Constraints on neutron stars equation of state from GW170817 event

A. Kanakis-Pegios ¹ Ch. C. Moustakidis ²

¹M.Sc. Computational Physics Aristotle University of Thessaloniki

²Department of Theoretical Physics Aristotle University of Thessaloniki

Neutron Stars in the GW Era, 13-15 November 2019, Tuebingen

- Introduction Bulk properties
- Tolman-Oppenheimer-Volkov (TOV) equations
- Tidal effects during inspiral
- Tidal love number
- Constraints from GW170817
- $\tilde{\Lambda} q$ relation
- $\Lambda_1 \Lambda_2$ space
- Conclusions
- References

- Neutron Stars (NS) are among the most interesting astrophysical objects in Nature.
- Conditions of extremely high matter densities prevail in their interiors, making them a natural laboratory for extreme physics. The precise form of the equation of state (EoS) of NSs remains unknown.
- Radius: $R \approx 10 15$ km, Mass: $M \approx 1 2M_{\odot}$, Mean density: $\rho \approx 4 \times 10^{14} g/cm^3$, Frequency: $f \approx few Hz - 700$ Hz, Magnetic field: $B \approx 10^{12} - 10^{18}$ Gauss.

metric

The metric for a spherically symmetric configuration and for the static case is:

$$\mathrm{d}s^2 = e^{\lambda(r)}\mathrm{d}r^2 + r^2(\mathrm{d}\theta^2 + \sin^2\theta\mathrm{d}\phi^2) - e^{\nu(r)}\mathrm{d}t^2$$

The metric functions $\lambda(r)$, v(r) are related to the energy distribution $\mathcal{E}(r)$ and local pressure P(r) as:

$$\begin{aligned} \frac{8\pi G}{c^4} \mathcal{E}(r) &= \frac{1}{r^2} (1 - e^{-\lambda(r)}) + e^{-\lambda(r)} \frac{\lambda'(r)}{r}, \\ \frac{8\pi G}{c^4} P(r) &= -\frac{1}{r^2} (1 - e^{-\lambda(r)}) + e^{-\lambda(r)} \frac{v'(r)}{r}, \\ P'(r) &= -\frac{P(r) + \mathcal{E}(r)}{2} v'(r) \end{aligned}$$

The equilibrium of the star's matter is given by the equations above, combined with the equation of state (EOS) $P = P(\mathcal{E})$.

The system of TOV equations of the equilibrium is given by:

$$\frac{\mathrm{d}P}{\mathrm{d}r} = -\frac{G}{r^2} \left[\rho(r) + \frac{P(r)}{c^2} \right] \left[m(r) + \frac{4\pi r^3 P(r)}{c^2} \right] \left[1 - \frac{2Gm(r)^{-1}}{rc^2} \right]$$
$$\frac{\mathrm{d}M(r)}{\mathrm{d}r} = 4\pi^2 r^2 \rho(r), \quad \rho(r) = \mathcal{E}(r)/c^2$$

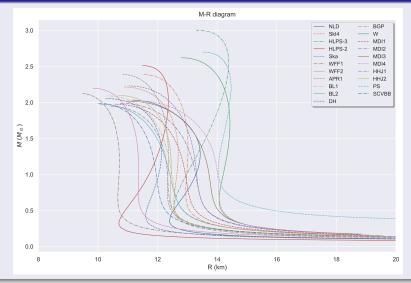
For the numerical integration of the system we set:

•
$$m(r) = \bar{m}(r)M_{\odot}, \ \mathcal{E}(r) = \bar{\mathcal{E}}(r)\mathcal{E}_{0}, \ P(r) = \bar{P}(r)\mathcal{E}_{0}$$

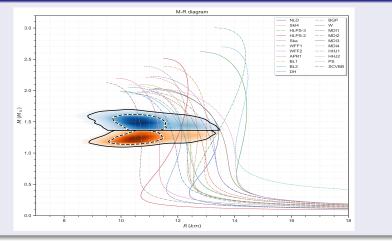
• $\mathcal{E}_{0} = 1 \ MeV \ fm^{-3}$
• $\frac{GM_{\odot}}{c^{2}} = 1.474 \ Km$
• $\frac{4\pi}{M_{\odot}c^{2}} = 0.7 \cdot 10^{-40} \frac{s^{2}}{Kg \cdot Km^{2}}$

M-R diagram

Results for a variety of EOS



Results for a variety of EOS using an insensitive relation^[6]



- Marginalized posterior for the mass M and radius R of each binary using EOS-insensitive relation^[6].
- The top blue (bottom orange) posterior corresponds to the heavier (lighter) NS component.
- At the 90% level, the radii of the two NSs are $R_1 = 10.8^{+2.0}_{-1.7}$ and $R_2 = 10.7^{+2.1}_{-1.5}$.

Tidal effects during inspiral of a BNS

- GW from the late phase of a BNS are among the most significant sources for a GW detector.
- Tidal field *E_{ij}* induces change of quadrapole moment *Q_{ij}* of the neutron star.

