

A Thesis for the degree of Bachelor of Science

NORMAL MODES OF ROTATING CYLINDRICAL POLYTROPES

Author: Sasli Argyro Supervisor: Stergioulas Nikolaos

INTRODUCTION

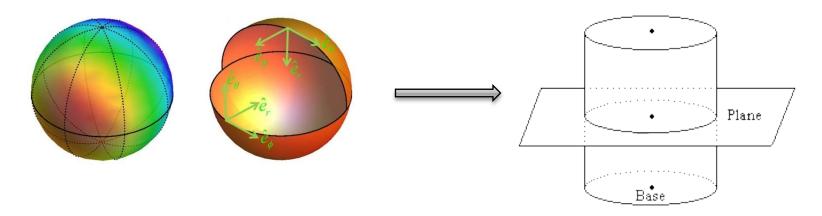
- -Stellar oscillations provide information about:
- Stellar structure
- System stability
- Evolution of physical events (i.e. NS merger)
- Physical mechanism (i.e. effect of rotation)
- Unique events might excite more modes
- <u>De Pietri et al (2018)</u>
- Post-merger remnant oscillates in radial and non-radial modes (quadrupole m=2)
- convective instability in the post-merger remnant
- probe the rotational and thermal state

2

INTRODUCTION

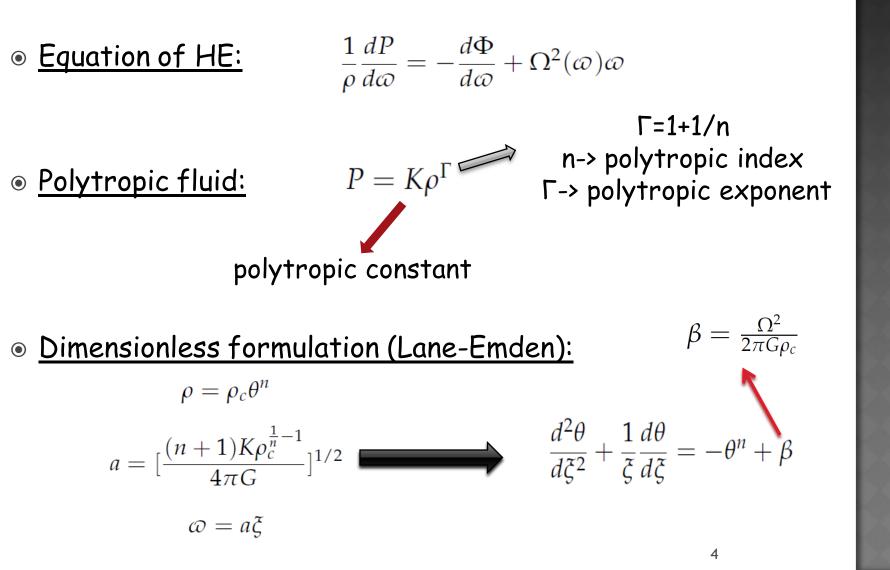
Considerations & Approximations:

- Polytropic fluid
- \odot Uniform rotation Ω
- Small adiabatic oscillations
- Spherical symmetry \rightarrow Cylindrical symmetry(ϖ, φ, z)



Newtonian limit

HYDROSTATIC EQUILIBRIUM



<u>Test(</u>n=1, β)

