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In connection with the study of newly formed protoplanetary
embryos in the early Solar System, we study the dynamics of
a pair of interacting planets orbiting 2 Sun. By examining the
topological stability of the three-body problem, one finds that for
initially circular planetary orbits the system will be Hill stable (that
is, stable against close approaches for all time) if the fractional
orbital separation A > 2.4(u, + p,)'"?, where u; and p, are the
mass ratios of the two planets to the Sun. The validity of this
stability condition is supported by numerical integrations. The
chaotic dynamics of these systems is investigated. A region of
bound chaos exterior to the Hill-stable zone is demonstrated. The
implications for planetary accretion, the current Solar System,
and the pulsar planet system PSR 1257 + 12, are discussed. o 1993

Academic Press, Inc.

1. INTRODUCTION

The purpose of this paper is to attempt to understand
the qualitative features (and make some quantitative pre-
dictions) of the dynamics of a coplanar system with a
large central mass (a “‘Sun’’) and two smaller masses
(‘*planets’’). This is of relevance to the question of the
stability of the Solar System. One wishes to discover the
conditions under which the planets will forever remain in
orbits with low eccentricities and roughly their current
semimajor axes, The historical approach has beento apply
secular perturbation theory to Lagrange’s planetary equa-
tions (see Milani 1988 for a review). However, this theory
predicts that, to second order in the masses, the semi-
major axes of the planets have no secular growth, which
would seem to imply that in principle the system must be
stable forever. Being more careful, one discovers that the
Lagrange solution contains terms with the infamous small
divisors at higher order; accordingly, in general the ne-
glected higher-order terms can become important pro-
vided that the frequencies of these terms are slow enough.

Presented at the Planet Formation program held at the Institute for
Theoretical Physics of the University of California at Santa Barbara,
in Fall 1992,

Indeed, we will see that if two planets are in orbits of
close enough proximity then the sermimajor axis variation
appears immediately in a secular fashion; thus the secular
theory, which relies on time averaging, 1s useless in pre-
dicting the behavior of the system.

This classical problem has gained renewed interest
due to the discovery of two planets around the pulsar
PSR1257+ 12. The stability analysis performed below will
atlow an upper limit to be placed on the mass of the planets
(see Rasio et al. 1992).

This problem is also of interest because of its relevance
to planetary formation. In currently popular theories of
planetary formation relatively large embryos are pro-
duced during a phase of rapid “‘runaway growth™ (see
Safronov 1991 for a review). As a consequence there
are likely to be several large protoplanetary embryos on
nearly circular orbits. Each embryo will have swept up
almost all the material in its “‘feeding zone,” given by
numerical simulation as roughly ~3.5 R, where R, is the
radius of its Hill sphere (Lissauer 1987). In the terrestrial
planet region such embryos would have a mass of ~10% g
~1078 M. In the outer planet region the embryos may be
the so-called “*super-ganymedian puffballs™ which would
contain several Earth masses of material {i.e., ~10"3
Mgz). What is the minimum spacing of such
embryos such that they would be stable against close
approach and thus would be the largest objects formed
(locally) in the disk? The answer is partially provided by
the solution of the simplified problem discussed below.

Two different notions of stability are of interest. A
system is *‘Hill stable™ (or just “‘stable”) if the planets
are forbidden to undergo close approaches for all time
(a close approach is defined in Section 3), A system is
“‘Lagrange stable’” if in addition the semimajor axes of
the planets are bounded for all time. We shall see below
that it is possible to prove Hill stability for some two-
planet systems, but we cannot prove them to be stable
in the sense of Lagrange.

The following notation is used. Without loss of general-
ity, choose units so that the semimajor axis of the inner
planet is unity and its (osculating) orbital period is 2.
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FIG. 1. The model problem. A full three-body problem with the
restriction that m; + m; < m;. The initial osculating semimajor axis of
my is taken to be unity while that of #2, is | + A. The figure shows the
planets beginning with an initial longitude difference §f = 180°. One
then asks: what is the minimum value of A required for stability? The
orbits need not be circular (nor coplanar).

The initial semimajor axis of the outer planet is denoted
by a = 1 + A, so that A is the initial orbital separation.
The masses of the inner planet, outer planet, and Sun are
(respectively) m, m,, and m; with m; + m, + m; = 1in
our units, with m, + m, <€ m,. The unit of time is chosen
so that G = 1. Although Fig. ! shows initially circular
orbits this is not a constraint in what follows. The question
we seek to answer is: what is the minimum A such that
the system is Hill stable?

Section 2 discusses analytic stability criteria, including
a development of the topological stability criterion for the
three-body problem. Section 3 presents numerical experi-
ments that confirm the analytical results and explore the
chaotic nature of the problem. Section 4 discusses the
relevance of the results for planetary formation, the cur-
rent Solar System, and the pulsar system PSR 1257+ 12,
Section 5 presents the conclusions.

