
Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

N-Body modelling exercise session with REBOUND

In the following, I have defined different problems that can be addressed with rebound. The
complexity increases from problem to problem. You do not have to work on all of them. I
suggest to start with the first one. All of the examples can be addressed with the python
version of rebound.

1 The N-Body Code REBOUND

REBOUND is a software package that can integrate the motion of particles under the in-
fluence of gravity. The particles can represent stars, planets, moons, ring or dust parti-
cles. REBOUND is free software and published under the terms of the GNU General Pub-
lic License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version1. REBOUND’s maintainer is Professor Hanno Rein
(https://rein.utsc.utoronto.ca/). The source code can be obtained via github https:

//github.com/hannorein/rebound and the complete documentation is online via https:

//rebound.readthedocs.io/en/latest/.
REBOUND’s core is written in the programming language C, but it offers a very nice and

user-friendly python interface. We highly recommend to use the python interface for the
exercises.

1.1 Download and Installation

Depending on your choice of programming language, you have to install REBOUND in the
following way. For the problems discussed in the following, the python version is fully suf-
ficient, more easily to install and therefore the recommended choice for today. In addition to
the following short steps, you may also read https://www.tat.physik.uni-tuebingen.de/

~schaefer/teach/f/how_to_install_rebound.pdf. Please consult also the documentation
about the installation if you face any problems.

1.1.1 Python

To install the python module for REBOUND, you can use pip. Make sure to use python
version 3 only.

pip install rebound

To verify the installation, try to import the module in the commandline interpreter and load
the help for the module

$ python

Python 3.10.4 | packaged by conda -forge | (main , Mar 24 2022, 17:39:37) [Clang

12.0.1] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import rebound

>>> sim = rebound.Simulation ()

>>> sim

<rebound.simulation.Simulation object at 0x103a07540 , N=0, t=0.0>

>>>

1http://www.gnu.org/licenses/

1

https://rein.utsc.utoronto.ca/
https://github.com/hannorein/rebound
https://github.com/hannorein/rebound
https://rebound.readthedocs.io/en/latest/
https://rebound.readthedocs.io/en/latest/
https://www.tat.physik.uni-tuebingen.de/~schaefer/teach/f/how_to_install_rebound.pdf
https://www.tat.physik.uni-tuebingen.de/~schaefer/teach/f/how_to_install_rebound.pdf
http://www.gnu.org/licenses/

Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

Additionally, install all other packages that are required for the following exercises: reboundx,
numpy, matplotlib.

1.1.2 C

To clone the source code from the github repository, use the following command, which also
runs a first example to test if the compilation was successfull
git clone http:// github.com/hannorein/rebound && cd rebound/examples/

shearing_sheet && make && ./ rebound

For your own exercises, you can simply copy one of the example files in rebound/exam-
ples and modify it and use the Makefile provided there, or you use the following Makefile
template (Linux, macOS) to compile source file foo.c and link to rebound (make sure to set
REBOUND SRC accordingly)
OPT+= -Wall -g -Wno -unused -result

OPT+= -std=c99 -Wpointer -arith -D_GNU_SOURCE -O3

LIB+= -lm -lrt

your preferred compiler

CC = gcc

path to the source directory of your rebound installation

REBOUND_SRC =../../ src/rebound/src/

all: librebound

@echo ""

@echo "Compiling problem file ..."

$(CC) -I$(REBOUND_SRC) -Wl ,-rpath ,./ $(OPT) $(PREDEF) foo.c -L. -

lrebound $(LIB) -o foo

@echo ""

@echo "REBOUND compiled successfully."

librebound:

@echo "Compiling shared library librebound.so ..."

$(MAKE) -C $(REBOUND_SRC)
@-rm -f librebound.so

@ln -s $(REBOUND_SRC)/librebound.so .

clean:

@echo "Cleaning up shared library librebound.so ..."

@-rm -f librebound.so

$(MAKE) -C $(REBOUND_SRC) clean

@echo "Cleaning up local directory ..."

@-rm -vf rebound

1.2 Documentation and Tutorial

REBOUND is a well documented software package and the webpage offers a large number
of examples both in C and python. Hence, we do not give a more detailed description in this
script. Please see https://rebound.readthedocs.io/en/latest/examples.html for exam-
ples and https://rebound.readthedocs.io/en/latest/quickstart.html for the quick-
start guide.