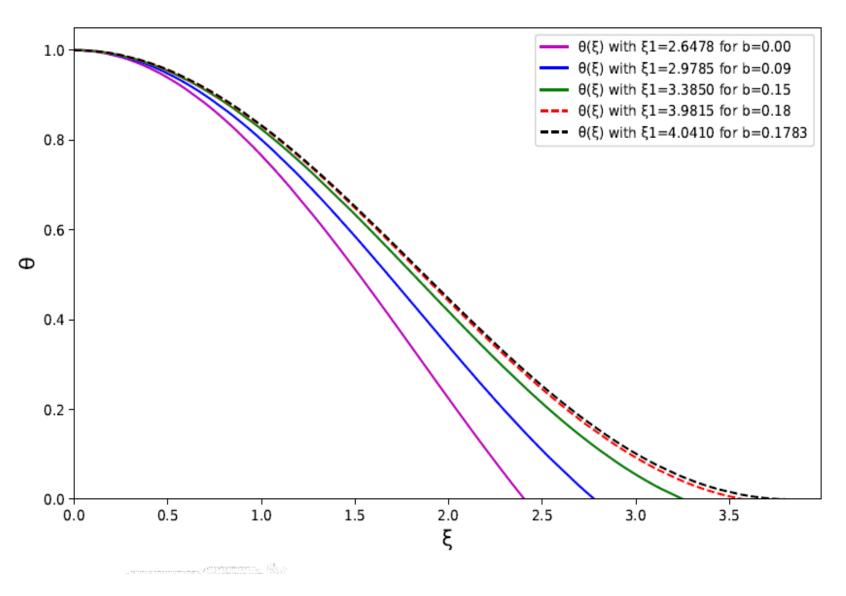
Present work

Robe (1968)

	п	$\beta_{critical}$			n	β_c
	0.5	0.5	_		0	1.00
	1	0.2871			▶ 1 3	$\frac{2.87-1}{5.47-2}$
	1.5	0.1783	_		5 6	8.21-3
polytropi	c index	β	ξ_1	—	n	ξ1
		0	2.18966	_	0.9	1.71782384
		0.15	2.42696		0.8	1.74556088
n=0	.5	0.35	2.93422		0.5	1.83413266
			3.76126		0.2	1.93087184
		0.50	3.99999			2.00000000
n=1		0	2.40482	0.		2.18966219
		0.15	2.77926	1		2.40482556
		0.25	3.25242	1.		2.64777677
		0.28	3.57159	2		2.92132072
		0.2871	3.7976	3		3.57390098
		0	2.64777	4		4.39526586
		0.09	2.97852	5		5.42757459
n=1	15	0.15	3.38497	6		6.72452797
11-1		0.178	3.98154	10		1.62227407E+1
		0.178	4.04101	20		1.60596473E+2
		0.1765	4.04101			5

Present work

■n=1.5



• Small Eulerian perturbation: $\delta Q(\omega, \phi, z, t) = \delta Q(\omega) e^{i(\sigma t + m\phi + kz)}$

Eulerian variation $\delta Q = Q(x,t) - Q_0(x,t)$

Lagrangian variation $\Delta Q = Q[x + \Delta r(x,t),t] - Q_0(x,t)$

• <u>Perturbed equations</u>

Continuity Equation $\frac{D\rho}{Dt} + \rho \nabla \vec{v} = 0 \longrightarrow \delta \rho = -div(\rho_0 \Delta \vec{r})$ Adiabaticity $\Delta P = \Gamma_1 \frac{P_0}{\rho_0} \Delta \rho = -\Gamma_1 P_0 div \Delta \vec{r}$

Equation of motion
$$\frac{D\vec{v}}{Dt} = -\frac{1}{\rho}gradP - grad\Phi$$

Poisson's equation $\nabla^2 \delta \Phi = 4\pi G \delta \rho$

• Small Eulerian perturbation: $\delta Q(\omega, \phi, z, t) = \delta Q(\omega) e^{i(\sigma t + m\phi + kz)}$

Numerical Method

- 1. Shooting Method (i.e. Runge-Kutta)
- 2. Fitting Point r_m (i.e. $\xi_1/2$)
- Shooting-1 (center ---> fitting point)
- 4. Shooting-2 (surface fitting point)
- 5. At the fitting point is required

$$\Delta = det \begin{pmatrix} X^{(0,1)} & X^{(0,2)} & X^{(s,1)} & X^{(s,2)} \\ Y^{(0,1)} & Y^{(0,2)} & Y^{(s,1)} & Y^{(s,2)} \\ F_1^{(0,1)} & F_1^{(0,2)} & F_1^{(s,1)} & F_1^{(s,2)} \\ F_2^{(0,1)} & F_2^{(0,2)} & F_2^{(s,1)} & F_2^{(s,2)} \end{pmatrix}_{r=r_m} = 0 \implies \text{Eigenfrequency!!!}$$