The quadrapole moment is given by^[1]:

$$Q_{ij} = -\lambda(m)E_{ij}$$
, with $\lambda(m) = \frac{2}{3}k_2(m)\frac{R^5}{G}$

- The induced quadrupole moment depends on neutron star structure.
- Tidal deformability λ depends on radius R (the smaller the star, the harder to deform) and k_2 .
- The reaction of the star to the tidal field is described by the parameter k_2 , known as tidal love number.
- k₂ depends on the structure of the neutron star, i.e. its mass and equation of state.

Tidal love number

Mathematical formalism

The tidal love number k_2 is given by^[1]:

$$\begin{split} k_2 &= \frac{8\beta^5}{5}(1-2\beta)^2[2-y_R+(y_R-1)2\beta] \\ &\times [2\beta(6-3y_R+3\beta(5y_R-8)) \\ &+ 4\beta^3(13-11y_R+\beta(3y_R-2)+2\beta^2(1+y_R)) \\ &+ 3(1-2\beta)^2[2-y_R+2\beta(y_R-1)]\ln(1-2\beta)]^{-1}, \end{split}$$

where $\beta = GM/Rc^2$ is the compactness parameter. The tidal love number depends also on the quantity y_R , which is determined by solving the following differential equation^[1]:

$$r \frac{\mathrm{d}y(r)}{\mathrm{d}r} + y^2(r) + y(r)F(r) + r^2Q(r) = 0, \quad y(0) = 2, \ y_r \equiv y(R)$$

Tidal love number

$$F(r) \text{ and } Q(r) \text{ are functionals of } \mathcal{E}(r), P(r) \text{ and } M(r)^{[1]:}$$

$$F(r) = \left[1 - \frac{4\pi r^2 G}{c^4} (\epsilon(r) - P(r))\right] \left(1 - \frac{2M(r)G}{rc^2}\right)^{-1},$$

$$r^2 Q(r) = \frac{4\pi r^2 G}{c^4} \left[5\epsilon(r) + 9P(r) + \frac{\epsilon(r) + P(r)}{\partial P(r)/\partial \epsilon(r)}\right] \left(1 - \frac{2M(r)G}{rc^2}\right)^{-1}$$

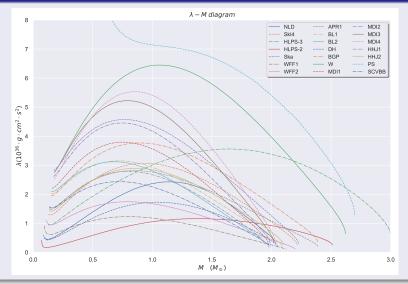
$$- 6\left(1 - \frac{2M(r)G}{rc^2}\right)^{-1}$$

$$- \frac{4M^2(r)G^2}{r^2c^4} \left(1 + \frac{4\pi r^3 P(r)}{M(r)c^2}\right)^2 \left(1 - \frac{2M(r)G}{rc^2}\right)^{-2}.$$

The numerical integration of these equations, combined with TOV equations, using as boundary conditions y(0) = 2, $P(0) = P_c$ and M(0) = 0 provide the mass M, the radius R of the neutron star (TOV solution), and the value $y_R = y(R)$. The compactness parameter b is determined, and therefore the tidal love number can be determined.

$\lambda - M$ diagram

Results for a variety of EOS



- During the last orbits before the neutron stars merging, the orbital phase evolution is affected by tidal deformability.
- At leading order, the tidal effects are imprinted in the gravitational-wave signal through the binary tidal deformability^[5]:

$$ilde{\Lambda} = rac{16}{13} rac{(12q+1)\Lambda_1 + (12+q)q^4\Lambda_2}{(1+q)^5},$$

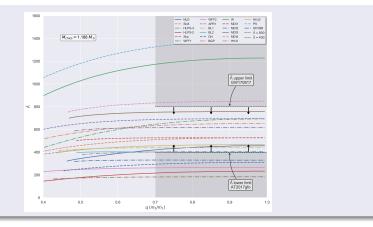
where $q = m_2/m_1 \le 1$ is the binary's mass ratio $(m_1 \text{ corresponds to the heavier component mass})$ and $\Lambda_1 = \Lambda_1(m_1)$ and $\Lambda_2 = \Lambda_2(m_2)$ are the tidal deformabilities of the two NS. $M_{tot} = m_1 + m_2$ is the total mass of the binary system and $M_{chirp} = \frac{(m_1m_2)^{3/5}}{(m_1+m_2)^{1/5}}$ is the chirp mass.