If you run into problems during the installation and fail to run an example, please ask for
help.

2

https://rebound.readthedocs.io/en/latest/examples.html
https://rebound.readthedocs.io/en/latest/quickstart.html

Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

2 Exercises

In the following subsections you find the exercises that you have to solve during this lab-
work. Be sure to add your findings in your minutes and if important to the final protocol.
Think about meaningful plots to state your results and add them to the protocol.

2.1 The Two-Body Problem

Consider the two-body problem with the following setup: eccentricity e = 0.3, semi-major
axis a = 1, m1 = 1, m2 = 10−3. With the gravitational constant G set to 1, the orbital period
is ≈ 2π . Energy and angular momentum should be conserved, they are given by

E = −µ
GM
2a

,

L = µ

√
(1 − e2)GMa,

where µ denotes the reduced mass and M the total mass

µ =
m1m2

M
,

M = m1 + m2.

Choose the z-axis as the direction of the angular momentum Lz = L. Choose the x-axis as the
direction of the periapsis to body 2. At time t0 = t(0) = 0, both bodies are at closest distance
dp = a(1 − e). At time t0, the positions and the velocities of the two bodies are given by
vy1(0) = −L/(dpm1), x1(0) = −dpm2/M and vy2(0) = L/(dpm2), x2(0) = dpm1/M. The
motion of the two bodies is solely in the xy-plane.

We want to test the quality of the various integrators from the REBOUND software pack-
age. Integrate the system for 103 orbital periods at first with the Leap-Frog integrator with
different fixed time-steps 1 to 10−6 and observe the energy, angular momentum, and the
orbital elements. Try also another integrator!

There are additional diagnosis functions to compute conserved values, e.g., in C
reb calculate energy(struct reb simulation *) or in Python sim.calculate energy().

2.1.1 Solution with C

// note: this is not the complete source code , just a snippet

// add the missing lines

#define TWOPI 6.283185307179586

struct reb_simulation* r = reb_create_simulation ();

/* setup of the simulation

* create two particles via

* struct reb_particle p1 and p2

* add the two particles to the simulation via reb_add(r, p)

*

*/

3

Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

// choose Leap -frog integrator

r->integrator = REB_INTEGRATOR_LEAPFROG;

// fixed time step

r->dt = 1e-4; // and 1 and 1e-1 and 1e-2 and 1e-3 and ...

// function pointer to the heartbeat function.

// the function is called after each dt

r->heartbeat = heartbeat;

// move all to center of mass frame

reb_move_to_com(r);

// now integrate for 1000 orbits , 2pi is one orbit

reb_integrate(r, 1000* TWOPI);

Define a heartbeat function void heartbeat(struct reb simulation *r) to write the or-
bits, eccentricities and energy with the help of the builtin functions reb output ascii and/or
reb output orbits to files and plot the values (using gnuplot or python or your preferred
plotting tool).

2.1.2 Solution with Python

#!/usr/bin/env python3

integrate two body problem , awful formatting to fit on a single page

import sys

import numpy as np

import matplotlib.pyplot as plt

import rebound

create a sim object

sim = rebound.Simulation ()

set the integrator to type REB_INTEGRATOR_LEAPFROG

sim.integrator = "leapfrog"

and use a fixed time step

sim.dt = 1e-4

here add your particles

sim.add(m=1.0)

sim.add(m=1e-3, a=1.0, e=0.3)

do not forget to move to the center of mass

sim.move_to_com ()

create time array , let’s say 1 orbit , plot 250 times per orbit

Norbits = 1

Nsteps = Norbits *250

times = np.linspace(0, Norbits *2*np.pi , Nsteps)

x = np.zeros((sim.N, Nsteps)) # coordinates for both particles

y = np.zeros_like(x)

energy = np.zeros(Nsteps) # energy of the system

now integrate

for i, t in enumerate(times):

print(t, end="\r")

sim.integrate(t, exact_finish_time =0)

energy[i] = sim.calculate_energy ()

for j in range(sim.N):

x[j,i] = sim.particles[j].x

y[j,i] = sim.particles[j].y

4

Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

print("Done , now plotting ...")

