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Note
The goal of the labwork at hand for the student is to learn and implement some basic
integrators to solve the initial value problem. The first section is identical to the first
section of the other computational astrophysics labwork “N-Body Simulations with
REBOUND”.
If you have no or only scarce experience in programming and computer science, we
advise you to favour the other labwork. In this labwork you will have to implement a
N-Body integrator which requires some basic programming skills.

1 Introduction

The classical N -body problem in Astrophysics is important to understand the evolution and
stability of planetary systems, star clusters and galactic nuclei. The dynamics of these many
body systems is dominated by pairwise gravitational interactions between single bodies. Hence,
this two-body interaction has to be accounted with high accuracy in the numerical treatment.
Typical numbers of the aforementioned systems are ∼ 10 for planetary systems, 104 to 106 for
star clusters and more than over 108 for galactic nuclei.
For particle numbers of this magnitude, the methods of statistical mechanics can only be applied
partially, and one has to rely on the direct integration of each individual particle trajectory with
regard of the mutual gravitational forces.
In this practical course, different numerical schemes for the solution of ordinary differential
equations (ODEs) will be implemented and tested on the application to the integration of these
trajectories. The main validation and test problem is the two-body problem and its analytical
solution. More simulations include the restricted three-body problem.

2 The Classical N-Body-Problem

The motion of N point masses in their mutual gravitational field is the classical N -body problem.
Each particle i with mass mi has the location ri and the velocity vi at time t. The Hamiltonian
of this system reads

H =
N∑

i=1

pi
2

2mi
−

N∑
i=1

N∑
j=i+1

Gmimj

|qi − qj |
(1)

with the canonical coordinates momentum pi = mivi and location qi = ri for all i = 1 . . . N
point masses. The Hamiltonian Equations yield the equations of motion for particle i

q̇i(t) = ∂H

∂pi
=⇒ dri

dt
= vi (2)

ṗi(t) = −∂H

∂qi
=⇒ dvi

dt
= ai (3)

with the acceleration

ai(t) =
N∑

j ̸=i

Gmj
rij

r3
ij

. (4)
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Later, we will also need the time derivative of the acceleration, the so-called jerk

ȧi(t) =
N∑

j ̸=i

Gmj

(
vij

r3
ij

− 3(vij ·rij)
r5

ij

rij

)
(5)

where rij := rj(t) − ri(t), rij := |rij |, vij := vj(t) − vi(t), vij := |vij |.
To calculate all accelerations at a certain time, one needs to evaluate N (N − 1)/2 terms (using
symmetry), that is the computing time for large numbers of N is asymptotically ∼ N2.

The Two-Body Problem

The Hamiltonian (1) of the two-body problem can be separated into the motion of the center of
mass and the relative motion, that is H = H(r1, r2, p1, p2) → H(r, p, pcm) with

H = Hcm + Hrel = p 2
cm

2M
+ p 2

2µ
− Gm1m2

r
(6)

with the total mass M := m1 +m2, the reduced mass µ := m1m2/M , the distance vector between
the two bodies r := r1 − r2, the distance r := |r |, the relative momentum p := p1 − p2 and the
momentum of the center of mass pcm.
The Hamiltonian of the center of mass motion Hcm (the first term on the right hand side of
equation (6)) has trivial solutions. This follows from the face, that Hcm depends only on the
momemtum of the center of mass pcm and not from the conjugate variable rcm, the location of
the center of mass. It follows a steady motion of the center of mass.
The Hamiltonian of the relative motion Hrel yields the equation of motion of the classical two-body
problem

ṗ = µv̇ = −Gm1m2
r3 r (7)

with v = v1 − v2 = p/µ, and finally in the familiar notation

r̈ = v̇ = −GM

r3 r . (8)

The solution of the Kepler-problem are conic sections with the orbital plane, the motion of r
is characterised by an ellipse, a parabola or a hyperbola. The energy E, the specific angular
momentum

j = r × v (9)

and the Runge-Lenz vector

e = v × j
GM

− r
r

(10)

are conserved values of the two-body motion. Using eq. (8), we find for the evolution of the
angular momentum

dj
dt

= v × v + r × v̇ = −GM

r3 (r × r) = 0 . (11)
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To prove the conservation of e, we need some calculus with the use of the vector identity
(A × B) × C = B(A·C) − A(B·C). It follows

j × r
r3 = (r × v) × r

r3 = v
r

− r(r·v)
r3 = d

dt

(r
r

)
. (12)