Constraints for the low spin case (Abbott et al., 2017^[3])

	Low-spin priors $(\chi \le 0.05)$
Primary mass m_1	$1.36-1.60 M_{\odot}$
Secondary mass m_2	$1.17 - 1.36 M_{\odot}$
Chirp mass \mathcal{M}	$1.188^{+0.004}_{-0.002}M_{\odot}$
Mass ratio m_2/m_1	0.7–1.0
Total mass m _{tot}	$2.74^{+0.04}_{-0.01}M_{\odot}$
Radiated energy $E_{\rm rad}$	$> 0.025 M_{\odot} c^2$
Luminosity distance $D_{\rm L}$	40^{+8}_{-14} Mpc
Viewing angle Θ	≤ 55°
Using NGC 4993 location	$\leq 28^{\circ}$
Combined dimensionless tidal deformability $\tilde{\Lambda}$	≤ 800
Dimensionless tidal deformability $\Lambda(1.4M_{\odot})$	≤ 800

- Fixed chirp mass of $M_{chirp} = 1.188 \ M_{\odot}$.
- Binary's mass ratio: 0.7 < q < 1.0
- Upper limit on $\tilde{\Lambda} : \tilde{\Lambda} \leq 800$.

$\tilde{\Lambda} - q$ for a variety of EoS

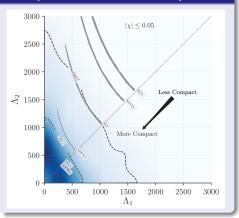


- $\tilde{\Lambda} = \tilde{\Lambda}(q, M_{chirp} = 1.188 \ M_{\odot}; EOS).$
- Binary's mass ratio: 0.4 < q < 1.0
- Upper limit on $\tilde{\Lambda}$: $\tilde{\Lambda} \leq 800 (GW170817)$ ^[3]
- Lower limit on $\tilde{\Lambda}$: $\tilde{\Lambda} \ge 400$ from EM data (AT2017gfo) ^[7,8]

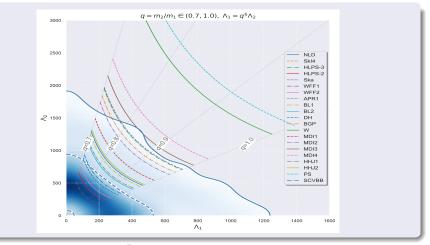
- $\tilde{\Lambda} = \Lambda_1 = \Lambda_2$ when $m_1 = m_2$.
- The figure shows the posterior probability densities for Λ_1, Λ_2 with 90% and 50% credible region contours
- Under the assumption that $\Lambda \simeq \alpha \beta^{-6}$ and $R_1 \simeq R_2 \simeq \hat{R}^{[5]}$:

$$egin{aligned} &\Lambda_1(ilde{\Lambda},q) = rac{13}{16} ilde{\Lambda} rac{q^2(1+q)^4}{12q^2-11q+12} \ &\Lambda_2(ilde{\Lambda},q) = q^{-6} \Lambda_1 \end{aligned}$$

 $\Lambda_1 - \Lambda_2$ diagram for the low spin case (*Abbott et al.,2017*^[3])



$\Lambda_1-\Lambda_2$ space for a variety of EoS



- For $m_1 = m_2 = 1.36 \ M_{\odot} \Rightarrow \tilde{\Lambda} = \Lambda_1 = \Lambda_2$, unique value for each EoS.
- Posterior probability densities for Λ_1, Λ_2 using the PhenomPNRT model's data). ^[4,6]
- 90% and 50% credible region contours using PhenomPNRT waveform model (blue contours) [4,6]
 < □ > < □ > < □ > < □ > < □ > < ≥ > ≥ < ≥ > ≥

- GW from BNS coalescence provide strong constraints on the EoS of dense matter.
- Observations of massive NS ($1.97 \pm 0.04 M_{\odot}$ from PSR J1617-2230 and $2.01 \pm 0.04 M_{\odot}$ from PSR J0348-0432) prefer stiff EoSs ^[7].
- The upper limit on Λ obtained from GW170817 exclude stiff EoSs which predict ther values bigger than 800, such as the EoS: W, PS, MDI4.
- The lower bound on $\tilde{\Lambda}$ derived from EM observations and UV/optical analysis of GW170817 signal, exclude soft EoSs ($\tilde{\Lambda} \ge 400$).
- Further upgrade of terrestrial GW detectors will lead to stronger constraints on the bounds.

References

- Ch. C. Moustakidis, T. Gaitanos, Ch. Margaritis, and G. A.Lalazissis, Phys. Rev. C 95, 045801 (2017).
- [2] F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz, Phys. Rev. Lett. 120, 172702 2018).
- [3] B. P. Abbott et al. (Virgo, LIGO Scientific), Phys. Rev.Lett.119, 161101 (2017).
- [4] B. P. Abbott et al. (The LIGO Scientific Collaboration and the Virgo Collaboration), Phys. Rev. Lett. 121, 161101 (2018).
- [5] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger, and C. M. Biwer, Phys. Rev. Lett.121, 091102(2018).
- [6] B. P. Abbott, R. Abbott, T. D. Abbott, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X.Adhikari, V. B. Adya, et al., Physical Review X9, 011001 (2019)
- [7] Y.-M. Kim, Y. Lim, K. Kwak, C. Ho Hyun, and C.-H. Lee, Phys. Rev. C 98, 065805 (2018).
- [8] D. Radice, A. Perego, F. Zappa, S. Bernuzzi, Astrophys.J.852, L29 (2018).