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Note
The goal of the exercises at hand is to learn and apply the widely-used N-Body
integrator software package REBOUND. You need a computer running either
Linux or macOS to run REBOUND. If you use Windows 10, you might have the
chance to install REBOUND via the Windows Subsystem for Linux, please see
this howto. We strongly suggest to use the python interface. Make sure to install
REBOUND before the lecture. If you face any problems during the installation,
please mail to Christoph Schaefer (ch.schaefer@uni-tuebingen.de).

Introduction

The classical N-body problem in Astrophysics is important to understand the evolution and
stability of planetary systems, star clusters and galactic nuclei. The dynamics of these many
body systems is dominated by pairwise gravitational interactions between single bodies.
Hence, this two-body interaction has to be accounted with high accuracy in the numerical
treatment.
Typical numbers of the aforementioned systems are ∼ 10 for planetary systems, 104 to 106

for star clusters and more than over 108 for galactic nuclei.
For particle numbers of this magnitude, the methods of statistical mechanics can only be
applied partially, and one has to rely on the direct integration of each individual particle
trajectory with regard of the mutual gravitational forces.
In this practical course, we will use the existing REBOUND software package to address
several small N-body problems. In the first section, the classical N-body problem and the
numerical methods to solve it are presented. In the second section, the software package
REBOUND and its installation is described. The third section contains the exercises.

1 The Classical N-Body-Problem

The motion of N point masses in their mutual gravitational field is the classical N-body
problem. Each particle i with mass mi has the location ri and the velocity vi at time t. The
Hamiltonian of this system reads

H =
N

∑
i=1

pi
2

2mi
−

N

∑
i=1

N

∑
j=i+1

Gmim j

|qi − q j|
(1)

with the canonical coordinates momentum pi = mivi and location qi = ri for all i = 1 . . . N
point masses. The Hamiltonian Equations yield the equations of motion for particle i

q̇i(t) =
∂H
∂pi

=⇒ dri

dt
= vi (2)

ṗi(t) = −
∂H
∂qi

=⇒ dvi

dt
= ai (3)

with the acceleration

ai(t) =
N

∑
j 6=i

Gm j
ri j

r3
i j

. (4)
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Later, we will also need the time derivative of the acceleration, the so-called jerk

ȧi(t) =
N

∑
j 6=i

Gm j

(
vi j

r3
i j
−

3(vi j ·ri j)

r5
i j

ri j

)
(5)

where ri j := r j(t)− ri(t), ri j := |ri j|, vi j := v j(t)− vi(t), vi j := |vi j|.
To calculate all accelerations at a certain time, one needs to evaluate N (N − 1)/2 terms
(using symmetry), that is the computing time for large numbers of N is asymptotically∼ N2.

The Two-Body Problem

The Hamiltonian (1) of the two-body problem can be separated into the motion of the center
of mass and the relative motion, that is H = H(r1, r2, p1, p2)→ H(r, p, pcm) with

H = Hcm + Hrel =
p 2

cm
2M

+
p 2

2µ
− Gm1m2

r
(6)

with the total mass M := m1 + m2, the reduced mass µ := m1m2/M, the distance vector
between the two bodies r := r1 − r2, the distance r := |r |, the relative momentum p :=
p1 − p2 and the momentum of the center of mass pcm.
The Hamiltonian of the center of mass motion Hcm (the first term on the right hand side of
equation (6)) has trivial solutions. This follows from the face, that Hcm depends only on the
momemtum of the center of mass pcm and not from the conjugate variable rcm, the location
of the center of mass. It follows a steady motion of the center of mass.
The Hamiltonian of the relative motion Hrel yields the equation of motion of the classical
two-body problem

ṗ = µv̇ = −Gm1m2

r3 r (7)

with v = v1 − v2 = p/µ, and finally in the familiar notation

r̈ = v̇ = −GM
r3 r . (8)

The solution of the Kepler-problem are conic sections with the orbital plane, the motion of r
is characterised by an ellipse, a parabola or a hyperbola. The energy E, the specific angular
momentum

j = r× v (9)

and the Runge-Lenz vector

e =
v× j
GM

− r
r

(10)

are conserved values of the two-body motion. Using eq. (8), we find for the evolution of the
angular momentum

dj
dt

= v× v + r× v̇ = −GM
r3 (r× r) = 0 . (11)
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To prove the conservation of e, we need some calculus with the use of the vector identity
(A× B)× C = B(A·C)−A(B·C). It follows

j× r
r3 =

(r× v)× r
r3 =

v
r
− r

(r·v)
r3 =

d
dt

( r
r

)
. (12)