Constructing the Solution (Eigenfaunction)

$$C^{(0,1)}y^{(0,1)}(zm)_j + C^{(0,2)}y^{(0,2)}(zm)_j = C^{(s,1)}y^{(s,1)}(zm)_j + C^{(s,2)}y^{(s,2)}(zm)_j$$

 $y_j = X; Y; F_1; F_2 \longrightarrow \text{homogeneous linear system 4x4}$

Solution of homogeneous system 4x4 of linear equations

Linear Adiabatic Wave Equation (LAWE)

$$\begin{split} \frac{d^2x}{d\xi^2} + [\frac{3}{\xi} + \frac{(n+1)}{\theta} \frac{d\theta}{d\xi}] \frac{dx}{d\xi} + [\omega^2 - \frac{(n+1)\beta}{\Gamma_1} - \frac{(n+1)}{\xi} \frac{(2-2\Gamma_1)}{\Gamma_1} \frac{d\theta}{d\xi}] \frac{1}{\kappa} = 0 \\ \end{split}$$
where $\omega^2 = \frac{(n+1)}{4\pi G \rho_c \Gamma_1} \sigma^2$

<u>Boundary Conditions</u>($\xi \rightarrow z, \theta \rightarrow w$)

• Inner boundary (Center) - regularity

$$x = a_0 + a_1 z + a_2 z^2$$

$$0 \qquad a_2 = -\frac{a_0}{8} [\omega^2 - (2 - \Gamma_1) \frac{n+1}{\Gamma_1} \beta + (1 - \Gamma_1) \frac{n+1}{\Gamma_1}]$$

 $\Delta \varpi / \varpi$

<u>Boundary Conditions</u>($\xi \rightarrow z, \theta \rightarrow w$)

• Outer boundary (Surface)
$$\frac{1}{w(z)} = \frac{1}{\frac{dw}{dz}|_{z=z_n}(z-z_n)} - \frac{\frac{d^2w}{dz^2}}{2(\frac{dw}{dz})^2}|_{z=z_n}$$

 $x = 1 + a_{n-1}(z - z_n) + a_{n-2}(z - z_n)^2$

$$a_{n-2} = \frac{1}{(n+1)(n+2)} \left[G'\left(\frac{-3}{2z} - \frac{\Omega'}{\frac{dw}{dz}} + \frac{G'}{2}\right) + \frac{\Omega'}{2\frac{dw}{dz}} \left[\left[\frac{3}{z_n} + \frac{\Omega'}{\frac{dw}{dz}} + \frac{(n+1)\frac{d^2w}{dz^2}}{\frac{dw}{dz}}\right] \right] \right]|_{z=z_n}$$

$$a_{n-1} = -\frac{1}{n+1} \left[\frac{\omega^2 - \frac{n+1}{\Gamma_1}\beta}{\frac{dw}{dz}|_{z=z_n}} - G' \right]$$

where $G' = \frac{2-2\Gamma_1}{\Gamma_1 z_n} (n+1)$ $\Omega' = \omega^2 - \frac{(n+1)\beta}{\Gamma_1}$

