Relativistic Equations of State for hot matter and neutron star dynamics

A. Chorozidou, Th. Gaitanos

<u>Importance of studying Neutron Stars (NS) for</u> <u>fundamental questions of physics</u>

- How does GR work for such systems?
- Is the GW speed equal to c? If yes, why?
- What was the state of matter when universe was very hot and dense?
- Is our current understanding of strong interaction really correct?

The richness of the study of NS

From macro-features $(M_{max}, surface T, pulsar glitches) \longrightarrow$

info about the internal (super dense, isospinasymmetric, superfluid, superconductive, bulk hadronic matter)

Description of NS

Mass, Radius and Equation of State (EoS)

model of nuclear matter -> EoS -> TOV equation -> M(R)

Modelling dense nuclear matter - EoS

challenge: model that describes both dense & normal matter
in dense systems particles have high energy=>relativistic effects The description must incorporate:

- 1. The general properties of QM
- 2. Lorentz covariance
- 3. EM gauge invariance
- 4. Microscopic causality within a manybody system

The framework: R-QFT based on a local, Lorentz-invariance Lagrangian density.

This is QHD (Walecka model). It is based on meson exchange formalism.

Unknown parameters: coupling constants between the different meson & nucleon fields. They are determined by fitting the calculated properties of nuclei and nuclear matter (ρ_{sat} , E_b , a_{sym} , K) to experimental values

T=O approximation

$$\rho = 2\rho_0$$

$$n = \frac{\rho}{m_N} = 2n_0 \approx 0.34 \, fm^{-3} \rightarrow \bar{l} \approx n^{-1/3} \approx 1.4 \, fm$$

$$\lambda_{\rm T} \approx \frac{h}{\sqrt{m_N k_B T}} \approx 4 \cdot 10^6 T^{-1/2} \, fm$$

$$* \, forT \approx 10^9 \, K, \lambda_{\rm T} \succ 10^2 \, fm$$

$$\Rightarrow \lambda_{\rm T} >> l$$

≻QM needed

> The energy of the particles is mainly due to the degeneracy and not thermal anymore!

Important for astrophysics

explore EoS far beyond saturation (high p, high T-asymm, high T)

 \blacktriangleright In high-density matter (+kinematics) \rightarrow particles with high-momenta p

Not only density dependence, but also momentum dependence (MD) essential

The optical potential

Weber, Blättel, Cassing et al., Nucl. Phys. A539 (1992) 713

→ first-order derivative coupling terms into the interaction Lagrangian S. Typel, Phys. Rev. C71, 064301 (2005)

The Non-Linear Derivative (NLD) model...

NLD Lagrangian : as in conventional QHD

$$\mathcal{L} = \frac{1}{2} \left[\overline{\Psi} \gamma_{\mu} i \overrightarrow{\partial}^{\mu} \Psi - \overline{\Psi} i \overleftarrow{\partial}^{\mu} \gamma_{\mu} \Psi \right] - m \overline{\Psi} \Psi - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} + \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - U(\sigma) + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} m_{\rho}^{2} \overrightarrow{\rho}_{\mu} \overrightarrow{\rho}^{\mu} - \frac{1}{4} \overrightarrow{G}_{\mu\nu} \overrightarrow{G}^{\mu\nu} + \mathcal{L}_{int}$$

Interaction Lagrangian : as in conventional QHD + non-linear derivative operators

$$\mathcal{L}_{int} = \frac{g_{\sigma}}{2} \left[\overline{\Psi} \overleftarrow{\mathcal{D}} \Psi \sigma + \sigma \overline{\Psi} \overrightarrow{\mathcal{D}} \Psi \right] - \frac{g_{\omega}}{2} \left[\overline{\Psi} \overleftarrow{\mathcal{D}} \gamma^{\mu} \Psi \omega_{\mu} + \omega_{\mu} \overline{\Psi} \gamma^{\mu} \overrightarrow{\mathcal{D}} \Psi \right] \\ - \frac{g_{\rho}}{2} \left[\overline{\Psi} \overleftarrow{\mathcal{D}} \gamma^{\mu} \vec{\tau} \Psi \vec{\rho}_{\mu} + \vec{\rho}_{\mu} \overline{\Psi} \vec{\tau} \gamma^{\mu} \overrightarrow{\mathcal{D}} \Psi \right]$$