With this term and the help of eq. (8) and (11), we find

de
dt

= −GM
r3

r× j
GM

− d
dt

( r
r

)
=

j× r
r3 −

d
dt

( r
r

)
= 0 . (13)

Additionally, we regard the following term

r·e + r =
r·(v× j)

GM
=

(r× v)·j
GM

=
j2

GM
. (14)

The scalar product r·e is expressed with the angleφ−φ0 between e and the location vector
r, and re cos(φ−φ0) + r = j2/(GM), it follows

r(φ) =
j2/(GM)

1 + e cos(φ−φ0)
. (15)

This is the well-known equation of a conic section. For a constrained motion, the absolute
value of the Runge-Lenz vector e = |e| specifies the eccentricity of the ellipse. Then, the
maximum and minimum distance of the two point masses is given by

rmax /min =
j2/(GM)

1± e
, (16)

and the semi-major axis of the ellipse is given by

a =
1
2
(rmin + rmax) =

j2/(GM)

1− e2 . (17)

Because of Kepler’s third law (“The square of the orbital period of a planet is directly pro-
portional to the cube of the semi-major axis of its orbit.”), it follows for the orbital period

ω =

√
GM
a3 . (18)

2 Numerical Solution of the Equation of Motion: Time integrators

In order to calculate the trajectories of the point masses, one has to solve the corresponding
equation of motion for each particle i, whic is the system of ODEs given by eqs. (2) and (3)
with appropriate initial values for locations and velocites. In general, this is only possible
by the help of numerical methods, which leads to the fact, that the particle distribution can
only be determined at discrete time values. Starting from the current point in time t = tn,
the location and the velocity at a later point in time tn+1 = tn + ∆t are calculated. Then, the
new point in time becomes the current one and the algorithm restarts at the new time.
In the following, different numerical schemes will be presented which can be used to solve
a system of ODEs of the form dy/dt = f (y, t) with initial values. These schemes are called
time integrators for obvious reasons in this context. They can, however, be applied for any
initial value problem. The indices in the following refer always to the equivalent point in
time, that is rn = r(tn), and so forth. The index i for the different point masses will be left in
the following.

5



N-Body simulations with REBOUND 28.07.2020

2.1 Single-Step Methods

Basic idea: Consider the differentials dy and dt as finite intervals ∆y and ∆t

dy
dt
⇒ ∆y

∆t
= f (t, y)

and discretise with ∆t = h

∆y = yn+1 − yn = ∆t f = h f .

Generally, single-step methods can be written in the following form

yn+1 = yn + hΦ(tn, yn, yn+1, h),

where Φ is called the evolution function. The scheme is called explicit if Φ = Φ(tn, yn, h)
and implicit for Φ = Φ(tn, yn, yn+1, h). The step is from tn to tn+1 and from yn to yn+1.
Single-step methods may be constructed by Taylor expansion. At first, we will discuss the
simple explicit one-step method, the explicit Euler-method with Φ(tn, yn, h) = f (tn, yn).

2.2 Simple time integrators:
The Euler-method and the Euler-Cromer-method

The simplest way for a discrete time integration scheme is achieved with the help of the
Taylor expansion of location and velocity

v(tn + ∆t) = v(tn) +
dv
dt

(tn)∆t +O(∆t2), (19)

= v(tn) + a(tn)∆t +O(∆t2), (20)

r(tn + ∆t) = r(tn) +
dr
dt

(tn)∆t +O(∆t2), (21)

= r(tn) + v(tn)∆t +O(∆t2), (22)

where the acceleration a is given by eq. (4).
These equations directly yield an algorithm, the so-called Euler-method, where one calcu-
lates

vn+1 = vn + an∆t, (23)
rn+1 = rn + vn∆t (24)

for every time step.
The Euler-method uses the simple slope triangle to perform one forward step
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y(tn+1)
y(tn) + ∆t f (tn, y(tn))

y(tn)

∆t

tn tn+1

y′(tn) = f (tn, y(tn))

t

y(t)