With this term and the help of eq. (8) and (11), we find

de
dt

= −GM

r3
r × j
GM

− d
dt

(r
r

)
= j × r

r3 − d
dt

(r
r

)
= 0 . (13)

Additionally, we regard the following term

r·e + r = r·(v × j)
GM

= (r × v)·j
GM

= j2

GM
. (14)

The scalar product r·e is expressed with the angle ϕ − ϕ0 between e and the location vector r,
and re cos(ϕ − ϕ0) + r = j2/(GM), it follows

r(ϕ) = j2/(GM)
1 + e cos(ϕ − ϕ0) . (15)

This is the well-known equation of a conic section. For a constrained motion, the absolute value
of the Runge-Lenz vector e = |e| specifies the eccentricity of the ellipse. Then, the maximum
and minimum distance of the two point masses is given by

rmax/min = j2/(GM)
1 ± e

, (16)

the semi-major axis of the ellipse is given by

a = 1
2(rmin + rmax) = j2/(GM)

1 − e2 , (17)

and the semi-minor axis is given by the geometric mean

b = √
rminrmax. (18)

Because of Kepler’s third law (“The square of the orbital period of a planet is directly proportional
to the cube of the semi-major axis of its orbit.”), it follows for the orbital period

ω =
√

GM

a3 . (19)

Please see fig. 1 for an illustrative sketch of the properties of a bound Kepler orbit.

3 Numerical Solution of the Equation of Motion: Time integrators

In order to calculate the trajectories of the point masses, one has to solve the corresponding
equation of motion for each particle i, whic is the system of ODEs given by eqs. (2) and (3)
with appropriate initial values for locations and velocites. In general, this is only possible by the
help of numerical methods, which leads to the fact, that the particle distribution can only be
determined at discrete time values. Starting from the current point in time t = tn, the location
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a ϕ

Figure 1: Bound Two-Body orbit. The mass m1 is in the focus of the ellipse with semi-major
and semin-minor axes a and b, and eccentricity e. The distance of m1 to apoapsis is
rmax and to periapsis rmin. The equation 15 denotes the orbit with the choice of the
coordinate system so that ϕ0 = 0.

and the velocity at a later point in time tn+1 = tn + ∆t are calculated. Then, the new point in
time becomes the current one and the algorithm restarts at the new time.
In the following, different numerical schemes will be presented which can be used to solve a
system of ODEs of the form dy/dt = f(y, t) with initial values. These schemes are called time
integrators for obvious reasons in this context. They can, however, be applied for any initial
value problem. The indices in the following refer always to the equivalent point in time, that is
rn = r(tn), and so forth. The index i for the different point masses will be left in the following.

3.1 Single-Step Methods

Basic idea: Consider the differentials dy and dt as finite intervals ∆y and ∆t

dy

dt
⇒ ∆y

∆t
= f(t, y)

and discretise with ∆t = h

∆y = yn+1 − yn = ∆tf = hf.

Generally, single-step methods can be written in the following form

yn+1 = yn + hΦ(tn, yn, yn+1, h),

where Φ is called the evolution function. The scheme is called explicit if Φ = Φ(tn, yn, h) and
implicit for Φ = Φ(tn, yn, yn+1, h). The step is from tn to tn+1 and from yn to yn+1.
Single-step methods may be constructed by Taylor expansion. At first, we will discuss the simple
explicit one-step method, the explicit Euler-method with Φ(tn, yn, h) = f(tn, yn).
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3.2 Simple time integrators:
The Euler-method and the Euler-Cromer-method

The simplest way for a discrete time integration scheme is achieved with the help of the Taylor
expansion of location and velocity

v(tn + ∆t) = v(tn) + dv

dt
(tn)∆t + O(∆t2), (20)

= v(tn) + a(tn)∆t + O(∆t2), (21)

r(tn + ∆t) = r(tn) + dr

dt
(tn)∆t + O(∆t2), (22)