Non-linear derivative operators : Taylor expansion of partial derivatives ξ

$$\overrightarrow{\mathcal{D}} := \mathcal{D}\left(\overrightarrow{\xi}\right) = \sum_{j=0}^{n \to \infty} \frac{\partial^j}{\partial \overrightarrow{\xi}^j} \mathcal{D}|_{\overrightarrow{\xi} \to 0} \frac{\overrightarrow{\xi}^j}{j!}$$

$$\vec{\xi} = -\frac{v^{\alpha}i\vec{\partial}_{\alpha}}{\Lambda}$$

cut-off, will regulate the high-momentum tail of RMF fields

Nucl. Phys. A 940 (2015) 181

Features of NLD model...

$$\Sigma^{\mu}_{vi} = g_{\omega} \omega^{\mu} \mathcal{D} + g_{
ho} au_i
ho^{\mu} \mathcal{D} \ , \ \Sigma_{si} = g_{\sigma} \sigma \mathcal{D}$$

meson-field equations

$$m_{\sigma}^{2}\sigma + rac{\partial U}{\partial \sigma} = g_{\sigma} \sum_{i=p,n} \left\langle \overline{\Psi}_{i} \mathcal{D}\Psi_{i} \right\rangle = g_{\sigma}\rho_{s}$$

 $m_{\omega}^{2}\omega = g_{\omega} \sum \left\langle \overline{\Psi}_{i}\gamma^{0}\mathcal{D}\Psi_{i} \right\rangle = g_{\omega}\rho_{0}$

i=p,n

$$m_{\rho}^{2}\rho = g_{\rho} \sum_{i=p,n} \tau_{i} \left\langle \overline{\Psi}_{i} \gamma^{0} \mathcal{D} \Psi_{i} \right\rangle = g_{\rho} \rho_{I}$$

cut-off ∧ regulates 1) DD & MD of selfenergies

2) DD of meson-field sources(particularly for ω-field)

$$\begin{split} & \mathcal{E} \text{quation of State (EoS)} \\ & \varepsilon = \sum_{i=p,n} \frac{\kappa}{(2\pi)^3} \int d^3 p \, E(\vec{p}\,) - \langle \mathcal{L} \rangle \\ & P = \frac{1}{3} \sum_{i=p,n} \frac{\kappa}{(2\pi)^3} \int d^3 p \, \frac{\vec{\Pi}_i \cdot \vec{p}}{\prod_i^0} + \langle \mathcal{L} \rangle \end{split}$$

3) fully thermodynamic consistent(important for neutron stars)

Nucl. Phys. A 940 (2015) 181

NLD results: saturation...

Parameters

	$\vec{\mathcal{D}}$	cut-off	Λ_s [GeV]	Λ_v [GeV]	g _a	g_{ω}	$g_{ ho}$	b [fm ⁻¹]	с	m_{σ} [GeV]	m_{ω} [GeV]	m_{ρ} [GeV]
NLD	$\frac{1}{1+\sum_{j=1}^{4}\left(\zeta_{j}^{\alpha}i\overrightarrow{\partial}_{\alpha}\right)^{2}}$	$\frac{\Lambda^2}{\Lambda^2 + \vec{p}^{2}}$	0.95	1.125	10.08	10.13	3.50	15.341	-14.735	0.592	0.782	0.763

Comparison with other models

Model	$ ho_{sat}$ $[fm^{-3}]$	E_b [MeV/A]	K [MeV]	a_{sym} [MeV]	L [MeV]	K _{sym} [MeV]	K_{asy} [MeV]	
NLD	0.156	-15.30	251	30	81	-28	-514	
NL3*	0.150	-16.31	258	38.68	125.7	104.08	-650.12	→ Lalazissis
DD	0.149	-16.02	240	31.60	56	-95. <mark>3</mark> 0	-431.30	Tunal
$D^{3}C$	0.151	-15.98	232.5	31.90	59.30	-74.7	-430.50	
DBHF	0.185	-15.60	290	33.35	71.10	-27.1	-453.70	→ Li, Machleidt, Brockman
	0.181	-16.15	230	34.20	71	87.36	-340	→ Fuchs
empirical	0.167 ± 0.019	-16 ± 1	$230\pm~10$	31.1 ± 1.9	88 ± 25	-	-550 ± 100	Tübingen 14/11/2019

NLD results: saturation...