2. ANALYTIC STABILITY RESULTS

2.1. Circular Restricted Three-Body Problem

If we consider the case m, — 0 and the inner planet
on a circular orbit (with eccentricity ¢, = 0) then we
recover the circular restricted three-body problem. We
can establish Hill stability for the system through the
use of the well-known Hill surfaces, also called the zero-
velocity surfaces (see Danby 1988). Since such surfaces
cannot be crossed by the test particle, their presence
between the test particle and the planet forbids the test
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particle from ever approaching the planet. In this way
one can prove Hill stability for large enough initial separa-
tion A. For test particles on initially circular orbits with
an initial tongitude difference & f with respect to the planet
(of mass ration u; = m,/m;) these critical separations are:

A>2.4pu)" whensf = 180° (1

and

A>2.1ul* whendf=0°. (2)
(see Birn 1973, Gladman and Duncan 1990), These results
should be recoverable as limits in any generalized cri-
terion.

2.2. Hill's Problem

The stability of nearly coorbital planets can be ap-
proached by an examination of Hill's problem. The nota-
tion of the excellent paper by Henon and Petit (1986) will
be used {excepting a renumbering of the bodies). When
the planets are far apart, their relative motion (expressed
in relative Hill’s coordinates which scale as the one-third
power of the mass ratios) is given by

¢ = Dcost + D,sint + D, (3)

n = —2D;sint + 2D;cost — %D;t + Dy, 4

where £ is the radial and n the azimuthal coordinate. The
D; are constants that are related to the orbital elements
of the planets by

a,=a,(1 + m”?Dy), e,=m"3VDi+D}) (i=1,2)
5

and

Di=Dy— Dy (G=1,2,3,4); (6)
m = m, + m,, 4, is the radius of the mean orbit, and D,
can be set to zero by rescaling the time variable. In these
coordinates a second integral, analogous to the Jacobi
integral of the restricted problem, is given by

2 - .
3+ ——— — £ -yt =T.
N

For T' > 3*3 this integral divides the regions of allowed
motion into three separate parts (Henon 1970). We shall
use this to our advantage. For an initially asymptotically
circular encounter with an orbital separation 4, (in Hill’s
units), one can write

M
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3 : 3
£=08y m=—Jidy, £=0. n=-3h (8)

The planets will be separated from each other by a forbid-
den surface if

=34} - %A},> 3%, )

neglecting the second term in Eq. (7) for large initial sepa-
ration. This demands, in our units, that

A= AHI?T”3 =72 3!/6(ml + mz)].':’;

=2.400m, + m,))'"?, (10
which reduces to Eq. (1} when 1, — 0. Ida and Makino
(1993) give a similar approach that includes orbital inclina-
tions.

The above analysis is strictly valid only for one encoun-
ter since Hill’s equations are a truncated set that just
describe the motion while the planets are near each other.
During the encounter the constants D; of the planets
change due to the mutual perturbation, but the outgoing
value of the Jacobi constant

3

F=ZD§f(D?+D§) (11

must be conserved. Since [, is related to the semimajor
axis separation of the planets (Eq. (5)), and
(D} + D3) = (ae)* to lowest order (see Duncan er af.
1989), these quantities will be conserved in the Keplerian
motion that brings the bodies to their next conjunction.
Thus it is possible to “*patch’ the encounters together,
and the conserved Jacobi integral thus prevents the plan-
ets from undergoing a close approach for all time.
However, this analysis has a drawback once we attempt
to apply the analysis to the motion away from conjunction.
One is unsure at what level the approximations inherent
in Hill’s equations and the requirement that the eccentrici-
ties are small may affect the results. It is not completely
clear that the patching required from conjunction to con-
junction will not introduce small errors that will invalidate
a stability result that is meant to be valid for all time. The
following analysis escapes these uncertainties.

2.3. Topological Stahility

In the 1970s considerable progress was made in under-
standing the three-body problem when it was shown that
a bifurcation existed in the dynamics. In particular one
could prove that for certain initial conditions there existed
a division of the phase space into regions of allowed and
disallowed motion. Originally a result from algebraic to-
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pology, this result was introduced to celestial mechanics
by many workers (see Roy et al. 1984, Milani and Nobili
1983b, Marchal and Bozis 1982, Zare 1977, and references
therein). In essence, the result is: the integral product
c?h (where ¢ and h are, respectively, the total angular
momentum and energy of the three-body system) is of
fundamental importance to the dynamics of the system.
Given only the masses of three bodies, one can compute
a critical value of (¢*h).; at which point the dynamics
bifurcate. If the initial conditions of the system produce
a value of ¢’k which satisfies ¢k > (¢?h).; (which, being
composed of integrals of the motion, will remain satisfied
for all time}, then the system is Hill stable. What happens
is very analogous to the circular restricted three-body
problem; a surface of zero velocity forms which prevents
close approaches for all time. However, in the general
case one cannot conveniently express the location of this
surface in terms of the coordinates (since the surface
moves in coordinate space).

The analysis below applies the ¢’k criterion to the case
in which two of the bodies (the planets) have much smaller
masses than the third, This study will improve on previous
results by producing explicit scaling laws and by ex-
pressed the stability conditions in terms of simple expres-
sions that involve the orbital elements of the planets,

I have adopted the notation and spirit of Marchal and
Bozis (1982). They parameterize the dynamics by the ratio

"
5 = - E%Eczh, (12)
where M and G are the total mass of the system and the
gravitational constant, respectively, both egual to unity
in our units, and M, = mym, + mym; + mm,. Although
not important for our purposes, p and a are respectively
the “‘generalized’’ semilatus rectum and generalized semi-
major axis of the three-body system. Note the presence
of the parameter ¢’h.

