable nevertheless are weakly 
differentiable, e.g. 

Mathematical Description/Numerical Implementation
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• Similar definitions for weak derivatives exist for all differential operators, e.g. div, rot etc.; 
these are used for computational electrodynamics for example 

• example: a function                            is called weak divergence of                  , if for any 
function      

• The test space                                                               with weak derivatives and equipped with 

Mathematical Description/Numerical Implementation
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• Now keep in mind that the so defined function- and test-spaces             and              are infinite-
dimensional vector spaces (the latter being a proper sub-vectorspace of the former) 

• This makes it difficult for a direct numerical implementation of the weak formulation 
(computers can’t handle infinities very well…) 

• We need to restrict ourselves (and set up) a convenient, finite-dimensional version of the two 
different Sobolev-spaces involved here 

• These surrogates, being finite-dimensional vector-spaces, therefore feature a finite basis as 
well 

• The weak formulation can then be recast in terms of a cleverly chosen basis („hat-functions“) 

• This leads to a linear system of equations for the approximate solution of the PDE within the 
particular function space 

• An obvious question then is: How well does this approximation represent the true solution of 
the original problem (existence and uniqueness, convergence behavior, refinement, etc.) 

• We’re not going to delve into this; see literature list at the end of this talk 

Mathematical Description/Numerical Implementation
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Mathematical Description/Numerical Implementation

• In order to solve our test problem numerically, we need to discretize the physical domain 
(triangulation), the function space (finite elements) and the weak formulation (assembly) 

• A triangulation      of      is a subdivision of this domain into triangles, so that 

• if two triangles have some intersection, it is either on a common vertex or a 
common full edge. In particular, two triangles do not overlap 

• the triangulation has to respect the partition of the boundary into Dirichlet and 
Neumann boundary

Th ⌦

Figure 1.5: A triangulation of ≠

K K’

x1

x2

Figure 1.6: Two triangles with a common edge

There is a particularly interesting aspect of this basis of Vh that makes it especial. In
general if you have a basis of Vh you know that you can decompose elements of Vh as a
unique linear combination of the elements of the basis, that is,

uh =
NX

j=1

uj 'j

is a general element of Vh. With this basis, the coe±cients are precisely the values of uh

on the nodes, that is, uj = uh(pj). Hence, the coe±cients of uh in this basis are something
more than coe±cients: there are values of the function on points.

An important result. As you can see, when defining the space Vh we have just glued
together P1 functions on triangles. Thanks to the way we have made the triangulation
and to the way we chose the local degrees of freedom, what we obtained was a continuous
function. One can think, is this so important? Could I take something discontinuous? At
this level, the answer is a very load and clear NO! The reason is the following result that
allows us to know whether certain functions are in H

1(≠) or not.

Theorem. Let uh be a function defined on a triangulation of ≠ such that

14

Figure 1.3: Situations not admitted in triangulations. In the second one we see the
appearance of what is called a hanging node.

2.3 Piecewise linear functions on a triangulation

We now turn our attention to functions defined on the whole of the polygon ≠ that has
been triangulated as shown before.

Consider first two triangles sharing a common edge, say K and K
0 (see Figure 1.6).

We take values at the four vertices of this figure and build a function that belongs to P1

on each of the triangles and has the required values on the vertices. Obviously we can
define a unique function with this property. Moreover, since the value on the common
edge depends only on the values on the two common vertices, the resulting function is
continuous.

We can do this triangle by triangle. We end up with a function that is linear on each
triangle and globally continuous. The space of such functions is

Vh =
n

uh 2 C(≠)
ØØØ uh|K 2 P1, 8K 2 Th

o
.

If we fix values on the set of vertices of the triangulation Th, there exists a unique uh 2 Vh

with those values on the vertices. Therefore an element of Vh is uniquely determined by
its values on the set of vertices of the triangulation. The values on the vertices of the
whole triangulation are the degrees of freedom that determine an element of Vh. In this
context we will call nodes to the vertices in their role as points where we take values.
(Note that in forthcoming lessons there will be other nodes in addition to vertices).

Elements of the space Vh are called linear finite element functions or simply P1 finite
elements.

Let us take now a numbering of the set of nodes (that is, vertices) of the triangulation.
At this moment any numbering goes2. In Figure 1.7 we have a numbering of the nodes of
the triangulation of our model domain. The vertices will be generically denoted pi with
i varying from one to the number of vertices, which we call N .