 m_{ρ}

0.763

Parameters $\overrightarrow{\mathcal{D}}$ monopole form cut-off g_{ρ} b C m_{σ} m_{ω} [GeV] $[fm^{-1}]$ [GeV] [GeV] [GeV] $\frac{\Lambda^2}{\Lambda^2 + \vec{p}^{\,2}}$ 1 NLD 0.95 1.125 10.08 10.13 3.50 15.341 -14.7350.592 0.782 $1 + \sum_{j=1}^{4} \left(\zeta_j^{\alpha} i \overrightarrow{\partial}_{\alpha} \right)^2$

Comparison with other models

Model	$ ho_{sat}$ $[fm^{-3}]$	E_b [MeV/A]	K [MeV]	a_{sym} [MeV]	L [MeV]	K _{sym} [MeV]	K_{asy} [MeV]	
NLD	0.156	-15.30	251	30	81	-28	-514	
NL3*	0.150	-16.31	258	38.68	125.7	104.08	-650.12	→ Lalazissis
DD	0.149	-16.02	240	31.60	56	-95.30	-431.30	Tunel
D ³ C	0.151	-15.98	232.5	31.90	59.30	-74.7	-430.50	
DBHF	0.185	-15.60	290	33.35	71.10	-27.1	-453.70	ightarrow Li, Machleidt, Brockmann
	0.181	-16.15	230	34.20	71	87.36	-340	\rightarrow Fuchs
empirical	0.167 ± 0.019	-16 ± 1	230 ± 10	31.1 ± 1.9	88 ± 25	-	-550 ± 100	Tübingen 14/11/2019

NLD results: saturation...

Parameters

	$\overrightarrow{\mathcal{D}}$	cut-off	Λ_s [GeV] [GeV]	$\Lambda_v $	g_ω g	$b_{ ho} = b \ [\mathrm{fm}^{-1}]$	c]	$\begin{array}{ccc} m_{\sigma} & m_{\omega} & m_{\rho} \\ [\mathrm{GeV}] & [\mathrm{GeV}] & [\mathrm{GeV}] \end{array}$
NLD	$\frac{1}{1 + \sum_{j=1}^{4} \left(\zeta_{j}^{\alpha} i \overrightarrow{\partial}_{\alpha} \right)^{2}}$	$\frac{\Lambda^2}{\Lambda^2 + \vec{p}^{2}}$	0.95 1.	125 10.08	10.13 3.	50 15.341	1 -14.735	0.592 0.782 0.763
Compo	rison with othe	r models						_
Mode	1 ρ_{sat} $[fm^{-3}]$	E_b [MeV/A]	K [MeV]	a _{sym} but	so stiff at	ft EoS high p	at ρ_{sat} , relevant f	or NS!
NLD	0.156	-15.30	251	30	81	-28	-514	
NL3 ³ DD D ³ C	• 0.150 0.149 0.151	-16.31 -16.02 -15.98	258 240 232.5	38.68 31.60 31.90	125.7 56 59.30	104.08 -95.30 -74.7	-650.12 -431.30 -430.50	→ Lalazissis → Typel
DBH	F 0.185 0.181	-15.60 -16.15	290 230	33.35 34.20	71.10 71	-27.1 87.36	-453.70 -340	→ Li, Machleidt, B → Fuchs
empirio	cal 0.167 ± 0.019	-16 ± 1	230 ± 10	31.1 ± 1.9	88 ± 25		-550 ± 100) Tübingen 14/11

NLD results: EoS...

Nucl. Phys. A 940 (2015) 181

NLD results: EoS...

Remarkable comparison with microscopic DBHF

Nucl. Phys. A 940 (2015) 181

NLD results: MD & optical potentials...

Nucl. Phys. A 940 (2015) 181

NLD results: MD & optical potentials...

Tübingen 14/11/2019

Nucl. Phys. A 940 (2015) 181

NLD predictions: hot matter...

Final remarks & outlook...

NLD model

- \rightarrow keeping simplicity (RMF) to describe complexity (non-linear ρ & p dependences)
- \rightarrow realized by covariant introduction of regulators on a Lagrangian level
- \rightarrow in NLD: cut-off Λ regulates high $\rho\text{-}$ & p-components of mean-fields

NLD Results

- → EoS soft at low ρ (K~250 MeV), but stiff at high ρ remarkable agreement with microscopic DBHF
- \rightarrow Correct MD for in-medium proton (!) and (!) antiproton interactions
- \rightarrow compatible with all recent observations of high- ρ EoS & NS

Under progress developments

- \rightarrow HADES experiment for π +A induced reactions
 - \rightarrow many exp. new data on Λ -production
- \rightarrow comparison with theory through transport simulations in progress