Marchal and Bozis (1982) give the critical value at which
the bifurcation occurs in the phase space topology as

P _ 473 mm,
= =1+3
(a)cril w3 (my + my)*?
mumy(11my + Tmy)
3m; (my + m,)°

., (13

if m, > m, (if my > m, just interchange their subscripts).
For a system with ratio p/a larger than this critical value
the planets are forbidden from having a close approach
(i.e., the system is Hill stable). This is a very straightfor-
ward condition in principle since the critical value de-
pends on only the masses and, for any set of initial condi-
tions, we can compute the ratio p/a. No approximations
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have been invoked (beyond the fact that the value of the
parameter at the bifurcation is given in a power series,
but may be computed numerically to any accuracy). Note
that there Is no restriction to a coplanar system required
for this condition, although below we assume this to be
the case. The inclusion of inclinations will not change the
application fo the criterion, and the forbidden surfaces
extend out of the plane as in the circular restricted three-
body problem. Note that this analytic result provides a
sufficient, but not necessary condition for stability. That
is, nothing can be said from the analytical theory about
a system failing to satisfy the topological criterion. This
will be discussed further below.

Now compute the stability condition for the two-planet
case. Since the total mass of the system is unity and the
masses of the planets are very small, the masses of the
planets will be denoted by their mass ratios with the cen-
tral body:

hy "y
L __.,m<1’ (0 =~ 1, <. 14
! My ! ? m 2 ( )

3

The angular momentum and energy of the system can
easily be computed from the initial conditions in terms of
the osculating orbital elements of the planets. If we use
the system barycenter as the origin, then to lowest order

Il
T

(X v;)
t

=, Va (1l —e)) + upVay(l —e3) + - -
= VI — @+ w Vi 1 8 — &b,

(15)

where we have used a; = I and a, = 1 + A. The contribu-
tion to the angular momentum from the central mass is
of order of the square of the mass ratio of the larger planet
and has thus been neglected. We assume that the initial
conditions place the planets farther apart than their Hill
spheres, and thus the energy of the system can be written

H1 M2
= - ———+
h 2a, 2a,
U (16)
T2 721+ AY

Again, the contribution of the central object is negligible.
For notational ease, let us define the commonly occurring
quantities

yi=V1-é, (17)
a =+ p, (18)
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and

d=VI+ A, (19)

Thus & is now our measure of the separation of the orbits.
Then for our system we can compute (using Eq. (12))

_ M
g = (@ + o) 3(Ml + 6_22) (syy) + uy,8)7. (20)
The system will thus be Hill stable if

Ml

_ u
a30h+g$0ﬁh+#ﬁﬁ?>l+?”wm Q1

to lowest order. Clearly for large enough & (and hence
large enough orbital separation A} the inequality is satis-
fied and the system will be Hill stable (assuming v, # 0,
which would correspond to e, = 1). Note that any limits
in which either mass vanishes should be taken later, since
at this stage it makes the problem indeterminate. Multi-
plying through by &% will yield a quartic equation for the
critical value of §, such that 8 > §, means that Hill stability
can be proven. This equation is usually solved numerically
in the literature. However, we can extract convenient
analytical scaling laws in several subcases,

Initially circular orbits. For zero eccentricity orbits
(y; = v, = 1) the quartic equation for the critical value
of & is

i385 + 2 Ui, 8]
+ 8l + w3 — & - 3 e
+ 20, u38) + pip, = 0.

5i3)
22)

Since the mass ratios are small we surmise that the critical
separation A, will be also and expand all powers of §;, to

second order in A,.. For example, §, = V1 +A. =1+
A,/2 — A%8, etc. One then finds that
A(‘ =2. 31!6{#1 + ll142)1,’3,
I, + 7uy (23)
+ [2'3”30"1 + #2)21'3 _ m I

or, to lowest order in the masses,

A, =2.40 (o, + o). (24)

The higher-order terms were computed using the full ex-
pression for the bifurcation value in Eq. (13) and the

computer algebra package MACSYMA. Note that this
result reduces to the correct restricted limit as p, — 0
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(Eq. (1)). Also note that this produces the convenient
scaling for equal mass planets (u; = u, = u} of

A, =3ul5 (25)

Equal masses, small eccentricities.
4 the quartic equation becomes

With ) = u, =

_2V6(e} + & + 2842712
¢ 3

A
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Y8 + 2viv.8) — 838 — ¥vi — v} + 88u) 26)
+ 27,1128 + v = 0.

with the abbreviation 8 = (3/2)**. For small initial eccen-
tricities (¢ =< u!’’) we write y; = 1 — /2 and then expand
in the ¢; and in A_ as before to obtain

L 3Vepu Vel + e + 281" + (146} + 186} Bu?> + 3¢t + 8ele} + Sef
3(el + &3 + 2Bu??)