<u>Test 1(n=1, Γ_1 =5/3, β=0)</u>

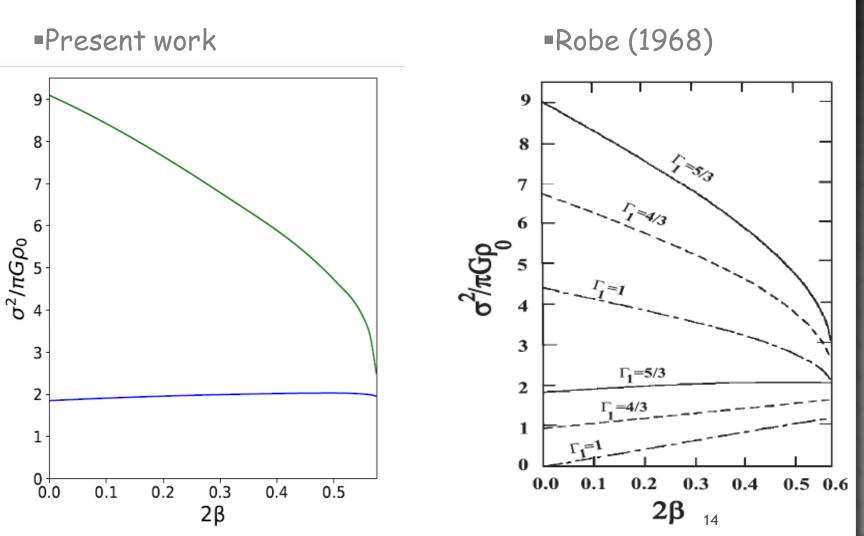
Robe (1968)

n	ω_0^2	ω_1^2	ω_2^2	ω_3^2
0	6.67 - 1	5.67 ± 0	1.40 + 1	2.57 + 1
1	4.63 - 1	2.27+0	4.99 + 0	8.62 ± 0
3	2.94 - 1	7.02 - 1	1.26 + 0	1.95 + 0
6	1.38 - 1	1.97 - 1	2.71 - 1	3.63 - 1

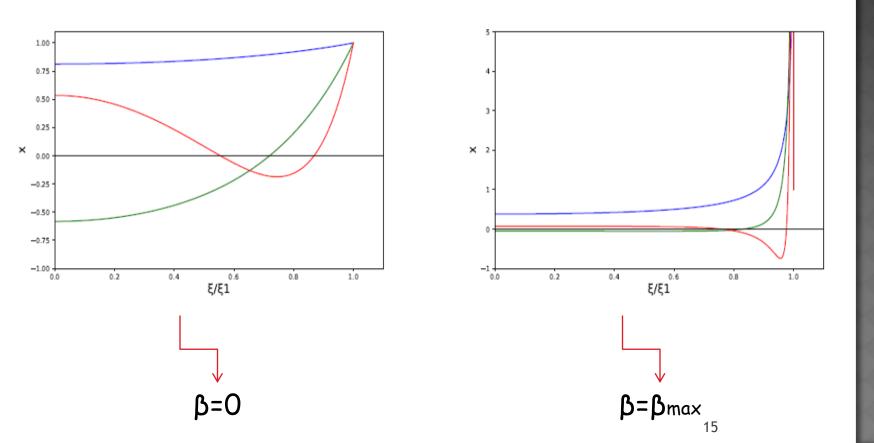
Present Work

β	ω_0^2	ω_1^2	ω_2^2	
0	0.555464	2.72823	5.986513	
0.15	0.597872	2.035402	4.189147	× Γ1/(n+1)
0.25	0.609836	1.415298	2.615437	
0.28	0.5996322	1.066983	1.75	
0.2871	0.586931	0.749701	0.936736	13