plot the orbit

fig , ax = plt.subplots ()

ax.scatter(x,y, s=2)

ax.set_title("Orbit with step size %g" % sim.dt)

ax.set_aspect("equal")

ax.set_xlabel("x-coordinate")

ax.set_ylabel("y-coordinate")

plt.grid(True)

fig.savefig("orbit"+str(sim.dt)+".pdf")

plot the energy

fig , ax = plt.subplots ()

ax.scatter(times , np.abs(energy -energy [0])/np.abs(energy [0]), s=2)

print(energy)

ax.set_title("Energy with step size %g" % sim.dt)

ax.set_xlabel("time")

ax.set_yscale("log")

ax.set_ylabel("energy")

plt.grid(True)

fig.savefig("energy"+str(sim.dt)+".pdf")

print("Done.")

The orbital elements are also stored in sim.particles, e.g., the eccentricity of the second
particle is given by sim.particles[1].e. Plot the orbital elements for different fixed time
steps and test if the conservation of energy and angular momentum is given.

2.2 Stability of a planetary system — The co-planar Three-Body-Problem

This example follows the ideas of the publication by Gladman (1993): We have a co-planar
planetary system with a massive central mass m1 and two planets with masses m2 and m3,
please see fig. 1 for a sketch. The initial setup is as follows: A central mass m1, which is
initially orbited by two smaller bodies (planets) on circular orbits, which start in opposition
(δφ = π). The mutual gravitational perturbations will change the shape of the orbits, the
eccentricities e and semi-major axes a. Large changes are expected when the two planets are
close in conjunction. A system is called Hill-stable (or simply stable), if close encounters are
excluded for all times.

The stability of the system can be examined in dependence of the initial conditions and
the masses. We will investigate the conditions described in Fig. 1.

For small initial separations ∆ of the two given masses m2, m3, we will expect larger grav-
itational perturbations of the two masses and hence higher changes in e and a.

Gladman (1993) finds for small masses m2 and m3 and initially circular orbits the following
criterion for stability for the initial separation of the two circular planetary orbits

∆c ≃ 2.40 (µ2 +µ3)
1/3. (1)

For non-circular orbits, more general criteria can be derived, but this is off the scope of this
experiment.

In order to study the stability, we start with a given ∆ and perform the integration of the
trajectory for 103 orbits. The time evolution of the orbital elements have to be plotted.

Instability will be detected by close-encounters. A close-encounter is given, when the
distance between the two planets is lower than the Hill radius of the more massive one of

5

Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

the two bodies. The Hill radius is given by

Rin ≈ a 3
√
µ/3, (2)

where the distance of the planet to the star is denoted by a and µ denotes the mass ratio of
the smaller object to the more massive one.

In the exercise, we determine numerically the critical distance ∆c. For values lower than
∆c, the system is unstable. The precise value of ∆c might depend on the applied numerical
integrator.

REBOUND can automatically find collisions between the objects if they were given a ra-
dius when added to the simulation2. It allows to define a function which is called for each
collision. We will use this feature to add a global counter which we increase if the planets
get closer than their Hill’s sphere.

count number of collisions

def collision_print_only(sim_pointer , collision):

global cnt

sim = sim_pointer.contents # get simulation object from pointer

print(sim.t) # print time

print(sim.particles[collision.p1].x) # x position of particle 1

print(sim.particles[collision.p2].x) # x position of particle 2

cnt += 1

return 0 # Don’t remove either particle

and in the main scope

cnt = 0

collision detection

sim.collision = "direct"

call this function if a collision is found

sim.collision_resolve = collision_print_only

The setup

Use the standard IAS15 integrator and (a) masses m1 = 1, m2 = m3 = 10−5, a2 = 1, a3 =
a2 + ∆, e2,3 = 0. Add the masses to the REBOUND simulation and indicate their collision
radius by using the argument r in function sim.add, i.e.