For each point in time tn, the evolution of the function y(t) from time tn to tn+1 = tn +
∆t is approximated by ∆ty′(tn) = ∆t f (tn, y(tn)). The discretization error is given by the
difference y(tn+1)− [y(tn) + ∆t f (tn, y(tn))].
As an alternative to the Euler-method where the velocity is calculated first, there is the so-
called Euler-Cromer-method. Here, the new locations are calculated with the velocities at
the new time step tn+1 instead of tn like in the standard Euler-method.

vn+1 = vn + an∆t, (25)
rn+1 = rn + vn+1∆t. (26)

Averaging both methods yields the scheme

vn+1 = vn + an∆t, (27)

rn+1 = rn +
1
2
(vn + vn+1)∆t. (28)

2.2.1 Accuracy of the scheme

The main disadvantage of these methods is the low accuracy. If the trajectories of particles
have to be determined until the space in time tmax and each time step is of length ∆t, we
need Nt := tmax/∆t time steps. The error per time step is of the order O(∆t2) (see Taylor
expansion), leading to a total error of the simulation of the order O(Nt∆t2) = O(∆t). And
the computational accuracy was not even accounted, yet.

2.2.2 Computational accuracy

Letε be the machine accuracy, the relative error due to rounding in floating point arithmetic.
The error caused byε grows with O(Ntε). In order to improve the accuracy of the numerical
scheme, one can choose smaller time steps ∆t, which consequently yields a higher error
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by ε, since we need a higher number of time steps Nt. Hence, global values of a N-body
simulation like the total energy E have an error of the order O(NtNε).
Some numbers for clarification: Depending on the numerical scheme, approximately 100 to
1000 steps per orbit are required for the two-body problem to achieve an error for the energy
in the order of the machine accuracy, that is ∆E/E ∼ 10−13. The error in the energy adds up
to ∆E/E ∼ 10−9 for a complete orbit. To simulate the evolution of a star cluster with about
106 stars and for the time of about 104 typical orbital periods, one has to evaluate 1010 orbits
with 1000 time steps each, in total 1013 time steps, eventually leading to an error of the total
energy of ∆E ∼ 100 %.

∆t

Error of the Euler-method

discretization error ∼ ∆t

machine eps ∼ 1
∆t

total error

∆tideal

2.3 The Leap-Frog-method

One improvement of the Euler-method is to use the velocity for the calculation of the new
locations at the point in time tn+1/2 = tn +∆t/2 and not on the times tn or tn+1. The scheme
of this method is

First step:

r1/2 = r0 + v0
∆t
2

,

Calculate a1/2 = a(t1/2, r1/2) ,

Regular steps:
vn+1 = vn + an+1/2 ∆t ,

rn+3/2 = rn+1/2 + vn+1 ∆t ,

Last step:

rn+1 = rn+1/2 + vn+1
∆t
2

.

The name of the this scheme “Leap Frog” originates from the fact that the positions and
velocities are updated at interleaved time points separated by ∆t/2, staggered in such a
way, that they leapfrog over each other. Hence, locations and velocities are not known
at the same point in time In the limit of ∆t → 0, one gets the usual canonical equations.
Moreover, for finite ∆t, the scheme is symplectic, which means, there is a Hamiltonian
Ĥ = H + ∆t2H2 + ∆t4H4 + . . ., which is solved exactly by the scheme. This has a positive
impact on the consistency of conserved quantities.
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2.4 The Verlet-method

The Leap-Frog-method can be written as the so-called kick-drift-kick algorithm

ṽ(∆t) = v(t) +
1
2
∆t a(t) (29)

r(t + ∆t) = r(t) + ∆t ṽ(t) (30)

v(t + ∆t) = ṽ(t) +
1
2
∆t a(t + ∆t) (31)

The intermediate value ṽ(∆t) denotes the velocity at time t + 1/2∆t.
The advantage of this velocity Verlet-method is the higher accuracy in the calculation of the
locations. The Verlet-method is identical to the Leap-frog-method. Note, that also in this
method, only one evaluation of the force term is required per time step.

2.5 Runge-Kutta-Integrators

The error of one single step in the Euler method can be analyzed by looking at the Taylor
expansion. The Taylor expansion of y(t + h) at t yields with dy

dt = f (y, t)

y(t + h) = y(t) + h
dy
dt

+O(h2) (32)

= y(t) + h f (y, t) +O(h2) (33)

Hence, we could get better accuracy if we also include higher terms.