= r(tn) + v(tn)∆t + O(∆t2), (23)

where the acceleration a is given by eq. (4).
These equations directly yield an algorithm, the so-called Euler-method, where one calculates

vn+1 = vn + an∆t, (24)
rn+1 = rn + vn∆t (25)

for every time step.
The Euler-method uses the simple slope triangle to perform one forward step

y(tn+1)
y(tn) + ∆tf(tn, y(tn))

y(tn)

∆t

tn tn+1

y′(tn) = f(tn, y(tn))

t

y(t)

For each point in time tn, the evolution of the function y(t) from time tn to tn+1 = tn + ∆t is
approximated by ∆ty′(tn) = ∆tf(tn, y(tn)). The discretization error is given by the difference
y(tn+1) − [y(tn) + ∆tf(tn, y(tn))].
As an alternative to the Euler-method where the velocity is calculated first, there is the so-called
Euler-Cromer-method. Here, the new locations are calculated with the velocities at the new time
step tn+1 instead of tn like in the standard Euler-method.

vn+1 = vn + an∆t, (26)
rn+1 = rn + vn+1∆t. (27)
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Averaging both methods yields the scheme

vn+1 = vn + an∆t, (28)

rn+1 = rn + 1
2 (vn + vn+1) ∆t. (29)

3.2.1 Accuracy of the scheme

The main disadvantage of these methods is the low accuracy. If the trajectories of particles
have to be determined until the space in time tmax and each time step is of length ∆t, we need
Nt := tmax/∆t time steps. The error per time step is of the order O(∆t2) (see Taylor expansion),
leading to a total error of the simulation of the order O(Nt∆t2) = O(∆t). And the computational
accuracy was not even accounted, yet.

3.2.2 Computational accuracy

Let ϵ be the machine accuracy, the relative error due to rounding in floating point arithmetic.
The error caused by ϵ grows with O(Ntϵ). In order to improve the accuracy of the numerical
scheme, one can choose smaller time steps ∆t, which consequently yields a higher error by ϵ,
since we need a higher number of time steps Nt. Hence, global values of a N -body simulation
like the total energy E have an error of the order O(NtNϵ).
Some numbers for clarification: Depending on the numerical scheme, approximately 100 to 1000
steps per orbit are required for the two-body problem to achieve an error for the energy in the
order of the machine accuracy, that is ∆E/E ∼ 10−13. The error in the energy adds up to
∆E/E ∼ 10−9 for a complete orbit. To simulate the evolution of a star cluster with about 106

stars and for the time of about 104 typical orbital periods, one has to evaluate 1010 orbits with
1000 time steps each, in total 1013 time steps, eventually leading to an error of the total energy
of ∆E ∼ 100 %.

∆t

Error of the Euler-method

discretization error ∼ ∆t

machine eps ∼ 1
∆t

total error

∆tideal

3.3 The Leap-Frog-method

One improvement of the Euler-method is to use the velocity for the calculation of the new
locations at the point in time tn+1/2 = tn + ∆t/2 and not on the times tn or tn+1. The scheme

8



of this method is

First step:

r1/2 = r0 + v0
∆t

2 ,

Calculate a1/2 = a(t1/2, r1/2) ,

Regular steps:
vn+1 = vn + an+1/2 ∆t ,

rn+3/2 = rn+1/2 + vn+1 ∆t ,

Last step:

rn+1 = rn+1/2 + vn+1
∆t

2 .

The name of the this scheme “Leap Frog” originates from the fact that the positions and velocities
are updated at interleaved time points separated by ∆t/2, staggered in such a way, that they
leapfrog over each other. Hence, locations and velocities are not known at the same point in
time In the limit of ∆t → 0, one gets the usual canonical equations. Moreover, for finite ∆t,
the scheme is symplectic, which means, there is a Hamiltonian Ĥ = H + ∆t2H2 + ∆t4H4 + . . .,
which is solved exactly by the scheme. This has a positive impact on the consistency of conserved
quantities.

3.4 The Verlet-method

The Leap-Frog-method can be written as the so-called kick-drift-kick algorithm

ṽ(∆t) = v(t) + 1
2∆t a(t) (30)

r(t + ∆t) = r(t) + ∆t ṽ(t) (31)

v(t + ∆t) = ṽ(t) + 1
2∆t a(t + ∆t) (32)

The intermediate value ṽ(∆t) denotes the velocity at time t + 1/2∆t.
The advantage of this velocity Verlet-method is the higher accuracy in the calculation of the
locations. The Verlet-method is identical to the Leap-frog-method. Note, that also in this
method, only one evaluation of the force term is required per time step.