here add your particles

with something like this

m1 = 1.0

m2 = m3 = 1e-5

deltacritical = 2.4 * (m2/m1 + m3/m1)**(1./3)

rhill = 1.0*(m2 /(3.*m1))**(1./3)

sim.add(m=m1)

sim.add(m=m2 , a=1.0, e=0.0, r=rhill)

choose DELTA accordingly: for DELTA < deltacritical , we expect a lot of

close encounters , for DELTA > deltacritical , the system is expected to be

stable , place the second planet in opposition using omega=np.pi

sim.add(m=m3 , a=1.0+ DELTA , e=0.0, r=rhill , omega=np.pi)

do not forget to move to the center of mass

sim.move_to_com ()

2https://rebound.readthedocs.io/en/latest/collisions/

6

https://rebound.readthedocs.io/en/latest/collisions/

Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

m1 m2

m3

a = 1

∆

Figure 1: Schematic representation of a three body problem, where two smaller test masses
m2 and m3 orbit a larger central mass m1, it holds m2 + m3 ≪ m1. The initial
semi-major axis of mass m2 is normed to 1 in respect to the central mass m1, and
the semi-major axis of m3 to 1 + ∆. The initial locations of the smaller bodies are
opposed, δφ = π , (after Gladman, 1993).

Simulate the system for approximately 104 orbits (one period is approximately 2π), count the
numbers of close encounters and plot the evolution of the semi-major axes and eccentricities
of the two planets for five different values of the initial separation ∆: 10%, 50%, 100%, 150%
and 1000% of ∆c.

(b) Repeat exercise (a) with masses m1 = 1, m2 = 10−5, m3 = 10−7, a2 = 1, a3 = a2 + ∆,
e2,3 = 0. Describe your findings!

2.3 Stability of Saturn’s rings

The idea for this exercise is based on the paper by Vanderbei & Kolemen (2007)3. They give a
self-contained modern linear stability analysis of a system of n equal mass bodies in circular
orbit around a single more massive body. We will investigate their analytical findings with
simulations.

Consider following scenario: one high mass body with mass M is orbited by n lower mass
bodies with equal masses m at distance r = 1. The initial angular velocity ω of the lower
mass bodies is

ω =

√
GM
r3 +

GmIn

r3 , (3)

3https://arxiv.org/abs/astro-ph/0606510

7

https://arxiv.org/abs/astro-ph/0606510

Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

n linear stability analysis γ numerical simulation analysis γ
8 2.412 2.4121
10 2.375 2.3753
36 2.306 2.3066
100 2.300 2.2999

Table 1: Values for the parameter γ found by Vanderbei & Kolemen.

where In is given by

In =
n−1

∑
k=1

1
4

1
sin(πk/n)

.

The result of Vanderbei & Kolemen is that the system is linear stable as long as

m ≤ γM
n3 , (4)

with the values for γ given in table 1. The goal of this exercise is to reproduce the analysis by
Vanderbei & Kolemen. Can you reproduce their result with your simulations? Use Saturn’s
mass for the central object (M = 2.857 166 56 × 10−4M⊙), set the mass unit to M⊙ and use
G = 1, set the initial distance of n lower mass bodies to r = 1 and the velocity according
to eq. (3), use the leap frog integrator with ∆t ≈ 10−5P = 2π/ω× 10−5. Vary both n and
the mass m of the n smaller objects, check if you expect a stable system according to eq. (4)
and integrate the system for 100 tp. If the masses are still orbiting Saturn, we consider the
systems as stable. Try different systems using values from table 1, i.e. start with n = 8
and vary the mass from a value which gives a stable configuration to a value that yields
instability in 10-20 steps, proceed in the same manner for n = 10, 36, 100.

2.4 Jupiter and Kirkwood gaps

In this problem we want to address the influence of Jupiter on the asteroid belt. A Kirkwood
gap is a gap in the distribution of the semi-major axes of the asteroids. They correspond to
the locations of orbital resonances with Jupiter. We will use inactive particles to model the as-
teroids and consider only the Sun, Jupiter and Mars as gravitating objects (r->N active=3).
Hence, the asteroids have no feedback on Sun, Jupiter and Mars and are just tracer particles.
Set up the Sun-Mars-Jupiter system with the help of the NASA Horizons web-interface to
get initial conditions for Mars and Jupiter (Ephemeris Type VECTORS) and add randomly
10 000 inactive particles between 2 and 4 au in the midplane.

