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Mathematical Description/Numerical Implementation for Linear

Elements on Triangular Meshes

Solving a Simple PDE on an Irregular Domain in 2D/3D - Demo



Introduction

Complex problems necessitate the need for a flexible and powerful computational

technique

Most real problems are defined on domains that are geometrically complex and may have
different boundary conditions on different portions of the boundary

It is therefore impossible to find an analytical solution; also Finite Differences (FD) are

difficult to adapt for arbitrary geometries

Solution of problems in structural mechanics by known functions with unknown coefficients
(Ritz [1909]), later refined by using nodal shape functions (Courant [1943])

FEM originally developed mainly by engineers in the aerospace environment (The finite
element method in plane stress analysis (1960), Turner, Clough, Martin, Topp [1950 - 1960])

Thorough mathematical investigations and extensions during the 1960s (variational
formulation, Argyris, Zienkiewicz, Turner, Reissner)

First commercial codes showed up in the 1970s (NASAs Nastran commercialized in 1971)
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Introduction

Instead of satisfying the PDE point-by-point in the computational domain (FD approach),
FEM (and other methods as well) uses an weighted integral formulation with test functions,
that average the PDE globally

“dx \Mdx

u(0) =1, <><%>X:1 =0

: d d
Consider as an example ( U) L u=0. 0<x<1

We seek a solution of the form 2

Un = Go(x) + do(x)

J=1

Here, all three functions satisfy the homogeneous boundary conditions UNLESS there are
non-homogeneous ones; then ¢o(x) has to obey them as well

Since in this case, there’s only one non-homogeneous BC for the left boundary point, we can
make the ansatz

Uy = c1py + oo + o With ¢o = 1, P1(x) = x> — 2x, ¢o(x) = x> — 3x
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For U>(x) to satisfy the PDE, we need to have
dU- d?Us

X U, = —2c(x—1)—=3c(x*—1)—2cx —6cx°

+c(x? —2x) + (x> =3x) +1 =0

This relation has to hold for all x, comparing powers leads to

1+2+3c = 0
—6Cc; — 36 0
c1 — 9 0

o = 0

These relations are inconsistent; there is no solution to this linear system at all!!

Instead, multiply both sides of the PDE with a weight function and integrate over the domain

1

. dU, d?U
/W(X)R(X)dx =0 with R(x) = o X2 + Us
0

From this, we obtain as many linearly independent equations as there are linear

independent weight functions. Since here we have N = 2, let's choosew =1 and w = x
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This leads to

1
1 1 1
0 = /1-R(X)dX:(1—|—2C1—|—3C2)—|—§(—6C1—3C2)—|—§(C1—9C2)—|—ZC2
0
1
1 1 1 1
0 = /X'R(X)dX:5(1+2C1—|—3C2)—|—§(—6C1—3C2)—|—Z(C1—9C2)—|—5C2
0

These are two linear equations for two unknowns with the solution

o222 100
L= 23" 27 23

This is the heart of FEM; if anything, take this from the lecture: By transforming the system

of PDEs into an averaged, weighted integral statement, derive a linear system of equations
for the unknown expansion coefficients of your global solution

Even for moderately sized problems in 2D, it's very easy to get systems with ~ 100.000
unknowns; need for accessible and efficient framework for assembling and solving these
systems (2nd part of the talk)
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Note:

- There are (at least) three problems with this approach (Ritz method, 1908)

- The matrix one needs to solve for the unknown expansion coefficients ¢; typically is

dense, so computations will be slow; even more so, if high accuracies are needed

For complicated PDEs, it might be very difficult to find basis functions that

automatically satisfy the imposed boundary conditions

It is not clear, how to choose the weighting functions for the integration; different
choices will naturally lead to different coefficients ¢; (you need ALL of them in a sense)

- All these issues are remedied by a proper formulation of the Finite Element Method; in
particular

- it will lead to a linear system with sparse matrices (so very efficient algorithms for

solving these type of systems can be employed)

- very simple basis functions are used; boundary conditions are transparently encoded

in the integral statements as well

- the very same functions are used as basis for the weights in the FE-formulation
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There are various reasons for using an integral version of the PDE

even for smooth initial data, PDEs may exhibit discontinuous behaviour
discontinuous source functions or irregular domains also lead to non-classical solutions

