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Why to study Black Holes?

Black Holes are extremely important entities, for they

influence the formulations of gravitational theories (GT)

provide an opportunity to test the strong gravity limit of
any GT where no post-Newtonian approach applies

can give insights into not only the foundations of quantum
GTs but also to the other three fundamental interactions

are related to other phenomena like the (strong)
gravitational waves
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A fundamental question:

What is a Black Hole?
a non fundamental answer: well . . .
Indeed, there is no invariant description of a BH, regardless the
space-time signature and number of dimensions. Never the less,
there is a physical motivation for one to adopt as a prototype of
a BH the space-time geometry described by the Kerr-Newman
line element which contains 3 essential constants: mass (M),
angular momemtum (J), and charge (Q) and a few characteristic
symmetries (i.e., Petrov type D and stationary axisymmetric
geometry) cf. no hair theorem in General Relativity (GR)
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The observations/measurements mainly concern the M and J
parameters (assuming an electrically neutral system). The
accuracy of the experiments can not eliminate the possibility for
deviations from the standard (i.e., Kerr) BH. The experiments
can be based on the study of the geometry of BH horizon by
probing it with some field (like photons), or on the study of
quasi-normal modes emanating from a system of BHs. The
reason of existence of such deviations can be

either another GT (with a geometric nature though and the
same post Newtonian behaviour/weak gravitation limit)

or corrections to the GR per se, in the spirit of a realistic
approach

or are consider to be the result of a perturbation of an
alternative theory

or they are the result of a numerical study (like, in
Einstein-Dilaton-Gauss-Bonnet etc)

in any case, the first check will be the validity of the no-hair
theorem
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A question arises:

which of the features of the standard (i.e.,
Kerr) BH should be present in any deviation (or new definition
of an alternative BH)?
Physical arguments render the stationarity, axial symmetry and
asymptotical flatness sine qua non initial assumptions

Thus far while the spaces to be found in the literature do not
admit (in general) a Killing tensor of order 2, there are efforts
to make them to allow a separation of variables for the
Klein-Gordon and Hamilton-Jacobi equations so it is natural to
ask for a criterion on choosing an alternative definition for a BH
based solely on physical criteria
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Metric functions K.T. H-J Sep. K-G Sep.

J 4 yes yes no

KSZ 3 yes yes yes

PK 5 (+5) yes yes no

S 3 yes yes yes

PK2 6 (+6) Conformal for null only yes

where

J: Tim Johannsen, Regular black hole metric with three
constants of motion, Phys. Rev. D 88, 044002 (2013)

KSZ: R.A. Konoplya, Z. Stuchĺık, and A. Zhidenko,
Axisymmetric black holes allowing for separation of
variables in the Klein-Gordon and Hamilton-Jacobi
equations, Phys. Rev. D 97, 084044 (2018)

PK2: Papadopoulos and Kokkotas, to appear

S: Rajibul Shaikh, Black hole shadow in a general rotating
spacetime obtained through Newman-Janis algorithm, Phys.
Rev. D 100, 024028 (2019)
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The starting point would be two necessary axioms:

1 stationarity, axial symmetry and asymptotical flatness
must all be preserved

2 one must be able not only to probe the BH with test
particles but also to get analytical solutions to the
equations. In other words: (only) the Hamilton-Jaboci
equation for a test particle

(∇aS)g
ab(∇bS) = const. ∈ R (1)

(where S is the action of the particle) must be separable
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(where S is the action of the particle) must be separable
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In an extremely important work, Benenti & Francaviglia (Ann.
Inst. Henri Poincaré 34 45, (1981)) have proven that the
separability axiom is closely related to a third (quadratic in
phase-space momenta) integral of motion; the Carter constant.
This integral of motion reflects a higher symmetry: given a
local coordinate system (r, x, ϕ, t) the most general metric
satisfying the second axiom assumes the form

gab =
1

A1 +B1


A2 0 0 0
0 B2 0 0
0 0 A3 +B3 A4 +B4

0 0 A4 +B4 A5 +B5

 (2)

This metric admits a 2nd order Killing tensor (which is a
similar expression in terms of As and Bs, but too entangled to
fit on here) of which the defining property is

∇(aKbc) = 0, K[ab] = 0 (3)
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Depending on the exact properties of the metric this Killing
might or might not be induced by another tensor; the Yano
tensor

∇(aYb)c = 0, Y(ab) = 0 (4)

Both tensors generalise the concept of Killing vector field. Yano
tensor, when it exists and has non constant eigenvalues,
provides not only the Killing tensor of order 2 but also the
fundamental Killing vectors. Also two metrics with the same
Yano tensor share the same properties when it comes to
separability structures.
For instance the Kerr solution admits a Yano tensor which
remains invariant under the transformation

M → M +H/2r (5)

which gives the modified Kerr BH!
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Now, one can formulate the following

Any alternative geometry meant to describe the
physics of a black hole, deviating smoothly from the
Kerr black hole, must be

susceptible either to an algebraically general Yano
tensor of rank two, in which the two distinct
eigenvalues supposed to be non constant, or to a
non trivial Killing tensor of rank two along with
two non null, and commuting, Killing vector fields
asymptotically flat

A calculation shows that the main examples to be found in the
literature obey all the conditions of the Proposition.
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There are quite a few open problems to be solved for the class
of metrics which conforms with the Proposition:

try to solve the equations like Klein-Gordon, Dirac, etc for
various settings

there should be designed tests that could measure the
potential deviations and even the form of deviations that is
proposed (like study the shadow of the BH or iron line
spectroscopy, study of the geodesics with the BH
HORIZON telescope, etc)

to find the analogue of the Teukolsky equation

try to identify compatible GTs cf. previous table

Georgios O. Papadopoulos, Kostas D. Kokkotas



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

There are quite a few open problems to be solved for the class
of metrics which conforms with the Proposition:

try to solve the equations like Klein-Gordon, Dirac, etc for
various settings

there should be designed tests that could measure the
potential deviations and even the form of deviations that is
proposed (like study the shadow of the BH or iron line
spectroscopy, study of the geodesics with the BH
HORIZON telescope, etc)

to find the analogue of the Teukolsky equation

try to identify compatible GTs cf. previous table

Georgios O. Papadopoulos, Kostas D. Kokkotas



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

There are quite a few open problems to be solved for the class
of metrics which conforms with the Proposition:

try to solve the equations like Klein-Gordon, Dirac, etc for
various settings

there should be designed tests that could measure the
potential deviations and even the form of deviations that is
proposed (like study the shadow of the BH or iron line
spectroscopy, study of the geodesics with the BH
HORIZON telescope, etc)

to find the analogue of the Teukolsky equation

try to identify compatible GTs cf. previous table

Georgios O. Papadopoulos, Kostas D. Kokkotas



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

There are quite a few open problems to be solved for the class
of metrics which conforms with the Proposition:

try to solve the equations like Klein-Gordon, Dirac, etc for
various settings

there should be designed tests that could measure the
potential deviations and even the form of deviations that is
proposed (like study the shadow of the BH or iron line
spectroscopy, study of the geodesics with the BH
HORIZON telescope, etc)

to find the analogue of the Teukolsky equation

try to identify compatible GTs cf. previous table

Georgios O. Papadopoulos, Kostas D. Kokkotas