<u>Test 2(n=1, Γ1=5/3, β)</u>

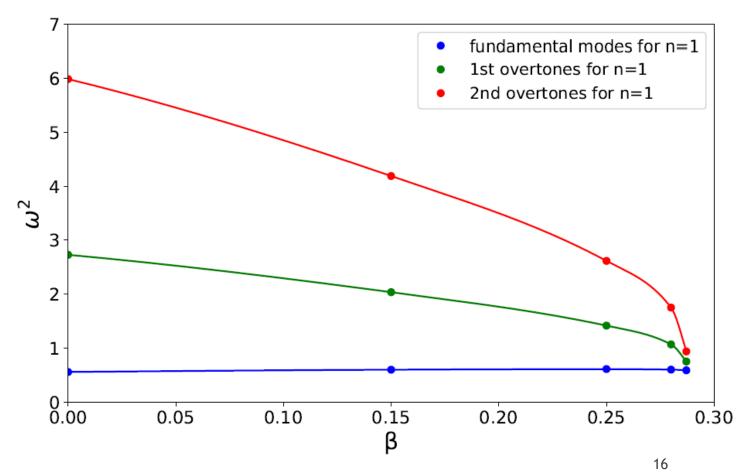


Present work

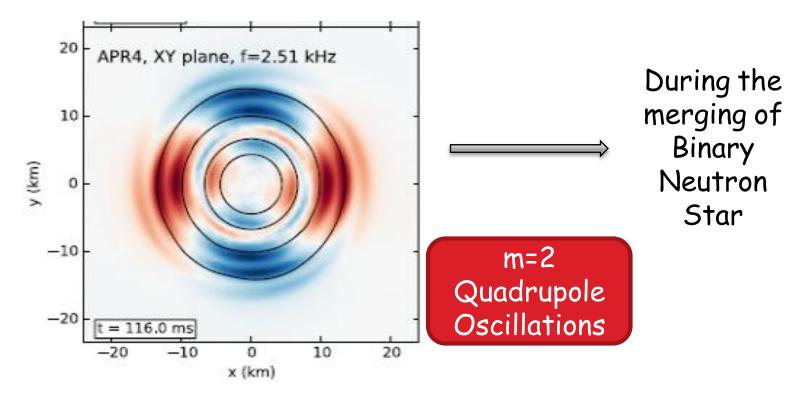


Present work

■n=1.5 , Γ₁=5/3



Simulation De Pietri et al. (2018)



Boundary Conditions

• Inner boundary (Center)

$$\Delta \boldsymbol{\omega} = \boldsymbol{\omega}^{c} \sum_{\nu=0}^{\infty} X_{\nu} \boldsymbol{\omega}^{\nu} \qquad \boldsymbol{Y} = \boldsymbol{\omega}^{d} \sum_{\nu=0}^{\infty} Y_{\nu} \boldsymbol{\omega}^{\nu} \longrightarrow \boldsymbol{Y}(0) = \frac{1}{m} \left[1 - \frac{(2\beta)^{1/2}}{\tilde{\boldsymbol{\omega}}} \right] \Delta \boldsymbol{\omega}(0)$$

$$F_1 = -m^2 \frac{\delta \tilde{\Phi}}{\xi^2} \qquad F_2 = -\xi^{-1} \frac{d\delta \tilde{\Phi}}{d\xi} \qquad \longrightarrow \qquad F_2(0) = \frac{F_1(0)}{m}$$

• Outer boundary (Surface) $F_2(\xi_1) = -\frac{F_1(\xi_1)}{m}$

Pressure vanishes during oscillations ($\Delta P=0$)

$$\frac{\delta P}{\rho_0}|_{\xi=\xi_1} = -\Delta \mathcal{O}(\xi_1) \longrightarrow Y(\xi_1) = \frac{-1}{\xi_1 \tilde{\omega}^2} \left[\left(\frac{\xi}{m}\right)^2 F_1 + \Delta \mathcal{O}(\xi_1) \right]$$

<u>Test 1(m=2, $\Gamma_1=5/3$, $\beta=0$)</u>

•Robe (1968)

n	g_3	g_2	g_1	f	p_1	p_2	p_3
1	-9.10 - 3	-1.58 - 2	-3.50 - 2	3.46 - 1	1.88+0	4.52 + 0	8.11+0
3	1.44 - 2	2.31 - 2	4.39 - 2	2.22 - 1	6.39 - 1	1.18+0	1.87 + 0
6	2.31 - 2	3.61 - 2	6.46 - 2	1.30 - 1	1.78 - 1	2.54 - 1	3.49 - 1