2And in many instances this will be so to the end of the discretization process. Using one numbering
or another has a great influence on the shape of the linear section we will obtain in Section 3, but this
shape is relevant only for some choices of the method to solve the corresponding linear system

12

Γ N

Γ D

Figure 1.4: A forbidden transition of Dirichlet to Neumann boundary conditions happen-
ing inside an edge. Graphical notation for Dirichlet a Neumann boundaries as shown in
many Mechanics books are give in the graph

Because of what we have explained above, if we fix one node (vertex) and associate
the value one to this node and zero to all others, there exists a unique function 'i 2 Vh

that has these values, that is,

'i(pj) = ±ij =

Ω
1, j = i,

0, j 6= i.

The aspect of one of these functions is shown in Figure 1.8.
Notice that if a triangle K has not pi as one of its vertices, 'i vanishes all over K,

since the value of 'i on the three vertices of K is zero. Therefore, the support of 'i (the
closure of the set of points where 'i is not zero) is the same as the union of triangles that
share pi as vertex. In Figure 1.9 you can see the type of supports you can find.

There is even more. Take uh 2 Vh. It is simple to see that

uh =
NX

j=1

uh(pj)'j.

Why? Let me explain. Take the function
PN

j=1 uh(pj)'j and evaluate it in pi: you obtain

NX

j=1

uh(pj)'j(pi) =
NX

j=1

uh(pj)±ji = uh(pi).

Therefore, this function has exactly the same nodal values as uh and must be uh. The
fact that two functions of Vh with the same nodal values are the same function is the
linear independence of the nodal functions {'i}. What we have proved is the fact that
{'i | i = 1, . . . , N} is a basis of Vh and therefore

dim Vh = N = #{vertices}.

13
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Mathematical Description/Numerical Implementation

• Consider bi-linear functions on one of these triangles 

• They are uniquely determined by 

• either from its three defining coefficients 

• or from its values on the three vertices of a triangle K 

• in particular, the value of             on any edge of the triangle depends only on the 
values of    at the two attached vertices 

• Two piecewise linear functions on triangles sharing a common edge can be continuously 
glued together. Do this globally and arrive at the      - finite element space 

• Any element of this space is uniquely determined by its values on the nodes of the 
triangulation (here, nodes = vertices) 

• This space will serve as finite-dimensional surrogate for the function space  

p 2 P1 = {a0 + a1x1 + a2x2 | a0, a1, a2 2 R}

p 2 P1
p

2

3

1

K

Figure 1.2: A triangle and its three vertices

• or from its values on the three vertices of a triangle K.

Both possibilities state that the space P1 is a vector space of dimension three. While the
first choice (coe±cients) gives us a simple expression of the function, the second is more
useful for many tasks, in particular for drawing the function. The three values of the
function on the vertices will be called the local degrees of freedom.

There is another important property that will be extremely useful in the sequel: the
value of p 2 P1 on the edge that joins two vertices of the triangle depends only on the
values of p on this two vertices. In other words, the value of p 2 P1 on an edge is uniquely
determined by the degrees of freedom associated to the edge, namely, the values of p on
the two vertices that lie on that edge.

2.2 Triangulations

So far we have functions on a single triangle. Now we go for partitions of the domain into
triangles. A triangulation of ≠ is a subdivision of this domain into triangles. Triangles
must cover all ≠ but no more and must fulfill the following rule:

If two triangles have some intersection, it is either on common vertex or a
common full edge. In particular, two diÆerent triangles do not overlap.

Figure 1.3 shows two forbidden configurations. See Figure 1.5 to see how a triangulation
looks like. There is another rule, related to the partition of ° into °D and °N :

The triangulation must respect the partition of the boundary into Dirichlet and
Neumann boundaries.

This means that an edge of a triangle that lies on ° cannot be part Dirichlet and part
Neumann. Therefore if there is a transition from Dirichlet to Neumann boundaries, there
must be a vertex of a triangle in that transition point. Note that this situation has to be
taken into account only when there is a transition from Dirichlet to Neumann conditions
inside a side of the polygon ≠.

The set of the triangles (that is, the list thereof) will be generally denoted Th. The
subindex h makes reference to the diameter of the triangulation, defined as the length
of the longest edge of all triangles, that is, the longest distance between vertices of the
triangulation.

11
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• Remark: There is a whole ‚zoo‘ of tailor-made elements  (Periodic Table of Finite Elements)

Mathematical Description/Numerical Implementation



Mathematical Description/Numerical Implementation

• Let’s denote the nodes with                                                 . For a fixed node, consider the 
unique function  

• Now take any             ; it is easy to see (why?) that 

• Therefore                              is a basis of      and  

• It’s even a very special basis, since the expansion coefficients are values of the function on 
nodes

'i(pj) = �i j =

(
1, j = i

0, j 6= i

7
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5

2

3
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1

17

16

1511

14

18

Figure 1.7: Global numbering of nodes

Figure 1.8: The graph of a nodal basis function: it looks like a camping tent.

restricted to each triangle it is a polynomial (or smooth) function. Then

uh 2 H
1(≠) () uh is continuous.