Consider as prototype example the Poisson equation Vu = f in an open domain Q

a classical solution has continuous second derivatives in the interior (v € C*(Q)) and is

continuous up to the boundary (v € C°(Q))

If the source function is discontinuous (e.g. weight placed on parts of a membrane), then v ¢ C?(Q)

The same happens for so-called re-entrant corners in a non-convex domain
20 + 77)
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Mathematical Description/Numerical Implementation

Our model problem is

—Au+cu=f In Q
u=4go onlp

0,u =gy on [y

Multiply with test function, integrate and use Green's identity

/Q(AU)V—I—/QVUVV:/I_((%U)V: rD(@nu)er (Onu)v

Y

Impose v =0on I'p and search for solutions u € HY(Q) such that

uUu=4go onlp

/Vqu+c/uv:/fv+/ g1V VVEH}D(Q)
Q Q Q My

(weak formulation)

ou Ou
8X1 , c’9x2

HY Q) = {u € L2(Q)

@) HE,(@) = {v € H'(@)|v =0 on o)



Mathematical Description/Numerical Implementation
Our model problem is

—Au+cu=f In Q

u=go on Ip essential BC
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Mathematical Description/Numerical Implementation

By reducing the smoothness of the solution variable required by the weak formulation
(i.e. C1(Q) instead of C%(Q)), we can get a weak solution, that is not smooth enough to be a

classical solution

One even extends the admissible function space to include C°(Q) - functions as well via so-

called weak derivatives:

- for v € C3°(Q2), the partial integration relation in 1D reads

/u’v=—/uv’
Q Q

- Idea: use this as the definition for the weak derivative of u

- we call oxul, the weak derivative of u, if
/ O Uy v = —/ uv' Vv e Cg°(Q)
Q Q

This means, differentiation is also defined via integration over test functions

Advantage: functions, that are classically not differentiable nevertheless are weakly

differentiable, e.g. u(x) = |x]|



Mathematical Description/Numerical Implementation

Similar definitions for weak derivatives exist for all differential operators, e.g. div, rot etc,;

these are used for computational electrodynamics for example

- example: a function V - ul,, € L?(Q) is called weak divergence of u € L*(Q), if for any

function v € C§°(Q)
/V-ulwv:—/u-Vv
Q Q

(hint: use Gauss' theorem)

The test space Hf_(2) = {v e H(Q)|v =0 onp} with weak derivatives and equipped with

(u,v) = /Q(qurVu-Vv) dx

Is a special Hilbert space, a so-called Sobolev space



Mathematical Description/Numerical Implementation

Now keep in mind that the so defined function- and test-spaces H'(Q) and H; () are infinite-

dimensional vector spaces (the latter being a proper sub-vectorspace of the former)

This makes it difficult for a direct numerical implementation of the weak formulation

(computers can’t handle infinities very well...)

We need to restrict ourselves (and set up) a convenient, finite-dimensional version of the two

different Sobolev-spaces involved here

These surrogates, being finite-dimensional vector-spaces, therefore feature a finite basis as

well
- The weak formulation can then be recast in terms of a cleverly chosen basis (,hat-functions”)

- This leads to a linear system of equations for the approximate solution of the PDE within the

particular function space

An obvious question then is: How well does this approximation represent the true solution of
the original problem (existence and uniqueness, convergence behavior, refinement, etc.)

- We're not going to delve into this; see literature list at the end of this talk



Mathematical Description/Numerical Implementation

In order to solve our test problem numerically, we need to discretize the physical domain
(triangulation), the function space (finite elements) and the weak formulation (assembly)

A triangulation 7, of 2 is a subdivision of this domain into triangles, so that

If two triangles have some intersection, it is either on a common vertex or a

common full edge. In particular, two triangles do not overlap

the triangulation has to respect the partition of the boundary into Dirichlet and

Neumann boundary

valid triangulation hanging nodes Improper partitioning



Mathematical Description/Numerical Implementation

Consider bi-linear functions on one of these triangles 3
pePy={ap+aixy+ axxx|ag, a1, a» € R}
They are uniquely determined by 2
either from its three defining coefficients .
or from its values on the three vertices of a triangle K