3.5 Runge-Kutta-Integrators

The error of one single step in the Euler method can be analyzed by looking at the Taylor
expansion. The Taylor expansion of y(t + h) at t yields with dy

dt = f(y, t)

y(t + h) = y(t) + h
dy

dt
+ O(h2) (33)

= y(t) + hf(y, t) + O(h2) (34)

Hence, we could get better accuracy if we also include higher terms.
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3.5.1 Basic idea of RK schemes

Now, let’s expand up to third order

y(t + h) = y(t) + h
dy

dt
+ h2

2
d2y

dt2 + O(h3) (35)

= y(t) + hf(y, t) + h2

2
df

dt
+ O(h3) (36)

The derivative of f with respect to t is given by

df(y(t), t)
dt

= f(y(t + h), t + h) − f(y(t), t)
h

+ O(h). (37)

Unfortunately, we do not know y(t + h). By using the Euler scheme to estimate y(t + h), we get

df(y(t), t)
dt

= f(y(t) + hf(y(t), t), t + h) − f(y(t), t)
h

+ O(h). (38)

Inserting eq. (38) into (36) yields

y(t + h) = y(t) + hf(y(t), t) + h

2 {f(y(t) + hf(y(t), t), t + h) − f(y(t), t)} + O(h3) (39)

= y(t) + h

2 {f(y(t), t) + f(y(t) + hf(y(t), t), t + h)} + O(h3). (40)

We have improved the accuracy for the cost of an additional calculation of f at substep y(t) +
hf(y, t). This is the basic idea of any Runge-Kutta method. In fact, we have just derived a RK
2nd order scheme, the Heun method.
The general form of an explicit RK method is

yn+1 = yn + h
∑

i

biki, (41)

where the ki denote the substeps and bi are some weights. Please see a textbook for further
details. Here, we provide only the terms for the RK4 method.

3.5.2 The classical Runge-Kutta scheme

A system of first order ODEs can be written in vector notation

y′ = f(t, y(t)), y(t0) = y0 (42)

with the vector for the initial values y0. In our N-body problem, y will be (r, v) with initial values
(r(0), v(0)). A very common integration scheme is the so-called 4th order Runge-Kutta-method
(RK4). In this scheme, estimated values for the derivative at single substeps in the interval
tn, tn + h are calculated. In vector notation, it reads

K1 = f(tn, yn) (43)

K2 = f
(

tn + 1
2h, yn + h

2 K1

)
(44)

K3 = f
(

tn + 1
2h, yn + h

2 K2

)
(45)

K4 = f (tn+1, yn + hK3) (46)
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m1 m2

m3

a = 1

∆

Figure 2: Schematic representation of a three body problem, where two smaller test masses m2
and m3 orbit a larger central mass m1, it holds m2 + m3 ≪ m1. The initial semi-major
axis of mass m2 is normed to 1 in respect to the central mass m1, and the semi-major
axis of m3 to 1 + ∆. The initial locations of the smaller bodies are opposed, δϕ = π,
(after Gladman, 1993).

where yn, yn+1, K1, K2, K3, K4 and f are vectors in the vector space Rm. The value of the
function y at the new time is calculated by

yn+1 = yn + h

6 (K1 + 2K2 + 2K3 + K4) . (47)

The error of the scheme is of the order O(h5). The price for this high accuracy is the required
calculation of the function which is four times per time step. However, the stability is also
improved compared to the Euler-method. For a more detailed description of the RK4-method,
we refer to the book “Numerical Recipes”1 and wikipedia. We will apply the RK4-method in
this course on the system of equations (2) and (3).

4 The co-planar Three-Body-Problem

In the last part of the practical course, we want to investigate the stability of the restricted
three-body problem, schematically shown in Fig. 2. The setup of this part is from a publication
by Gladman (1993).