2.5.1 Basic idea of RK schemes

Now, let’s expand up to third order

y(t + h) = y(t) + h
dy
dt

+
h2

2
d2 y
dt2 +O(h3) (34)

= y(t) + h f (y, t) +
h2

2
d f
dt

+O(h3) (35)

The derivative of f with respect to t is given by

d f (y(t), t)
dt

=
f (y(t + h), t + h)− f (y(t), t)

h
+O(h). (36)

Unfortunately, we do not know y(t + h). By using the Euler scheme to estimate y(t + h), we
get

d f (y(t), t)
dt

=
f (y(t) + h f (y(t), t), t + h)− f (y(t), t)

h
+O(h). (37)

Inserting eq. (37) into (35) yields

y(t + h) = y(t) + h f (y(t), t) +
h
2
{ f (y(t) + h f (y(t), t), t + h)− f (y(t), t)}+O(h3) (38)

= y(t) +
h
2
{ f (y(t), t) + f (y(t) + h f (y(t), t), t + h)}+O(h3). (39)
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We have improved the accuracy for the cost of an additional calculation of f at substep
y(t) + h f (y, t). This is the basic idea of any Runge-Kutta method. In fact, we have just
derived a RK 2nd order scheme, the Heun method.
The general form of an explicit RK method is

yn+1 = yn + h ∑
i

biki, (40)

where the ki denote the substeps and bi are some weights. Please see a textbook for further
details. Here, we provide only the terms for the RK4 method.

2.5.2 The classical Runge-Kutta scheme

A system of first order ODEs can be written in vector notation

y′ = f(t, y(t)), y(t0) = y0 (41)

with the vector for the initial values y0. In our N-body problem, y will be (r, v) with initial
values (r(0), v(0)). A very common integration scheme is the so-called 4th order Runge-
Kutta-method (RK4). In this scheme, estimated values for the derivative at single substeps
in the interval tn, tn + h are calculated. In vector notation, it reads

K1 = f(tn, yn) (42)

K2 = f
(

tn +
1
2

h, yn +
h
2

K1

)
(43)

K3 = f
(

tn +
1
2

h, yn +
h
2

K2

)
(44)

K4 = f (tn+1, yn + hK3) (45)

where yn, yn+1, K1, K2, K3, K4 and f are vectors in the vector space Rm. The value of the
function y at the new time is calculated by

yn+1 = yn +
h
6
(K1 + 2K2 + 2K3 + K4) . (46)

The error of the scheme is of the order O(h5). The price for this high accuracy is the re-
quired calculation of the function which is four times per time step. However, the stability
is also improved compared to the Euler-method. For a more detailed description of the
RK4-method, we refer to the book “Numerical Recipes”1 and wikipedia. We will apply the
RK4-method in this course on the system of equations (2) and (3).

2.5.3 Special integrators for N-Body problems

Although the presented integrators from the previous sections may yield profound and solid
results for ODEs, special integrators for the N-Body problem have been developed in the
recent years. The N-Body code that you will use in this labwork features several symplectic
integrators (WHFast, WHFastHelio, SEI, LEAPFROG) and a high accuracy non-symplectic
integrator with adaptive timestepping (IAS15). These integrators are described nicely in the
following publications by Hanno Rein

1http://apps.nrbook.com/c/index.html, p.710
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1. Rein & Liu 2012 (Astronomy and Astrophysics, Volume 537, A128) describe the code
structure and the main feature including the gravity and collision routines for many
particle systems. http://adsabs.harvard.edu/abs/2012A%26A...537A.128R

2. Rein & Spiegel 2015 (Monthly Notices of the Royal Astronomical Society, Volume 446,
Issue 2, p.1424-1437) describe the versatile high order integrator IAS15 which is now
part of REBOUND. http://adsabs.harvard.edu/abs/2015MNRAS.446.1424R

3. Rein & Tamayo 2015 (Monthly Notices of the Royal Astronomical Society, Volume
452, Issue 1, p.376-388) describe WHFast, the fast and unbiased implementation of a
symplectic Wisdom-Holman integrator for long term gravitational simulations. http:
//adsabs.harvard.edu/abs/2015MNRAS.452..376R