Let the system evolve for several one hundred thousands of years and look for the Kirk-
wood gaps (cf. Figure 2).
Note: This will probably require to run the code over night (depending on your hard-
ware).

Generate meaningful plots (eccentricity over semi-major axis, histogram plot of number of
asteroids over semi-major axis) at different times (e.g., every one hundred thousand years)
until at least one million years to show the formation of the dips. Add the known Kirkwood
gaps to your plots. Do you find agreement with your results?

8

https://ssd.jpl.nasa.gov/horizons.cgi

Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5

Semi-major Axis (AU)

0

50

100

150

200

250

300

350

A
s
te

ro
id

s
 (

p
e
r

0
.0

0
0
5
 A

U
 b

in
)

3:1 5:2 7:3 2:1

Alan Chamberlin (2007, JPL/Caltech)

Mean Motion Resonance
(asteroid : Jupiter)

Asteroid Main-Belt Distribution
Kirkwood Gaps

Figure 2: Kirkwood gaps in the asteroid belt (Chamberlin 2007).

2.4.1 Solution with C

The following code snippet can be used to generate testparticles between 2 and 4 au with
eccentricities between 0 and 0.5.

double au = 1.496 e11;

while (r->N < 10000) {

// here we need to randomly generated particles between 2 and 4 au

double a = 2*((double)rand()/RAND_MAX)+2;

// and eccentricity between 0 and 0.5

double e = 0.5*((double)rand()/RAND_MAX);

// we use SI units , we do not know why , it’d better to use more

convenient units

a *= au;

// requires rebound version >=3.17

reb_add_fmt(r, "a e", a, e);

}

2.4.2 Solution with Python

The following code snippet can be used to generate testparticles between 2 and 4 au with
eccentricities between 0 and 0.5.
solarmass = 1.989 e30

au = 1.496 e11

9

Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

gravitationalconstant = 6.67408e-11

create a sim object

sim = rebound.Simulation ()

use SI units

sim.G = gravitationalconstant

add 10000 inactive tracerparticles between 2 and 4 au

N_testparticle = 10000

a_ini = np.linspace (2*au , 4*au , N_testparticle)

for a in a_ini:

sim.add(a=a, f=np.random.rand()*2.*np.pi , e=0.5*np.random.rand()) # mass

is set to 0 by default , random true anomaly , random eccentricity

set a reasonable time step

we use 1e-2 of an orbit at 2 au

orbit = 2*np.pi*np.sqrt (8*au*au*au/(gravitationalconstant*solarmass));

sim.dt = orbit*1e-2

2.5 Resonant capture of planet

In this problem, we investigate the phenomenon of planet migration and resonant trap-
ping using REBOUNDx. REBOUNDx (x for eXtras) is a library for additional effects for RE-
BOUND N-body simulations. The package was created and is maintained by Dan Tamayo,
see the official github repo for more details and examples: https://github.com/dtamayo/
reboundx. REBOUNDx offers some physical effects as out-of-the-box modules, which can
be easily added to an existing REBOUND simulation. These effects include for example
radiation forces, relativistic corrections, gravitational corrections for oblate objects (J2, J4
harmonics), and various options to model migration.

We will use REBOUNDx’ module exponential migration to simulate a migrating, Neptune-
sized planet which can capture an existing inner planet in a resonance.

An orbital resonance occurs when the orbital periods of two orbiting bodies are related
by a ratio of integers4. A resonance can either stabilize or de-stabilize the system. In the
example from the last section, the Kirkwood gaps are located at the mean-motion resonances
with Jupiter.

The following code snippet adds an exponential migration on the object called Neptune,
which migrates from 24 au to 10 au with an e-folding time of 105 years. Depending on the
migration speed, Neptune will be able to capture the inner planet in a resonance. Setup a
simulation with the three objects using the following snippets depending on your choice
of programming language and integrate the system for at least one million years. Plot the
evolution of the semi-major axes and eccentricities of the planets for different migration rates
of Neptune. Additionally track the ratio of the orbital periods of the two planets. What do
you find?