+ O(u),

which to lowest order is

A, = /g(e% + e + 9u??,

This reduces to our previous equal mass case result {Eq.
(25)) for zero eccentricities. Notice that the higher-order
terms exhibit an asymmetry in e, and e, that one would
expect (since the problem should not be completely sym-
metric with respect to the two planets).

Equal masses, equal but large eccentricities. For the
case of equal and arbitrary large eccentricities one can
also produce an analytic expression for the minimum A
necessary for Hill stability. If one sets v, = v, = vy, we
can solve for §; in the full quartic (Eq. (26)), pick out the
root larger than unity, and solve for A_ using computer
algebra. Since we are concerned here with large eccentric-
ities, we can neglect the mass terms (of order 1'®) com-
pared to v and find that

(28)

—1+..., (29
where the neglected terms are of higher order in the mass
ratios. The required semimajor axis separation as a func-
tion of eccentricity of the planets is plotted in Fig. 2 (see
also Donnison and Williams 1983). If we expand in a
Taylor series about ¢ = ¢ for small e, then

4

A~—e+§ez+..., 30)

S

(27)

as we would expect from Eq. (28) (but note that then we
have no right to ignore the mass terms). Note that this
last condition insures that the orbits are not crossing. In
our units the aphelion of the inner planetisat @ = 1 +
¢ and the perihelion of the outer planct at P = (1 + A)
(1 — e) and their (unperturbed) distance of closest
approach is

P-0= (%—2)620.3€>0.

3. NUMERICAL STUDIES

Numerical simulations of the three-body problem were
used to explore the validity (and usefulness) of the expres-
sions derived above and to examine the sometimes chaotic
nature of the solutions. One must acknowledge the usual

T T T T T T T T
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FIG. 2. The required orbital separation for two equal-mass planets
as a function of their initially equal eccentricity (Eq. (293). This result
is invalid once the eccentricity becomes small (< p!'®) at which point
Eq. (27) should be used.
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TABLE 1
Results of Simulations of Systems
with Initially Circular Orbits and
Masses g, = u, = 1075

A N,

0.050 2
0.060 1
0.061 10
0.062 81
0.063 5
0.064 125
0.065  >10,000
0.066  >10.000
0.067  >10.000
0.069  >10,000
0.070  >10,000
0.071  >10,000
0.075  >10,000
0.080  >10,000
0.085  >10,000
0.0%  >10,000

Note. N_is the number of conjunctions
that the system survives without suffer-
ing a close approach. From Eq. (25) the
system is Hill stable once A > 0.0646.

proviso that we cannot prove stability through numerical
simulation, although we can demonstrate instability. It is
shown below that the behavior of the simulated systems
matches the above predictions very well.

3.1, Integration Method

The integrations were carried out in the barycentric
frame using a sixth-order symplectic integration algorithm
on the full three-body equations of motion. The advan-
tages of the symplectic methods are discussed in Gladman
et al. (1991). The particular integrator used was supplied
by Forest (1992). The simulations used a step size of 150
steps per orbitl for the inner planet which kept errors in
the energy and angular momentum below 1 part in 10!,
This step size produces a phase error growing linearly at
~8 x 107'° radians/orbit in the corresponding Kepler
problem.

The three-body systems that were integrated were al-
ways started with the planets having an initial longitude
difference of 180°, If the planets had initial eccentricities
they they were started at aphelion. The systems were
deemed to be unstable (and the integrations terminated)
if at any point the planets suffered a close approach. Close
approach was defined as being closer than the size of the
sphere of influence, 2 x> (Battin 1964, Roy 1988), of the
more massive planet. The sphere of influence is the radius
at which (from a perturbations point of view) it is better
to view the motion as one planet around the other being
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perturbed by the “‘Sun rather than the planets moving
around the Sun and being perturbed by each other. Sucha
system is clearly not Hill stable. The results are extremely
insensitive to the exact choice of termination criterion.

3.2. Initially Circular Orbits

To confirm the validity of the scaling law for initially
circular planets (Eq. (24)), a series of integrations was
performed. The inner planet was fixed as having mass
w; = 1075, For various masses of the outer planet the
system was integrated for a length of time that produced
at least 10,000 conjunctions of the planets. One discovers
that, if the initial orbital separation A of the pianets is
less than a certain value, then the planets come to close
approach in usually less than 1000 conjunctions, typically
less than 100 {i.e., the system is not Hill stable). For
initial separations larger than this value the system never
reaches close approach. Table 1 shows how dramatic this
boundary can be.

Figure 3 shows the empirical critical separation plotted
versus u, and compared to the separation required for
Hill stability as given by Eq. (23). Notice that once the
mass of the second planet is smaller than the first by about
an order of magnitude the result is basically the same as
that predicted by the circular restricted problem. The
sphere of influence of the inner planet in these units is
only =0.013, so the planets are initially wel! separated.