4. Rein & Tamayo 2016 (Monthly Notices of the Royal Astronomical Society, Volume 459,
Issue 3, p.2275-2285) develop the framework for second order variational equations.
http://arxiv.org/abs/1603.03424

5. Rein & Tamayo 2017 (Monthly Notices of the Royal Astronomical Society, Volume 467,
Issue 2, p.2377-2383) describes the Simulation Archive for exact reproducibility of N-
body simulations. https://arxiv.org/abs/1701.07423

6. Rein & Tamayo 2018 (Monthly Notices of the Royal Astronomical Society, Volume 473,
Issue 3, p.3351–3357) describes the integer based JANUS integrator. https://arxiv.
org/abs/1704.07715

7. Rein, Hernandez, Tamayo, Brown, Eckels, Holmes, Lau, Leblanc & Silburt 2019 (Monthly
Notices of the Royal Astronomical Society, Volume 485, Issue 4, p.5490-5497) describes
the hybrid symplectic intergator MERCURIUS. https://arxiv.org/abs/1903.04972

8. Rein, Tamayo & Brown 2019 (submitted) describes the implementation of the high or-
der symplectic intergators SABA, SABAC, SABACL, WHCKL, WHCKM, and WHCKC.
https://arxiv.org/abs/1907.11335

3 The N-Body Code REBOUND

REBOUND is a software package that can integrate the motion of particles under the in-
fluence of gravity. The particles can represent stars, planets, moons, ring or dust parti-
cles. REBOUND is free software and published under the terms of the GNU General Pub-
lic License as published by the Free Software Foundation, either version 3 of the License,
or (at your option) any later version2. REBOUND’s maintainer is Professor Hanno Rein
(https://rein.utsc.utoronto.ca/). The source code can be obtained via github https:

//github.com/hannorein/rebound and the complete documentation is online via https:

//rebound.readthedocs.io/en/latest/.
REBOUND’s core is written in the programming language C, but it offers a very nice and
user-friendly python interface. We highly recommend to use the python interface for the
exercises.

2http://www.gnu.org/licenses/
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3.1 Download and Installation

Depending on your choice of programming language, you have to install REBOUND in the
following way. Please consult also the documentation about the installation if you face any
problems.

3.1.1 Python

To install the python module for REBOUND, you can use pip. Make sure to use python
version 3 only.

pip install rebound

To verify the installation, try to import the module in the commandline interpreter and load
the help for the module

> python

Python 3.7.3 (default , Apr 3 2019, 05:39:12)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import rebound

>>> help(rebound)

3.1.2 C

To clone the source code from the github repository, use the following command, which also
runs a first example to test if the compilation was successfull

git clone http:// github.com/hannorein/rebound && cd rebound/examples/

shearing_sheet && make && ./ rebound

For your own exercises, you can simply copy one of the example files in rebound/exam-
ples and modify it and use the Makefile provided there, or you use the following Makefile
template (Linux, macOS) to compile source file foo.c and link to rebound (make sure to set
REBOUND SRC accordingly)

OPT+= -Wall -g -Wno -unused -result

OPT+= -std=c99 -Wpointer -arith -D_GNU_SOURCE -O3

LIB+= -lm -lrt

# your preferred compiler

CC = gcc

# path to the source directory of your rebound installation

REBOUND_SRC =../../ src/rebound/src/

all: librebound

@echo ""

@echo "Compiling problem file ..."

$(CC) -I$(REBOUND_SRC) -Wl ,-rpath ,./ $(OPT) $(PREDEF) foo.c -L. -

lrebound $(LIB) -o foo

@echo ""

@echo "REBOUND compiled successfully."

librebound:

@echo "Compiling shared library librebound.so ..."

$(MAKE) -C $(REBOUND_SRC)

12
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@-rm -f librebound.so

@ln -s $(REBOUND_SRC)/librebound.so .

clean:

@echo "Cleaning up shared library librebound.so ..."

@-rm -f librebound.so

$(MAKE) -C $(REBOUND_SRC) clean

@echo "Cleaning up local directory ..."

@-rm -vf rebound

4 Exercises

In the following subsections you find the exercises that you have to solve during this lab-
work. Be sure to add your findings in your minutes and if important to the final protocol.
Think about meaningful plots to state your results and add them to the protocol.