1http://apps.nrbook.com/c/index.html, p.710
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The initial setup is as follows: A central mass m1, which is initially orbited by two smaller
bodies (planets) on circular orbits, which start in opposition (δϕ = π). The mutual gravitational
perturbations will change the shape of the orbits, the eccentricities e and semi-major axes a.
Large changes are expected when the two planets are close in conjunction. A system is called
Hill-stable (or simply stable), if close encounters are excluded for all times.
The stability of the system can be examined in dependence of the initial conditions and the
masses. We will investigate the conditions described in Fig. 2.
For small initial separations ∆ of the two given masses m2, m3, we will expect larger gravitational
perturbations of the two masses and hence higher changes in e and a. For a fixed initial separation
∆, we expect instability if the masses get larger.
For details concerning the setup, analytical estimations and results, please see the paper by
Gladman (1993).

Topological analysis of stability

The stability of the general co-planar three-body problem can be investigated also using algebraic
methods. Here, the dynamics of the system is determined by the function c2h, where c denotes
the total angular momentum and h the total energy of the system. Both are conserved quantities,
and so is c2. As a function of the masses, one can find a critical value (c2h)crit. For higher values
as this critical value, the dynamics of the system shows a bifurcation. For

(c2h) > (c2h)crit (48)

the system is Hill-stable. Is the relation already given for the initial values, it is valid for all
times, since c and h are both conserved quantities.
Gladman (1993) finds for small masses m2 and m3 and initially circular orbits the following
criterion for stability

∆c ≃ 2.40 (µ2 + µ3)1/3. (49)

For non-circular orbits, more general criteria can be derived, but this is off the scope of this
experiment.

5 Description of the practical course

In the following exercises, we will first implement some of the integrators and validate their
functionality. Afterwards, we will investigate the limits for stability in the above-mentioned
co-planar three-body problem numerically.
The scaling in the following is G = 1 and the mass of the central object m1 = 1. Hence, the
typical time scale is given by ≈ 2π, since the period of a massless testparticle with semi-major
axis a = 1 in these units is given by 2π. Please use the center-of-mass system for all initial
positions and velocities.
In order to study the stability, we start with a given ∆ and perform the integration of the
trajectory for 103 orbits. The time evolution of the orbital elements have to be plotted.
Instability will be detected by close-encounters. A close-encounter is given, when the distance
between the two planets is lower than the Hill radius of the more massive one of the two bodies.
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The Hill radius is given by

Rin ≈ a 3
√

µ/3, (50)

where the distance of the planet to the star is denoted by a and µ denotes the mass ratio of the
smaller object to the more massive one.
In the exercises, we determine numerically the critical distance ∆c. For values lower than ∆c, the
system is unstable. The precise value of ∆c might depend on the applied numerical integrator.

Exercise 1: The code

Develop a N -body simulation program to integrate the trajectories of various bodies under their
mutual gravitational influence. Use the center-of-mass coordinate system. The code should
additionally calculate the total energy E and the specific angular momentum j,
Implement the following time integrators: Euler, Euler-Cromer, Velocity Verlet, RK4.

Determination of the time step ∆t

The time step can be chosen to be fixed for the whole simulation

∆t = η. (51)

However, to improve the accuracy of the simulation, the time step can also be adaptive and
changes during the simulation. The time step may for example depend on the current curvature
of the trajectory In this case, the time step is calculated from the accelerations and the jerks

∆t = η̃ min
i=1...N

( |ai(tn)|
|ȧi(tn)|

)
. (52)

At first, your code should use a fixed time step size according to eq. (51). Later, you will
also use an adaptive time step size according to eq. (52). If an adaptive time step cannot be
determined (e.g., for the first time step when all velocities vanish, or so), the algorithm should
fallback on the fixed time step.

Exercise 2: The two-body problem

In this exercise, the properties of the various time integrators are studied with the help of the
two-body problem.

1. Integrate the two-body problem until tmax = 10P (10 orbits of the system) with 500 fixed
time steps per orbit (η = ∆t = 1

500P).
The initial values are

m2 = 10−3 e2 = 0.5 a2 = 1.

The initial velocity of the more massive body (star) is zero, and the less massive body
(planet) is located at its apoapsis (the point of greatest distance to the star).
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There, the location and velocity is given by the vis-viva-equation

x = a(1 + e) y = 0

vx = 0 vy =
√

G(m1 + m2)
a

1 − e

1 + e
.

The code units are scaled in a way, that one period is 2π. Use these formulae to calculate
the initial position and velocity and transform them to the center-of-mass system before
you start the integration.
Apply the Euler-, Euler-Cromer-, Verlet- and RK4-method.