The agreement here could come as a surprise. As re-
marked above the topological criterion provides a suffi-
cient but not necessary condition for stability. In the case

L B B B L T LA R L
{0685 —§
- Numerical Comparison for =0 case ~
- Curve is theoretical prediction {eq 23} B
08—
- L
0585 —
-y
LA i
.05 ' 1 . 1 {4' 1 i L 1 { 1 1 il 1 ‘ 1 1 I L 1 i 1 L
-5 -8 -7 -8 -9 -10
loga{ua)
F1G. 3. Comparison of numerical stability results with the predic-

tions of the topological stability criterion. The inner planet is given a
mass ratio of w; = 1075, For each value of u, many different values of
the orbital separation A were investigated and the largest of these that
showed Hill instability is plotted. The results agree very well with the
predictions of Eq. {23), with a slight departure at the highest mass ratios
where the neglected higher-order terms presumably contribute a small
correction.
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FIG. 4. Orbital history for a system with p; = @y =
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time
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107%, A = 0.030, e(t = 0) = 0. The eccentricities of the planets are almost identical

throughout the evolution. The orbital period of the inner planet is roughly 2+ and the size of a planetary Hill sphere is 0.007 in these units, (Top)
The Lyapunov characteristic exponent (LCE) calculation with a dashed reference line showing a (quasi-periodic) slope of — 1. The Lyapunov

time is (LCE)~! = 10?? = the synodic period.

of initially circular orbits we see that the condition is in
fact necessary. That is, any system which begins with a
smaller separation is seen to be unstable. This shall be
discussed further below.

3.3. Initially Eccentric Orbits

Larger initial eccentricities require that the initial sepa-
ration increase if the system is going to remain Hill stable,
as predicted by Eqs. (28) or (29). However, other authors
(Vatsecchier al. 1984, Milani and Nobili 1983a) have noted
that for initially eccentric orbits the predictions of the Hill
stability criterion are not as useful. That is, systems that
are predicted to be Hill stable are indeed so, but systems
that fail to pass the criterion may still be found to be
empirically quite stable for very long periods of time. This
is in contrast to the low-eccentricity case, where we have
seen that failing to meet the stability requirements means
that the system wili come to close approach in less than
1000 conjunctions.

To illustrate this, consider the following two experi-
ments. In the first case u; = u, = 107 with e, = 0,
e, = 0.01 initially. Since ¢ = p'? we use Eq. (28) to
calculate the Hill stability separation as A = 0.034 (com-

pared to a value of 0.030 from Eq. (25) if the orbits were
initially circular). Numerical experiments confirmed that
initial separations larger than this were indeed Hill stable.
However, the crossing behavior terminated at A = 0.032,
so although the nonzero eccentricity of the outer body
has increased the size of the unstable zone, the topologicat
criterion is no longer a perfect diagnostic for instability.

In the second case pu; = p, = 107°, with | = e, = 0.01
initially. Here Eq. (28) predicts A = 0.069 (as opposed to
0.065 for initially circular orbits). However, with only
one exception, regardless of whether the perihelia begin
aligned or anti-aligned, the unstable zone was not in-
creased at all over the circular case. That is, in the range
A = 0.065-0.069 the systems showed no instability. The
increased stability was seen to coincide with the existence
of protection mechanisms as discussed in the next section.

The topological stability criterion thus does guarantee
stabifity if its conditions are satisfied but, for eccentric
initial orbits, the system may fail to satisfy the criterion
and still show empirical stability provided the orbital sepa-
ration A is at least as large as required for stability in the
circular case. The results of numerical experiments lead
one to the following empirical conclusion: if the eccentric-
ity of the larger planet is much less than {(a factor of a
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FIG. 5. These figures show osculating orbital element evolutions for the equal mass systems u; = g; = [07% with initially circular orbits that
start with separations just outside the crossing zone for (a) A = 0.03100, (b) A = 0.03101, (¢) A = 0.03102, (d} A = 0.03105. The upper panel
of each shows the difference in the perihelion longitude of the two planets. The dotted line in the eccentricity panck is for the outer planet, For
all of these systems the planetary Hill spheres are roughly 0.007 and the orbital periods are about 2. The synodic period varies as the separation
varies, but for “typical’” values of about a; = 0.96, @, = 1.07 (as shown in the semimajor axis panels) it is =40, Note that the average separation
is quite a bit larger than the initial separation for the circular orbits. See the text for more discussion.
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few seems sufficient) the one-third power of its mass ratio,
then the topological criterion is necessary and sufficient
for stability. Note that this result is consistent with the
circular restricted problem. In that case the smaller planet
(the test particle) may have an arbitrarily large initial ec-
centricity and the Hill curves may still be used to prove
stability.

3.4. Chaotic Dynamics

The preceding numerical evidence leads us to believe
that the topological stability criterion is very valuable for
determining whether or not a system on initially circular
orbits will actually be stable. That is, if a forbidden surface
has not formed the planets will find their way to close
encounter. However, what is the detailed behavior of
these systems? In order to examine this issue, another
set of simulations was conducted with two equal mass
planets for the values u = 107°, 107%, 1077, and 107%
beginning on initially circular orbits. The sizes of the Hill-
stable zones were found to agree with Eq. (25) as ex-
pected. We shall use the u = 107% case to illustrate the
evolution of orbital elements in a two-planet system. For
this mass the Hill-stability limit is A = 0.0306 (computed
using Eq. (23)).