In particular, the value of p € P; on any edge of the triangle depends only on the

values of p at the two attached vertices

Two piecewise linear functions on triangles sharing a common edge can be continuously
glued together. Do this globally and arrive at the P; - finite element space X,

Vi, = {Uh ECO(Q) ’ Uh|K ePi VK € 777}

X1
Any element of this space is uniquely determined by its values on the nodes of the

triangulation (here, nodes = vertices)

This space will serve as finite-dimensional surrogate for the function space H'(Q)



Mathematical Description/Numerical Implementation

Remark: There is a whole ,zoo’ of tailor-made elements (Periodic Table of Finite Elements)

n=2 r=1

n=3 r=1




Mathematical Description/Numerical Implementation

Let's denote the nodes with p; , j = 1... N = #{vertices}. For a fixed node, consider the

unique function
1=
0, JF#I

i(p;) = 0;j = {

- =Y

Now take any u, € V4; it is easy to see (why?) that

N
Up = Z un(pj) @,
j=1

Therefore {y; |/ =1...N} is a basis of V}, and

dimV, = N = #{vertices}

It's even a very special basis, since the expansion coefficients are values of the function on

nodes
N

up =y = Gp; with ¢ = up(p))
j=1



Mathematical Description/Numerical Implementation

The boundary needs a separate treatment

a Dirichlet edge is an edge of a triangle that lies on I p; its vertices are the Dirichlet nodes

a Neumann edge is an edge of a triangle that is contained in Iy

S
L

if a node belongsto [ pand Iy, its a Dirichlet node

The finite element representation of Hf_ () is

V,° =V, N HE, ={vn€Vy|vy=00nTp}

vy € V, 2 if and only if it vanishes on all Dirichlet nodes (why?). Can we find a basis for V, °?

If we separate the number of nodes into free/independent nodes and Dirichlet nodes, a basis of
V/ ® is given by (why?)

Vh = ) vipj . with v; = vi(p))
J€Ind

This proves that

dim VhrD = #{Ind} = #{nodes} — #{Dirichlet nodes}



Mathematical Description/Numerical Implementation

After all these preliminaries, we're finally able to derive the FEM-version of our model

problem. Recall, that our objective is to

find v € HY(Q), such that

u=4go onlp
/Vqu+c/uv:/fv+/ g1V VVEH}D(Q)
Q Q Q My

The associated discrete problem is then given by

find uy € V}, such that
up(pj) = go(p;) V J € Dir

/Vuthh+C/uhvh:/ fvh+/ J1Vh VthVhrD
Q Q Q Y

This means especially

we look for solutions in the finite-dimensional FE-space instead of the whole

(infinite-dimensional) Sobolev space (dimVj, = N = #{vertices})
the values on Dirichlet nodes are already fixed (only #{Ind}unknowns)

testing space is reduced to V, ° (and dimV, ® = #{Ind})



Mathematical Description/Numerical Implementation

Since we know a basis for V, ?, this is equivalent to
/ VupVo; + C/ Upp; = / f; —I—/ gi1p; Vi e lInd
Q Q Q Y

Next, let's write

Up = Z Ujpj + Z Uujp;

j€ind j € Dir
=) uoi+ > 9P
J € Ind J € Dir

Taking the gradient, inserting and rearranging the Dirichlet-data to the right leads to

> (/ V(PJVQOi+C/(Pj(Pi) uJ-:/ fw,-+/ 910,
Q Q Q Y

Jj€lInd
— E (/ VQOJVW/+C/(PJ(P/> go(p;)
Q Q

J € Dir

This represents a matrix-vector equation which can be inverted to solve for the #{Ind}

unknowns u;

Of course, the matrix- and righthand side-entries need to be computed numerically (assembly)



Mathematical Description/Numerical Implementation

Consider for example the matrix contributions (RHS works similar)

WU:/QVW/V%: Z /KVgo,-ij: Z Wlf

KeTh KeTh

m,-j=/9<p,-<pj= Z/Kw/wj= > my

KeTh KeTh

In theory, the indices /,j run over all independent nodes, but

due to the special form of our nodal basis functions, only basis functions

corresponding to the nodes of the triangle contribute (why?)