There is certain intuition to be had on why this result is true. If you take a derivative of a
piecewise smooth function, you obtain Dirac distributions along the lines where there are
discontinuities. Dirac distributions are not functions and it does not make sense to see if
the are square–integrable or not. Therefore, if there are discontinuities, the function fails
to have a square–integrable gradient.

2.4 Dirichlet nodes

So far we have taken into account the discrete version of the domain ≠ but not the partition
of its boundary ° into Dirichlet and Neumann sides. We first need some terminology. A
Dirichlet edge is an edge of a triangle that lies on °D. Similarly a Neumann edge is an
edge of a triangle that is contained in °N . The vertices of the Dirichlet edges are called
Dirichlet nodes. Notice that the doubt may arise in transitions from the Dirichlet to
the Neumann part of the boundary. If a node belongs to both °N and °D it is a Dirichlet
node.
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Mathematical Description/Numerical Implementation

• The boundary needs a separate treatment 

• a Dirichlet edge is an edge of a triangle that lies on      ; its vertices are the Dirichlet nodes 

• a Neumann edge is an edge of a triangle that is contained in  

• if a node belongs to      and      , its a Dirichlet node 

• The finite element representation of              is 

•                if and only if it vanishes on all Dirichlet nodes (why?). Can we find a basis for       ?  

• If we separate the number of nodes into free/independent nodes and Dirichlet nodes, a basis of                                
m    is given by (why?) 

• This proves that

�D

�D

�N

�N

Figure 1.9: Supports of two nodal basis functions

Figure 1.10: Dirichlet nodes corresponding to the domain as depicted in Figure 1.1

In truth, in parallel to what happens with how the Dirichlet and Neumann boundary
conditions are treated in the weak formulation, we will inherit two diÆerent discrete
entities:

• Dirichlet nodes, and

• Neumann edges.

Let us now recall the space

H
1
°D

(≠) = {v 2 H
1(≠) | v = 0 on °D}.

We might be interested in the space

V
°D
h = Vh \H

1
°D

(≠) = {vh 2 Vh | vh = 0, on °D}.
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Mathematical Description/Numerical Implementation

• After all these preliminaries, we’re finally able to derive the FEM-version of our model 
problem. Recall, that our objective is to 

• find                  , such that 

•  The associated discrete problem is then given by 

• find             , such that 

• This means especially 

• we look for solutions in the finite-dimensional FE-space instead of the whole 
(infinite-dimensional) Sobolev space (                                          ) 

• the values on Dirichlet nodes are already fixed (only             unknowns) 

• testing space is reduced to         (and                               )
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g1vh 8vh 2 V �Dh

dim V �Dh = #{Ind}V �Dh

#{Ind}
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Mathematical Description/Numerical Implementation

• Since we know a basis for        , this is equivalent to  

• Next, let’s write 

• Taking the gradient, inserting and rearranging the Dirichlet-data to the right leads to 

• This represents a matrix-vector equation which can be inverted to solve for the               
unknowns  

• Of course, the matrix- and righthand side-entries need to be computed numerically (assembly)
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Mathematical Description/Numerical Implementation

• Consider for example the matrix contributions (RHS works similar) 

• In theory, the indices      run over all independent nodes, but 

• due to the special form of our nodal basis functions, only basis functions 
corresponding to the nodes of the triangle contribute (why?) 

• the matrices              therefore only have 9 entries in total, on positions depending 
on the global numbering of the nodes 

• all these local contributions from the various cells need to be assembled to the 
global system matrix and righthand-side 

• This leads to a sparse linear system, which is the reason why it is possible to solve problems 
with millions/billions of unknowns (use CG for example)

Introduction Applications Weighted Residuals Finite Elements Essential BCs Complex Problems Adaptivity
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Mathematical Description/Numerical Implementation

• For efficient evaluation of the nodal basis functions and their gradients (and also to 
increase performance and accuracy), all calculations are performed on a reference cell 

• The Jacobian of the map          is   

• We then have for example 

• The gradients are more tricky… 

• The integrals are numerically evaluated using Gauss quadrature with quadrature points     
and weights     , e.g.   