The ‘‘crossing zone’” of the inner planet shall be defined
to be that annulus within which placing the second planet
will result in a close approach and thus in general orbit
crossing. The outer edge of the ¢rossing zone is given by
the Hill-stability limit. Figure 4 shows an evolution inside
the crossing zone {(with A = 0.030). Each abrupt change
in orbital elements occurs at a conjunction between the
two planets (when the perturbations are largest). Note
the size of the sphere of influence is six times smaller
than the initial orbital separation. This evolution was ter-
minated when the system came to close approach sud-
denly at ¢ = 3100. The orbital period of the inner planet
is =21 in these units, so the system survived about 500
orbits. Also shown is the system’s Lyapunov exponent
which was calculated by standard methods of phase space
shadowing (see Wisdom 1983). Note that the Lyapunov
exponent plot indicates that the “‘Lyapunov time’’ scale
for chaos is, not surprisingly, equal to the synodic period.

Compare this with a system that starts with a slightly
larger separation A = 0.031, just outside the crossing
zone (Fig. 5a). To illustrate the qualitative features, the
chaotic nature of the problem, and the wealth of detail
present in the dynamics, Figs. 5b-5d show the evolutions
for the casesof A = 0.03101, 0.03102, and 0.03105, respec-
tively. The Lyapunov time (plot not shown) in all cases
is again equal to the synodic period. The evolutions shown
have proceeded for more than 200,000 conjunctions of
the planets (actually a factor of a few more than this since
the semimajor axis separation has increased, shortening
the synodic period). We see dramatic excursions in the
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semimajor axes of the planets (contrary to what secular
perturbation theory would predict, as discussed in the
introduction). The apparent reflection symmetry in the
semimajor axes is nothing more than conservation of en-
ergy for the system (see Eq. (16)). One has the impression
of a bound on the semimajor axes that is preventing close
approaches.

Two other interesting features may be observed in these
figures. First notice that the systems occasionally settle
into a quiescent state, which can last for millions of orbits.
A short integration during this interval might lead to the
erroneous conclusion that the system is stable (although
the dynamical chaos would be detectable from the Lyapu-
nov exponent). These quiescent periods are always ac-
companied by smooth eccentricity variations (which are
out of phase with each other to conserve angular momen-
tum when the semimajor axes are constant, see Eq. (15)}).
Such behavior is often seen in heavily interacting systems
{sce Ipatov 1981, Milani ef al. 1989),

The second point of interest is that the difference in
the perihelion longitudes of the planets indicates that the
systems prefer to have their perihelia anti-aligned. This
might seem unusual because it would seem to allow for
a maximum interaction since the perihelion of the outer
planet occurs at the same longitude as the aphelion of the
inner one. If conjunction occurred at this longitude, the
close encounter would be very strong indeed (although
the eccentricities are never so large as to have the orbits
crossing). Clearly the system has fallen into some sort of
resonance protection mechanism that is preventing close
approaches at the dangerous longitude. Notice that during
quiescent periods the perihelion difference variation can
be one of two types: libration about a 180° phase difference
or circulation throughout the full range (but with rapid
passage through 0° and 180°). In the librating case the
passage through &, — @, = 0° or 180° is accompanied by
a minimum in the eccentricity of one of the planets. This
is behavior similar to the ¢ — @ coupling which functions
as a protection mechanism for many asteroids {sce Milani
and Nobili 1984). Many of the other quiet periods occur
near low-order mean-motion commensurabilities which
are probably responsible for the maintenance of the reso-
nance (see Greenberg 1977). The details of the protection
mechanisms are the subject of ongoing work.

It is hard to imagine a more chaotic planetary system
than these examples have shown. This brings us back to
the question of the Laplace stability of such systems.
Although these systems are Hill stable, nothing prevents
the semimajor axis of the outer planet from receding to
infinity and it escaping from the system. However, it must
do this through a multitude of small encounters since close
approaches are forbidden by the Hill stability. Also note
that conservation of energy (Eq. (16)) requires that by the
time a, — % the semimajor axis of the inner planet has
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FIG. 6. A longer integration of the system shown in Fig. 5b. There is no evidence of any kind for a trend toward a larger semimajor axis for

the outer planet, even over a time scale of millions of conjunctions.

been reduced to

1+ A

= 31
1+ A+ p/uy BN

a

which for eqiial mass planets with a small initial separation
requires that the inner planet move to haif of its original
semimajor axis. Figure 6 shows the longest integration
performed (which required a week of dedicated time on
a fast IBM workstation). This proceeded for more than
14 million orbits of the inner planet {only a factor of 2
less than the number of orbits Neptune has completed
since the origin of the Solar System). There is still no
apparent trend toward escape of the outer planet, even
though the system has gone through more than a million
conjunctions. This perhaps runs counter to the intuition
of those who would appeal to the phenomena of Arnold
diffusion which demands that the system must eventually
visit every chaotic region of the phase space (which in-
cludes very high eccentricity orbits for the outer planet).
However, we see no apparent trend toward this state in
the previous figures, even though the systems have been
evolving for more than 10° Lyapunov times! Here we
have more evidence that Arnold diffusion may have little

practical significance in celestial mechanics for problems
of this type; the time scale for this phenomena may be
simply so long that it is not of practical significance (see
Nekhoroshev 1977).