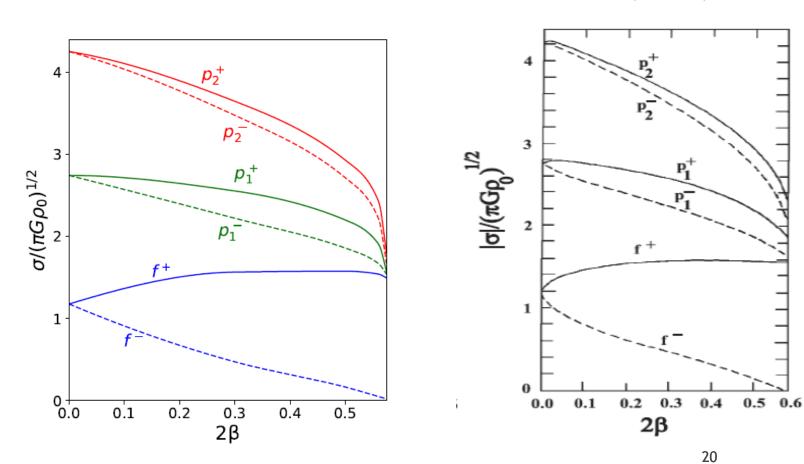
Present work

n	83	<u>8</u> 2	81	f	p_1	<i>p</i> ₂	<i>p</i> 3
1	-0.009099	-0.015822	-0.034961	0.346129	1.881	4.52	8.1201
3	0.0144	0.0231	0.043869	0.2219	0.6392	1.181	1.8701
6	0.02313	0.03608	0.06464	0.13	0.178	0.254	0.349

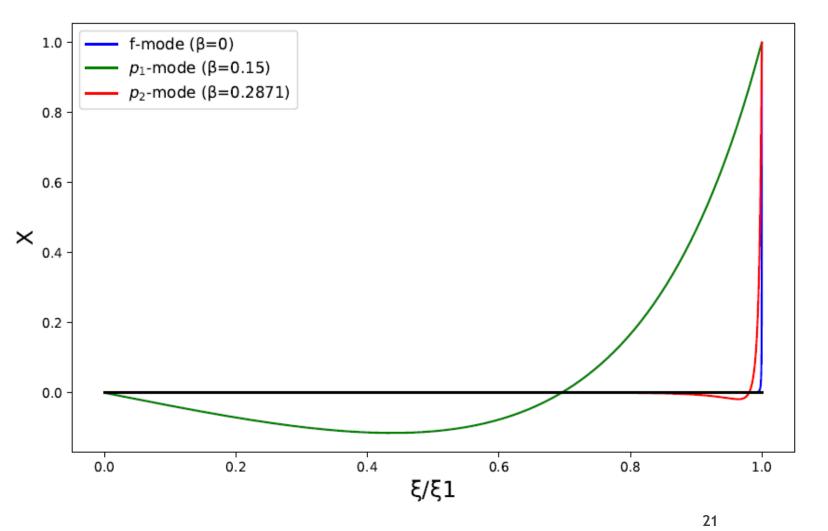
Robe (1968)

<u>Test 2(n=1, $\Gamma_1=5/3$, m=2, β)</u>

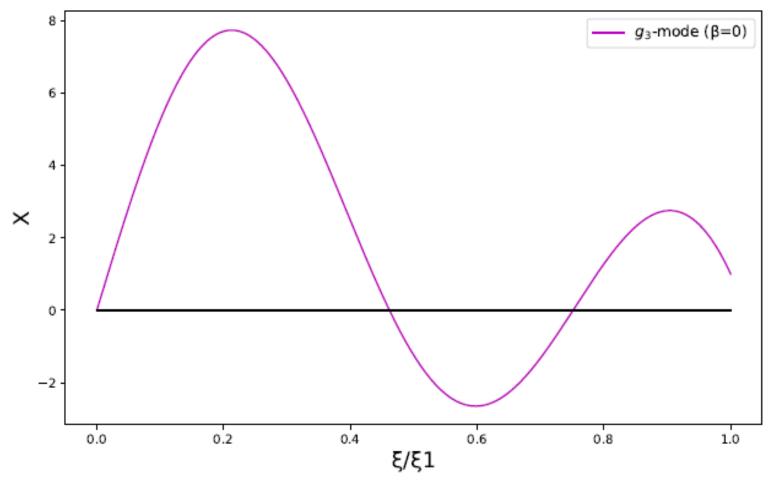
Present Code



(n=1, Γ₁=5/3, m=2, β)

