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General introduction

Neutron stars

Neutron stars represent some of the most extreme objects in the
universe; very high densities p. > 10'5 g cm ™3, magnetic fields

~

B > 10'G, and rotation rates v > 700 Hz.

Gravitational waves

In GR, GWs are generated by a rotating, biaxial object when the
angle made between its angular momentum and symmetry axis
vectors (‘wobble angle’) is non zero, or if there is some deviation in
axisymmetry about its principal axis (‘ellipticity’).

— The exact character of the gravitational waves can be written in
terms of the multipole moments, and depends on the properties of
the internal fluid.




Some example mechanisms

guv = g,(?y) = h,uzz (1)

containing an equilibrium piece and a radiative piece.

Density asymmetries

— Modes which are restored by hydrostatic forces in the star; e.g.
pressure for f-modes, or buoyancy for g-modes.

— Magnetic fields; Lorentz force is not spherically symietric

— Accretion mounds; neutron stars in LMXB accrete matter

Velocity asymmetries

— Modes which are restored by rotational forces; e.g. inertial modes
from Coriolois force.

— Pulsar glitches; rapid reconfigurations of vortex pinning sites can
change angular distribution of star.




A brief treatise on multipole moments

The idea is that we want to write the field equations in a certain
way such that they resemble Newtonian physics.

Introduce a particular representation for the metric
ho? = —(—g)1/2g*# + ¥ with h%’ = 0. Write
Dnﬁ‘“’ = —8nrH (2)

This object 7 involves the stress-energy tensor, and various
components of the metric in some complicated way (note: we
haven’t done anything fancy here!): 7 = T + t11,, where the
Landau-Lifshitz looks like : tr, = tff} + tESR.
Gauge condition implies conserved current P# = [ TH9d3x, which,
using Stokes’ theorem and energy-momentum conservation, implies
that

dP%/dt = Eqw = —R? f t% A;dQ. (3)




Metric solutions

Using a Green’s function to “solve” [J,h#” = —877#” one can write
h* = 4/7’“”(‘5 — Vgl‘X —x'|,¥)|x — x| 71d%x. (4)

Additionally, using a harmonic decomposition, this can be written
_ 1 v N(ar I\m 33/ 2
—4d- Z = atm/fu (t—d, x)(A-x)"d3x + O(r/d)2. (5)

In general, monopole terms are like m = 0, dipole m = 1, and
quadrupoles m = 2, etc.

However, because of the de Donder (Lorenz) gauge condition, one
has

83 (TOOXin) = aké‘l(Tklxixj) — Q@k(Tikxj + Tiji) + 27'ij, (6)

so that monopole and quadrupole terms do not manifest in h.




Post-Newtonian expansions

As we saw, monopolar (and dipolar) GWs cannot radiate in general
relativity. This can also be thought of via Birkhoff’s theorem:
spacetime surrounding spherically symmetric source is static.

Essentially: h has no mono. or dip. terms, and thus tyj, ~< h,h >
has none either.

Post-Newtonian

A further simplification is then obtained by expanding terms (i.e.
Landau-Lifshitz, h, the stress-energy tensor, ...) in powers of ¢=2%,

where n denotes the PN-order.

For a compact object with spin frequency v and radius R, the
contribution to the overall GW strain from each m-pole (and each
PN!) scales with (vR./c)™; for a (mature) NS this vR,/c < 1072




Modified gravity?

Modified gravity

However, if the theory of gravity of differs from GR, monopolar
GWs are (generally) predicted to exist because extra fields are
introduced which are not tensorial!

In a scalar-tensor theory, we have
(SR 4+ tNOR < B h > 4 <hh> 4o (7)

The equation for the scalar-field ¢ also looks like [,9) = S, for
some ‘source’ S; in Brans-Dicke
8
3+ 2w

Uptp = Ty — (¥ — Opeh). (8)

Because this equation is not tensorial, we cannot do the same trick
to get rid of monopole terms in the harmonic expansion of ¥ (Will
1993).




General post-Newtonian ‘super-metric’ (Will 1971)

Find all possible terms at post-Newtonian order, build a ‘super
metric’ including all of these with some coefficients.