Introduction Applications Weighted Residuals Finite Elements Essential BCs Complex Problems Adaptivity

The integrals are performed on a “reference” element
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Mathematical Description/Numerical Implementation

• Want to do it from scratch? How does the assembly process might look like for      - elements? 

• Take as an example  

• For each triangle, assign a number to its vertices  

• Consider the three functions                                    with  

• Let      be the global node number of the local node with number     of the triangle    . Then 

• This allows us to compute 

• The global matrix is then assembled by all sub-matrices 
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Figure 2.3: The 14th triangle and their vertex numberings

The assembly process requires then a given numbering of triangles as shown in Figure
2.2. The order of this numbering is only used to do the computations but does not modify
the shape of the final result.

The process to assemble the mass matrix is the same. EÆective assembly of the mass
and stiÆness matrices can be done at the same time. Instead of computing separately the
matrix K

K and a similar one for the mass matrix, we can directly try to compute the
3£ 3 matrix with elements
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Mathematical Description/Numerical Implementation

• As previously described, use reference elements to do the calculations. For triangles, it is 

• The functions                         are given by 

• For the triangle     with                                                                        , we have the bijective 
affine transformation 

• It is easy to show, that 

• Furthermore 

• Since the inverse affine transformation is straightforward to compute, this is a simple way of 
evaluating the functions        needed for the FE-integrals

1.2 The reference element

To compute the elements
Z

K

rN
K
Ø ·rN

K
Æ and

Z

K

N
K
Ø N

K
Æ

we need: (a) either and eÆective way of evaluating the functions N
K
Æ and their gradients;

(b) or a closed form for the resulting integrals. Both possibilities are done usually by
moving to the so–called reference element.

For triangles, the reference element is the triangle with vertices

bp1 = (0, 0), bp2 = (1, 0), bp3 = (0, 1).

To distinguish variables in the reference element and in a general triangle (in this context

K̂

1

3

2

Figure 2.4: The reference element

we say a physical element) it is customary to use the variables (ª, ¥) in the reference
element and (x, y) in the physical element. In the mathematical literature for FEM it is
also usual to hat variables in the reference element, so that (x̂, ŷ) would be used to denote
coordinates in the reference configuration.

An unimportant detail. Some people prefer to use a diÆerent reference triangle, with
the same shape but with vertices on (°1,°1), (1,°1) and (°1, 1). Some details of the
forthcoming computations have to be adapted if this choice is taken.

The local nodal functions in the reference triangles are three P1 functions satisfying

bNÆ(bpØ) = ±ÆØ, Æ, Ø = 1, 2, 3.

These functions are precisely

bN1 = 1° ª ° ¥, bN2 = ª, bN3 = ¥

or, if you prefer hatting variables (this is the last time we will write both expressions)

bN1 = 1° bx° by, bN2 = bx, bN3 = by
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Mathematical Description/Numerical Implementation

• Evaluating gradients needs more care, since one has to use the chain rule 

• For                         and                       , it is for an arbitrary function  

• Here, we have  

• Luckily, for this elementary method here, the gradients are constant vectors
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Mathematical Description/Numerical Implementation

• Integration is also performed on the reference element; we therefore have  

• We’re done here since only the determinant is dependent on the current triangle and 

• For the gradients, it is
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Mathematical Description/Numerical Implementation

• If we write 

• Doing this calculations for all elements of the triangulation completes the assembly of the 
system matrix; the same has to be done for the righthand-sides (and possible boundary 
integrals due to Neumann - conditions…)
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• Most commercially available codes contain sophisticated routines for          
pre-processing… 

• automated meshing with tets, quads or mixed elements 

• simple ways of local mesh refinement 

• defeaturing 

• running the simulation… 

• apply boundary conditions, forces, stresses etc. 

• implicit and explicit solvers for time-evolution, stationary solver 

• and post-processing the results 

• visualization of the solution(s) 

• animations and arbitrary XY-plots 

• We will try to solve a simple Poisson equation with similar OpenSource tools 

• Gmsh for meshing, deal.II as FE library, VisIt for visualization

Demo



Demo

• There are a couple of sophisticated OpenSource FE libraries available: 

• MOOSE framework (Multiphysics Object-Oriented Software Environment) 

• OpenFOAM (OpenSource Field Operation and Manipulation), mainly used for CFD 

• The Fenics Project (uses Python scripting for solving PDEs) 

• Agros2D (application package with GUI support for meshing and post-processing) 

• libmesh (used by MOOSE under the hood) 

• deal.ii (Differential Equations Analysis Library, used by Agros2D under the hood) 

• The former four provide an additional abstraction layer to the more low-level APIs found in 
libmesh and deal.ii
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