2.5.1 Solution with C

For this example in C, you must have installed REBOUNDx from https://github.com/

dtamayo/reboundx.

4A very nice example for resonances is given by Jupiter’s Galilean moons

10

https://github.com/dtamayo/reboundx
https://github.com/dtamayo/reboundx
https://github.com/dtamayo/reboundx
https://github.com/dtamayo/reboundx

Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

int main(int argc , char* argv []) {

struct reb_simulation* sim = reb_create_simulation ();

// Setup constants , that’s G for sim.units = (’yr’, ’AU’, ’Msun ’)

sim ->G = 39.476926421373679764;

sim ->heartbeat = heartbeat;

struct reb_particle p = {0};

p.m = 1.;

reb_add(sim , p);

double m = 5.1e-5;

double a1 = 24.0;

double e = 0.01;

double inc = 0.;

double Omega = 0.;

double omega = 0.;

double f = 0.;

double m2 = 6e-6;

double a2 = 10.0;

double e2 = 0.0;

struct reb_particle p1 = reb_tools_orbit_to_particle(sim ->G, p, m, a1, e,

inc , Omega , omega , f);

struct reb_particle p2 = reb_tools_orbit_to_particle(sim ->G, p, m2, a2, e2

, inc , Omega , omega , f);

reb_add(sim ,p1);

reb_add(sim ,p2);

reb_move_to_com(sim);

struct rebx_extras* rebx = rebx_attach(sim);

struct rebx_force* em = rebx_load_force(rebx , "exponential_migration");

// add force that adds velocity kicks to give exponential migration

rebx_add_force(rebx , em);

double tmax = TMAX; // TMAX is a global define

rebx_set_param_double(rebx , &sim ->particles [1].ap, "em_tau_a", 1e5);

// add migration e-folding timescale

rebx_set_param_double(rebx , &sim ->particles [1].ap, "em_aini", 24.0);

// add initial semimajor axis

rebx_set_param_double(rebx , &sim ->particles [1].ap, "em_afin", 10.0);

// add final semimajor axis

reb_integrate(sim , tmax);

rebx_free(rebx); // Free all the memory allocated by rebx

reb_free_simulation(sim);

}

2.5.2 Solution with Python

For this example, you must have installed the reboundx module for python.

sim = rebound.Simulation () # Initiate rebound simulation

sim.units = (’yr’, ’AU’, ’Msun’)

sim.add(m=1)

sim.add(m=5.1e-5, a=24., e=0.01, hash="neptune") # Add Neptune (pre -migration)

at 24 AU

sim.add(m=6e-6, a=10., e=0.0, hash="planet") # Add 2nd earth mass planet

sim.move_to_com ()

rebx = reboundx.Extras(sim) # Initiate reboundx

11

Hands-on Numerical Astrophysics School for Exoplanetary Sciences, SPP1992 Summer School 04.07.2022

mod_effect = rebx.load_force("exponential_migration") # Add the migration

force

rebx.add_force(mod_effect) # Add the migration force

based on example from https :// github.com/dtamayo/reboundx/blob/master/

ipython_examples/ExponentialMigration.ipynb

sim.particles[’neptune ’]. params["em_aini"] = 24. # parameter 1: Neptune ’s

initial semimajor axis

sim.particles[’neptune ’]. params["em_afin"] = 10.0 # parameter 2: Neptune ’s

final semimajor axis

this parameter is to play around with

using 1e5 the resonance will be 3:2, using 1e6 it’s 2:1

sim.particles [1]. params["em_tau_a"] = 1e5 # parameter 3: the migration e-

folding time

References

Gladman, B. 1993. Dynamics of systems of two close planets. Icarus 106, 247–+.

Happy Coding! 1

Anna Penzlin, Christoph Schäfer, last changed 1 July 2022

12

	The N-Body Code REBOUND
	Download and Installation
	Python
	C

	Documentation and Tutorial

	Exercises
	The Two-Body Problem
	Solution with C
	Solution with Python

	Stability of a planetary system — The co-planar Three-Body-Problem
	Stability of Saturn's rings
	Jupiter and Kirkwood gaps
	Solution with C
	Solution with Python

	Resonant capture of planet
	Solution with C
	Solution with Python