2. Plot the trajectories of the second body (in the center-of-mass system) for 10 orbits and
the four different integration schemes.

3. Additionally, calculate for each time step the specific angular momentum j (eq. 9), the
Runge-Lenz-Vector e (eq. 10) and the semi-major axis a (eq. 17).

4. The quality of the calculation and especially the quality of the time integrator can be
checked by various criterions. Examine

• the conservation of E, |j|, |e |, and a by plotting the time evolution of the values.
• the accuracy by plotting the time evolution of log |(E − Estart)/Estart|, log |(e −

estart)/estart| and log |(a − a start)/a start|, for different time step sizes η (e.g., 1
10P, 1

50P,
1

100P, 1
500P, 1

1000P).
Please use the logarithmic scale, since the differences between the values are rather small,
especially at the start of the simulation.

5. Re-run the simulations with an adaptive time step size and plot evolution of the adaptive
time step.

Exercise 3: Stability of circular orbits

1. Test the prediction of the topological stability criterion for the co-planar three-body
problem.
The initial values are

m2 = 10−5 e2 = 0 a2 = 1
m3 = 10−5 e3 = 0 a3 = 1 + ∆,

where ∆ denotes the separation between the two planets, see figure 2.
The initial locations of the two smaller bodies should be opposite (δϕ = π).
Determine for each time step the orbital elements a and e by treating each trajectory of
the planet like a two-body problem (sun-planet). Integrate the system for 1000 orbits of
the inner planet with RK4 and plot the time evolution of a and e. Use an adaptive time
step. What do you observe? What is the influence of the time step size?

2. Reduce the initial distance between the planets ∆ stepwise and repeat the integration
(note, that you have to adapt the velocity of the outer planet if you change ∆).
For which values of ∆ do you expect instability? Which value ∆c do you find numerically?2

2Interesting values for ∆ are in the range ≤ 0.066 according to eq. 49.
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Exercise 4: Chaotic Dynamics

To determine the value of the stability limit ∆c, we have stopped the evolution of the system
at the first encounter of the two planets. However, the further evolution of the system is also
interesting, since it shows complex dynamic behaviour, which is chaotic. In this last exercise, we
want to investigate this chaotic phenomenon empirically.
The probability for close encounters is especially high if the planetary orbits overlap initially.
The circular ring around the central star, in which the outer planet has to start initially in order
to experience a close encounter later on, is called crossing zone. The outer rim of the crossing
zone is the Hill limit ∆c.

1. The system

m2 = 10−6 e2 = 0 a2 = 1 m3 = 10−6 e3 = 0 a3 = 1 + ∆

is stable for ∆c = 0.0302 (eq. 49).
Calculate the time evolution of the system for the initial values of ∆ in the crossing zone,
for instance

∆ = 0.026, 0.028, 0.030, 0.0302, 0.0305

Count the number of close encounters during the first 1000 periods of the inner planet.
2. Plot the time evolution of both eccentricities e2 and e3, and both semi-major axes a2 and

a3. What do you find?

Hints for the experiment protocol

During the course of this experiment and especially for the protocol, you will produce a lot of
data that you want to visualize and present. Before you add an enormous number of figures or
data plots to your protocol, first think about what you really have to plot (see the exercises)
and how you can combine several plots into one figure or one figure with several subfigures.
For example, when you plot the time evolution of the energy for different time integrators and
different time step sizes (exercise 2.4), you can essentially create one figure with a panel for
each time step size (Period/x, x=10,50,100,500,1000) which shows the three different integrators
Euler, Verlet, RK4 in one plot, instead of creating 3x5=15 figures. I will not accept protocols
with more than 30 pages.
Although a nice diagram and a figure speaks more than one million words, please add your results
and findings in text form also to your protocol. Additionally, keep in mind that the protocol
should be readable and understandable without the experiment instructions! Write down your
initial conditions, explain what you do and why you do it. Do not copy and paste from the
instructions, write your own words in own sentences. Do not add code listings to the protocol,
send your source files separately, including instructions on how to run your code.
Moreover, grammar does not really matter as long as you get the formulae right in Physics, but
you mihgt agrea that it impruves the readbillitty. No one wants to read a protocol with a lot of
typos.
See the guidelines of the labwork for more information.
Enjoy the experiment! Astrophysics is fun 
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