After a certain orbital separation is reached one finds
that quasi-periodic orbits appear. That is, there is a zone
of “‘global chaos’” closer to the planet. This is analogous
again to the behavior of the circular restricted problem,
with the size of the chaotic zone varying with the well
known scaling of u*7 (Wisdom 1980). We can define this
zone empirically exactly the same way as the crossing
zone was established (i.e., systems with A smaller than
some critical value A are all chaotic). Figure 7 shows
how an increased separation of the planets eventually
results in quasi-periodic orbits. All orbits closer than some
critical value (A, = 0.035 in this case) are chaotic.

Figure 8a plots, as a function of the planetary mass
ratio, the critical value A, above which global chaos
ceases to occur. Plotting the results vields Fig. 8a. The size
of the chaotic zone is reasonably well fit by the relation

217

Aoy =2p (32)

The coefficient should be obtainable from an analysis
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of the resonance overlap criterion. Notice that the chaotic
zone is larger than the crossing zone for the mass range
of interest. It is perhaps easier to visualize this with a
diagram like Fig. 8b. Such a diagram, although an over-
simplification, is useful for a first-order understanding of
the dynamics of these nearly circular systems.

The outer edge of the crossing zone is very sharply
defined by the formation of the Hill forbidden surface. In
contrast, the outer edge of the chaotic zone is “‘fuzzy”
since it will be determined by the overlap of resonances.
Figure 7 shows that beyond the critical global chaos region
there are still some cases of isolated chaotic orbits (pre-
sumably due to isolated resonances away from the main
overlap region). Also note that the chaotic zone encom-
passes the crossing zone (planets suffering repeated close
encounters will certainly be chaotic} and that there are
bound to be some quasi-periodic orbits inside the global
chaos zone (a pair of planets on horseshoe orbits furnishes
an example of this {cf. Petit and Henon 1986} as well as
the occasional stable periodic orbit).

How relevant is the chaos to the stability of these sys-
tems? If one examines systems near the outer edge of the
chaotic zone, one finds something interesting. Figure 9
compares the orbital element evolution of a system with
A = 0.038 with one having A = 0.039; the first system

is chaotic while its neighbor is quasi-periodic. Even
though the Lyapunov exponent plots very clearly indicate
that the closer (A = 0.038) system is heavily chaotic and
the other is not so, there are no distinguishing characteris-
tics that would lead one to conclude this from the very
similar orbital element histories. This is true even though
the chaotic system has been evolving for more than 3000
Lyapunov times! There appear to be NO macroscopic
effects from the chaos, not even the large changes in
semimajor axis observed in the systems closer to the edge
of the crossing zone. The system is almost certainly
trapped in an isolated chaotic region. What is the mecha-
nism that is producing the chaotic signature? In Fig. 10
a much shorter portion of the evolution of the two systems
is presented. In both of these simulations a shadow object
was started with a semimajor axis 10~ larger than the
outer planet. Although it is below the resolution of the
graph, the quasi-periodic system fluctuates around zero
element difference with a roughly constant amplitude
about four orders of magnitude smaller than that shown
for the chaotic system. The chaotic system, on the other
hand, shows the characteristic exponential divergence
from its shadow system. However, note that from the
previous figure this exponential divergence does not pro-
duce any macroscopic signature in the orbit elements. So
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will be Hill unstable, whereas if it is put inside the chaotic zone, it will h

while predicting the exact positions of the planets in the
closer system is rendered impossible by the chaos, the
stability of the system seems to be unaffected. Thus, sim-
ply observing that the system is chaotic does not necessar-
ity imply crossing or any other large-scale chaotic behauv-
ior. This serves as a counterexample to the results of
Lecar et al. (1992) which indicate a correlation between
the crossing time and the square of the Lyapunov time.
The systems examined here can never reach crossing or-
bits; and since there seems to be no macroscopic changes
in the orbits, this situation furnishes a quite clear example
of “*bound chaos’’ in celestial mechanics problems (Mur-
ray 1992).

4. DISCUSSION

Although the model is an oversimplification, the preced-
ing results are pertinent to theories of planetary formation,
the current Solar System, and the recently discovered
pulsar—planet system.

4.1, Implications for Planetary Formation

According to Eq. (24), the feeding zone of a protoplanet
of mass ratio u, sweeping up low-eccentricity planetesi-
mals of negligible mass is

o\
Dppg = 2413 = 2.4 318 (33) =35Ry, (33)

ave a nenzero LCE. See the text for more discussion.

where Ry, is the Hill sphere radius. Planetesimals farther
away than Ap., are Hill stable. This explains the pre-
viously known empirical results from numerical simula-
tions (Lissauer 1987). Of course, self-stirring by the plane-
tesimal swarm (or other protoplanets) can push the
planetesimals into the feeding zone by changing their an-
gular momentum and/or energy. Nor are all planetesimals
within this feeding zone necessarily going to be accreted
by the planet (for example, those on horseshoe orbits; cf.
Greenberg et al. 1991).