the matrices w;;, m; therefore only have 9 entries in total, on positions depending

on the global numbering of the nodes

all these local contributions from the various cells need to be assembled to the

global system matrix and righthand-side

This leads to a sparse linear system, which is the reason why it is possible to solve problems

with millions/billions of unknowns (use CG for example)



Mathematical Description/Numerical Implementation

In theory, the indice

due to the s ;1s functions
correspondi
the matrice: positions depending

on the globi e

all these loc » assembled to the

global syste

-40000

2 L] 1 1 1
0 10000 20000 30000 40000

This leads to a sparse linear system, which is the reason why it is possible to solve problems

with millions/billions of unknowns (use CG for example)



Mathematical Description/Numerical Implementation

For efficient evaluation of the nodal basis functions and their gradients (and also to

increase performance and accuracy), all calculations are performed on a reference cell

The Jacobian of the map x(§) is J & k@ °E

We then have for example

/ Fior dx = / F(€)i(6) | det J| dé
K K

/ pip; dx = / 2i(6)0;(6)|det J| de
K K

The gradients are more tricky...

[ Voo ax= [ 06,07 gl ] de
K

A~

K

The integrals are numerically evaluated using Gauss quadrature with quadrature points &,

and weights w,, e.g.

N
[ F©0©)ldet S| de = > F(E)i(ee) det J(Eo) we

K



Mathematical Description/Numerical Implementation

Want to do it from scratch? How does the assembly process might look like for P; - elements?

14
10

Take as an example W,-J-:/Vw,-ij /V(p,V(pJ dowlk 6 NERNE
{2 KeTh

KeTh 16
) 5|51 | 7 12 | [14 18
| allE 5
For each triangle, assign a number to its vertices pX , pX , p& 8 -
U g
: : K K K : ’ 3
Consider the three functions Ny, N, , N3 € P; with
NE (pf) =0ap .0=1,2,3 2

1

Let ny be the global node number of the local node with number o of the triangle K. Then
Nolf — ®p, ON K
This allows us to compute

aﬁ_/VNK V5 i”ﬁ a,pf =123

The global matrix is then assembled by all sub-matrices W = Z WX
KeTh



Mathematical Description/Numerical Implementation

As previously described, use reference elements to do the calculations. For triangles, it is

®
p1 =(0,0), p2=(1,0), p3 =(0,1)
The functions N, (fg) = dag are given by \
Ny=1—-€—-m, No=¢, N3=n O
O,

For the triangle K with p¥ = (x1,y1) . 5 = (X2, y2) . Ps = (X3, y3), we have the bijective
affine transformation Fx : (£, 1) — (x,y)

()= () ()
Yy e 30 n Y1

\ J
-~

Bk

It is easy to show, that
Fk(Po) =Po, =1,2,3

Furthermore
Ny =NEoFx, a=1,273

NE=RyoFcl, a=1,2,3 ie. NS(x,y) = No(Fl(x,y))

Since the inverse affine transformation is straightforward to compute, this is a simple way of
evaluating the functions N2 needed for the FE-integrals

@D



Mathematical Description/Numerical Implementation

Evaluating gradients needs more care, since one has to use the chain rule

For V = ( g ) and V = ( : ), it is for an arbitrary function ¢

Bi (Vo Fi) =V (¢o Fk)
or (with ¢ = N%)
VNE =BT ((VNy) o Fet)
Here, we have

_ 1 Y3 —W —(Y2—Y1)
detByk —(X2 — X1) X2 — X1

B
with
detBx = (0 —x1)(y3 —y1) — (V2 — 1) (X3 — x1)

Luckily, for this elementary method here, the gradients are constant vectors

A —1 PN 1 PN 0
on-(4) - (3) o (2)

>

@D



Mathematical Description/Numerical Implementation

Integration is also performed on the reference element; we therefore have

/N§N§:|detBK|/ N Ne
K K

We're done here since only the determinant is dependent on the current triangle and