2 2U2 40
ds? =c? (1_§+5‘i—2+g,4>dt2
C C ©

(9)
1 2
+ <;A1Va + 2A2Wa> dtdx? — <1 + ;y2U) Sapdx?dx®,

~ and (: spatial curvature due to unit mass (e.g. light deflection),
¢ and X: spatial curvature due to the radial and transverse
components of kinetic energy and stress (preferred-frame effects),
A and As: dragging of inertial frames by unit momentum
(violation of conservation of angular momentum),

Bi (in ®): spatial curvature due to unit kinetic energy, unit
gravitational potential, unit internal energy, and unit pressure
(violation of conservation of linear momentum).




Example: PPN values in Brans-Dicke theory

To find the PPN values in the theory set

Zap = Nap + haﬁ; ¢ - ¢0 + . (10)

To lowest order, the equations of the theory coupled to some
perfect-fluid matter source, allows us to find the spatial
components of the metric:

201l +w
gij ~ 0ij (1 + C22+W> ; (11)
Comparing this with the general PPN-metric, we have that
1+w
= — 12
YBD 2+ w (12)

Similarly for other parameters; for Lagrangian theories, many of
the PPN parameters vanish (e.g. no violations of energy and
angular momentum conservation).
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24w

Brans-Dicke theory: v =

The details are rather involved, but we are able to find that

153675Gr? (2(1
BT, — :5 v { (11‘ 7)1/46213

2
72 (1 —7) {/drd%p(r 0)r*sin @ [r*v” + (67 — 2) U(r)] } ,
(13)
In general, the ratio of the monopole to quadrupole contributions
0 (13) can be estimated as

EHIOHO

C\°( v \4( R\
~ 1010 & . - 14
Equad U ’Y)(o.z) (100 Hz> <106 cm> (4

implying that monopolar radiation is likely to dominate even for
rapidly rotating stars v < 1 kHz unless 1 — « is sufficiently small.




Magnetised PPN NSs

Using the general PPN super-metric, equations of motion for a
perfect fluid coupled to an electromagnetic field gives rise to a
system of higher-order MHD equations, i.e. PPN-MHD.
Continuity, for example,

ap*
— (o* 1
0=—+V- (), (15)
where )
. 1v 3yU
p—p<1+2c2 (32)' (16)

We use a mixed poloidal-toroidal dipole field model, which has an
energy ratio A (see paper for details).




Magnetised stars and GW energy
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Pulsar B, v Observational limit E%J“/}’ 1—v 1—7
(102 G) (Hz) (10% erg/s) (N=1) (AN=1072)
J0205+6449 3.60 15.2 17.2 <12x1071 <1.3x107°
J053442200 (Crab) 3.75 29.7 9.61 <84x107% <1.5x1076
J0835-4510 (Vela) 3.62 11.2 0.617 <42x107% <80x1077
J1302-6350 0.337 20.9 8.30 = <52x 1072
J1809-1917 1.46 12.1 110 = <4.7x 1073
J1813-1246 0.956 20.8 3.15 - <2.6x107*
J1826-1256 3.74 9.05 161 - <34x107*
J1928+1746 0.974 14.6 147 - <24 x1072
J1952+3252 (CTB 80) 0.472 25.3 7.66 - <2.1x1072
J2043+2740 3.87 10.4 23.1 - <2.7x107°
1222946114 2.03 19.4 5.12 - <23 x107°

The fourth column shows the observational upper limits from a
Bayesian analysis on at the 95% confidence level (Abbott et al.

2017). The fifth and sixth columns shows bounds on 1 — v obtained

by requiring that E%T

E95A)



Comparison on limits

Experiment Constraint

Precession of Mercury —3.0x 1073 < 27PPN PPN _ 1 230 x 1073
Lunar Laser Ranging (Nordtvedt effect) —1.7 x 1073 < 48FPN _ PPN _ 3 (.3 x 1073
Very Long Baseline Interferometry —4.0x107% <4PPN _1 <40x107*
Cassini tracking (grav. redshift) —02x107° <APPN 1 <44 x107°
Timing of PSR B1913+16 BFPN _ 1 < 1.1 % (W’PP‘\ — 1)

For conservative, purely poloidal models with characteristic field
strength given by the spindown minimum, upper limits for the Vela
pulsar yield 1 —~ < 4.2 x 1073, For models containing a strong
toroidal field housing ~ 99% of the internal magnetic energy, we
obtain the bound 1 —~ < 8.0 x 1077,

= comparable limits with Solar system experiments!