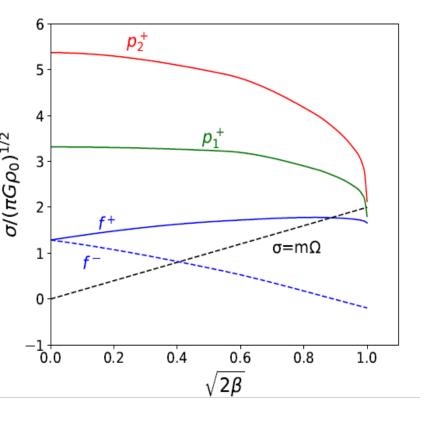


 $(n=1, \Gamma_1=5/3, m=2, \beta)$



22

Present work (m=2, $\Gamma_1=5/3$, β) $\square n=0.5 \longrightarrow p_2 - mode \approx m\Omega c$ $p_1 - mode \approx m\Omega c$ $f - mode \approx 0.8 m\Omega c$



- 1. <u>Co-rotating mode viscosity</u> <u>driven instability</u> $\sigma r=0 \Rightarrow \sigma i=2\Omega$
- <u>Counter-rotating mode</u> <u>instability</u> σi=0

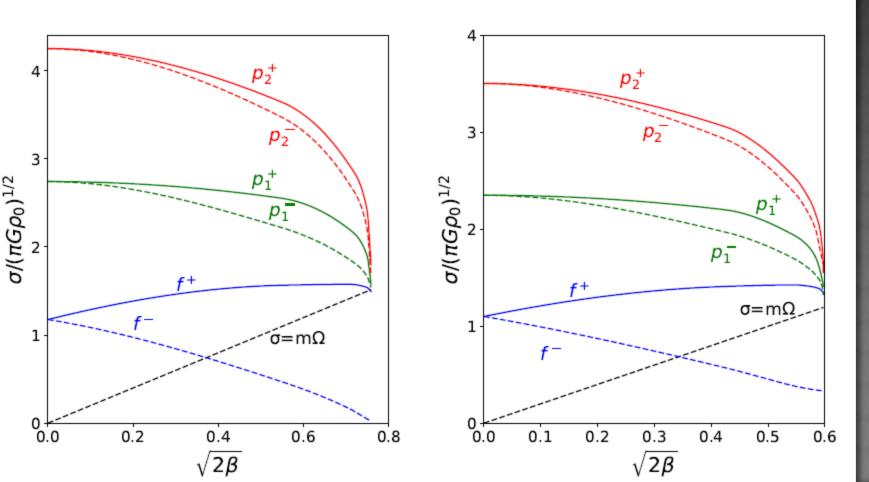
secular gravitational-wave driven instability (<u>CFS</u>)

[see Friedman J.L. and Stergioulas N. (2013)]

<u>Present work</u> (m=2, $\Gamma_1=5/3$, β)

Image: n=1 → f-mode ≈mΩc

■n=1.5



GOALS FOR THE FUTURE

- Differential rotation and comparison
- Inertial modes
- Simulations
- Effect of rotation to co-rotating modes and counterrotating modes
- Comparison between numerical methods
- Extension to spherical stars (Spherical Harmonics)
 +Relativity

BIBLIOGRAPHY

[1]De Pietri, R., et al. "Convective Excitation of Inertial Modes in Binary Neutron Star Mergers." 2018, arxiv.org/abs/1802.03288.

[2] Horedt, G. P. Polytropes: Applications in Astrophysics and Related Fields. Springer, 2010.

[3] Paschalidis, V., and Stergioulas N. "Rotating Stars in Relativity." NASA/ADS,2017,ui.adsabs.harvard.edu/abs/2017LRR....20....7P/abstr act.

[4] Robe, H. "Équilibre Et Oscillations Des Cylindres Polytropiques Compressibles En Rotation." 1994AREPS..22..119M Page 124, 1968, adsbit.

harvard.edu//full/1968AnAp...31..549R/0000551.000.html.

[5] Friedman, J. L., and Stergioulas N. "Rotating Relativistic Stars." NASA/ADS, 2013, ui.adsabs.harvard.edu/abs/2013rrs..book.....F/abstract.