== N
=N =
N — =

A N A 1
Ko = [/ NgN ] = —
e o a8 24

For the gradients, it Is

/V/v[;-w\/;f = detBK/
K

= |detByk /ACNN[B-@/Y/Q

where

cK K
C' _B—lB—T_ 11 12
K — Pk Pk — K ek

12 22

Is a symmetric 2x2 matrix that depends only on the triangle



Mathematical Description/Numerical Implementation

If we write
[T -1 0
Kee = [ ) O¢ N3 85/\/04] = 5 —1 1 O
o5 0 0O O
1 1 0 -1
Kpn = U OnNp anma] =50 0 0
K B -1 0 1
1 0 -1
Ken = U aglvﬁan/\/a] =5|-1 0 1
K o8 O 0 O

we finally arrive at

UK VNS - V/vo’f] = |detBk| (cfiKee + 5Ky + +ci5 (Key + KL))
a.B

Doing this calculations for all elements of the triangulation completes the assembly of the

system matrix; the same has to be done for the righthand-sides (and possible boundary
integrals due to Neumann - conditions...)



Demo

Most commercially available codes contain sophisticated routines for
pre-processing...

automated meshing with tets, quads or mixed elements

T

()

VAV
RN

simple ways of local mesh refinement

%
]

\/\
4

A/
/\/\

N
s

AANS
‘)./" \

defeaturing

V

==

lé

b

d //
Ay
e

running the simulation...

apply boundary conditions, forces, stresses etc.

implicit and explicit solvers for time-evolution, stationary solver

and post-processing the results

visualization of the solution(s)

animations and arbitrary XY-plots

We will try to solve a simple Poisson equation with similar OpenSource tools

Gmsh for meshing, deal.ll as FE library, Vislt for visualization



Demo

There are a couple of sophisticated OpenSource FE libraries available:
- MOOSE framework (Multiphysics Object-Oriented Software Environment)
M MOOSE
- OpenFOAM (OpenSource Field Operation and Manipulation), mainly used for CFD
OpenVFOAM

- The Fenics Project (uses Python scripting for solving PDEs)

, -
& Fenics
PROJECT

- Agros2D (application package with GUI support for meshing and post-processing)

(7 AGROS 2D

- libmesh (used by MOOSE under the hood)

- deal.ii (Differential Equations Analysis Library, used by Agros2D under the hood)

&2 deal.Il

The former four provide an additional abstraction layer to the more low-level APIs found in

libmesh and deal.ii
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template <inf dim>
void FEM_Example<dim>::assemble_system()
{

QGauss<dim> quadrature_formula(2);

FEValueSédim> fe_valﬁes(fe, quadréture_fonmdia, update_valdés‘| update_gradients'l updafe_quadrature_points | update_JxW_values);

const unsigned int dofs_per_cell = fe.dofs_per_cell;
const unsigned int n_q_points quadrature_formula.size();

FullMatrix<double> cell_matrix(dofs_per_cell, dofs_per_cell);
Vector<double> cell_rhs(dofs_per_cell);

std: :vector<types::global_dof_index> local_dof_indices(dofs_per_cell);

const RightHandSide<dim> righthandside;
std: :vector<double> righthandside_values(n_q_points);

typename DoFHandler<dim>::active_cell_iterator cell = dof_handler.begin_active(), endc = dof_handler.end();
for(; cell != endc; ++cell) {

fe_values.reinit(cell);

cell_matrix = 0;

cell_rhs = 0;

righthandside.value_list(fe_values.get_quadrature_points(), righthandside_values);
for(unsigned int g_point = 0; g_point < n_q_points; ++q_point) {
for(unsigned int i = 0; i < dofs_per_cell; ++i) {
for(unsigned int j = 0; j < dofs_per_cell; ++j)
cell_matrix(i,j) += =1.0xfe_values.shape_grad(i,q_point) * fe_values.shape_grad(j,q_point) * fe_values.JxW(q_point);

cell_rhs(i) += fe_values.shape_value (i, q_point) * righthandside_values[q_point] * fe_values.JxW(q_point);

cell->get_dof_indices(local_dof_indices);
constraints.distribute_local_to_global(cell_matrix, cell_rhs, local_dof_indices, system_matrix, system_rhs);
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