Two adjacent protoplanets that are formed would likely
be outside each others’ feeding zones in any case. Assum-
ing that these protoplanets have comparable mass, the
previous results show that if their separation is greater
than 3 u!”® they cannot coalesce to form a larger planet.
This again assumes no other outside influences capable
of appreciably changing their c21. However, if they are
in the chaotic regime, they could still have considerable
variation in their semimajor axes (e.g., Fig. 5a begins with
an initial separation of about 4.5 R, in the semimajor axes
of the two planets but has subsequent excursions of 10R,;.
This will have two effects. First, the migrating embryos
will be pushed into new, planetesimal-rich zones from
which they may accrete more material (although because
of their high eccentricities the relative velocities will be
large). Second, they may very well be moved so far as
to interact heavily with the next neighboring protoplanet.
Figure 8a demonstrates that in the inner Solar System,
where embryos might have masses of u ~ 107%, the cha-
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otic zone can be 50% larger than the crossing zone {about
7 Ry) and the eccentricities produced will quickly put adja-
cent embryos into crossing orbits. In contrast, in the outer
Solar System (if the embryos produced in the runaways
are closer to the u ~ 1077 range) the chaotic zone is not
much larger than the crossing zone. Thus in the outer
Solar System the usual Hill separation is all that is re-
quired for the temporary cessation of growth of the entire
set of embryos. If one views the logical endpoint of the
early formation as a whole set of embryos formed through
runaway accretion on nearly circular orbits separated by
roughly the size of their feeding zones, then one is faced
with the following consequence. In the inner Solar System
this configuration will rapidly become unstable due to the
dynamical chaos (i.e., orbit crossing will take place very
quickly) while in the outer Solar System the set of em-
bryos is more stable. Orbit crossing in the outer Solar
System will have to wait for secular effects to set it. In
either case, once a few embryos are in crossing orbits the
strong close encounters will presumably produce high
eccentricities that will propagate throughout the swarm
(*‘ali hell will break loose’).

In summary, a reasonably stable set of planetary em-
bryos would have to be successively separated by more
than their chaotic zone sizes. Since this can be quite a

bit larger than their feeding zone sizes (by a factor of 2
or more) it is unlikely that the runaway process would
produce a sct of isolated embryos.

4.2. The Current Solar System

Since the criteria above are for isolated three-body sys-
tems, the traditional approach (cf. Milani and Nobili
1583a) when applying these results to the Solar System
has been to break the latter into three-body subsystems
and to check the Hill stability of these subsystems. One
finds that many planetary subsystems can be shown to
be stable (for example Sun—Jupiter—Saturn) while others
cannot be (Sun—Jupiter—Mercury}. Milani and Nobili
(1983b) also present some results showing how the pres-
ence of a fourth body can produce changes in the ¢k
value of a three-body system (and hence destabilize it).

However, one finds that in the case of the Solar System
one cannot guarantee the stability of some of the appar-
ently stable subsystems in the Solar System (for example,
Sun-Jupiter-Io!). As discussed above, failing the Hill
stability test does not imply an empirical instability if
either the eccentricities are large and/or the masses of
the two smaller bodies are very different. See Milani and
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Nobili (1983a) and Valsecchi er ai. (1984) for further dis-
cussion.

4.3. Mass Constraints on PSR 1257 +12

Let us explore what can be said about the stability of
the newly discovered pulsar—planet system using the Hill
stability criterion. Using the values from Rasio et al.
(1992) for the system, the current separation of the semi-
major axes of the planetsis A = 0.031, and the mass ratio
o/ = 0.82. Equation (23) can then be used to compute
the maximum mass ratios that would stili allow the system
to be Hill stable. The result is

=90 x 1074, p,=74x 1074 (34)

which are both slightly less than the mass of Jupiter.
Note that in this maximum mass case we are justified in
neglecting the eccentricities since e = 0.02 < u'? = 0.1.
The requirement of separation by the size of the chaotic
zone is not really relevant for an upper limit on the masses
since we have seen above that this will not produce a
gross instability of the system (i.e., it will not lead to
escape of one of the masses).

This is only an upper limit in the sense that if the masses
are below this value then the topological criterion guaran-
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tees Hill stability. Masses slightly larger than this value
could be empirically stable as discussed earlier. Indeed,
numerical experiments (Malhotra 1993, Rasio er al. 1992)
give an upper limit on the masses of about twice the above
values.

Masses as large as this upper limit are unlikely since
the system must then be almost pole-on to produce the
observed signal. If this were the case, then the mutual
perturbations should be very obvious at each conjunction
{which occur roughly every 7 months). Therefore, it is
likely that the system is Hill stable, with masses down
near the minimum values given by the assumption of ob-
servation of an edge-on system.

5. CONCLUSION

The topological stability criterion from the three-body
problem furnishes a useful stability formula for the case
of a system of two planets (although as a test of instability
it is less useful for initially eccentric orbits). For initially
circular orbits (e < ') a fractional initial orbital separa-
tion of at least

A=24(u + u)? (35)

ensures Hill stability (with the higher-order correction
given in Eq. (23)).

Systems with slightly larger orbital separations usually
display chaotic behavior. The observed chaotic behavior
is confined away from the zone of chaos that contains
planet-crossing behavior by the Hill stability surface
{which thus behaves as an isolating integral). Many of the
chaotic systems show no macroscopic signatures of the
chaos in their orbital elements over thousands to millions
of Lyapunov times.
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