4.1 The Two-Body Problem

Consider the two-body problem with the following setup: eccentricity e = 0.3, semi-major
axis a = 1, m1 = 1, m2 = 10−3. With the gravitational constant G set to 1, the orbital period
is ≈ 2π . Energy and angular momentum should be conserved, they are given by

E = −µGM
2a

,

L = µ

√
(1− e2)GMa,

where µ denotes the reduced mass and M the total mass

µ =
m1m2

M
,

M = m1 + m2.

Choose the z-axis as the direction of the angular momentum Lz = L. Choose the x-axis as the
direction of the periapsis to body 2. At time t0 = t(0) = 0, both bodies are at closest distance
dp = a(1 − e). At time t0, the positions and the velocities of the two bodies are given by
vy1(0) = −L/(dpm1), x1(0) = −dpm2/M and vy2(0) = L/(dpm2), x2(0) = dpm1/M. The
motion of the two bodies is solely in the xy-plane.
We want to test the quality of the various integrators from the REBOUND software package.
Integrate the system for 103 orbital periods at first with the Leap-Frog integrator with differ-
ent fixed time-steps 1 to 10−6 and observe the energy, angular momentum, and the orbital
elements. Try also another integrator!

4.1.1 Solution with C

// note: this is not the complete source code , just a snippet

// add the missing lines

#define TWOPI 6.283185307179586

13
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struct reb_simulation* r = reb_create_simulation ();

/* setup of the simulation

* create two particles via

* struct reb_particle p1 and p2

* add the two particles to the simulation via reb_add(r, p)

*

*/

// choose Leap -frog integrator

r->integrator = REB_INTEGRATOR_LEAPFROG;

// fixed time step

r->dt = 1e-4; // and 1 and 1e-1 and 1e-2 and 1e-3 and ...

// function pointer to the heartbeat function.

// the function is called after each dt

r->heartbeat = heartbeat;

// move all to center of mass frame

reb_move_to_com(r);

// now integrate for 1000 orbits , 2pi is one orbit

reb_integrate(r, 1000* TWOPI);

Define a heartbeat function void heartbeat(struct reb simulation *r) to write the or-
bits, eccentricities and energy with the help of the builtin functions reb output ascii and/or
reb output orbits to files and plot the values (using gnuplot or python or your preferred
plotting tool).

4.1.2 Solution with Python

#!/usr/bin/env python3

# note: this is not the complete source code , just a snippet

# add the missing lines

import sys

import numpy as np

import matplotlib.pyplot as plt

import rebound

# create a sim object

sim = rebound.Simulation ()

# set the integrator to type REB_INTEGRATOR_LEAPFROG

sim.integrator = "leapfrog"

# and use a fixed time step

sim.dt = 1e-4

# here add your particles ....

sim.add(m=1.0)

sim.add(m=1e-3, a=1.0, e=0.3)

# do not forget to move to the center of mass

sim.move_to_com ()

14
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# create time array , let’s say 1 orbit , plot 250 times per orbit

Norbits = 1

Nsteps = Norbits *250

times = np.linspace(0, Norbits *2*np.pi , Nsteps)

x = np.zeros (2* Nsteps) # coordinates for both particles

y = np.zeros (2* Nsteps) # coordinates for both particles

# now integrate

for i, t in enumerate(times):

sim.integrate(t, exact_finish_time =0)

x[i] = sim.particles [0].x

x[i+Nsteps] = sim.particles [1].x

y[i] = sim.particles [0].y

y[i+Nsteps] = sim.particles [1].y

# now plot the orbit

fig , ax = plt.subplots ()

ax.scatter(x,y, s=2)

plt.grid(True)

fig.savefig("orbit.pdf")

The orbital elements are also stored in sim.particles, e.g., the eccentricity of the second
particle is given by sim.particles[1].e. Plot the orbital elements for different fixed time
steps and test if the conservation of energy and angular momentum is given.

4.2 Hénon orbit

Here, we investigate a four-body problem. Consider four point masses with mass m = 1,
coordinates and velocities given by

x0 = 0.504457024898985 y0 = 1.058520304479640
x1 = 1.581323394863468 y1 = 1.639575414656912
x2 = −1.960902462113829 y2 = −1.605062781926992
x3 = −0.884036092149343 y3 = −1.024007671749708
v0x = −0.588406317185329 v0y = −0.507208447977203
v1x = 0.377133148141246 v1y = 0.459577663854508
v2x = −0.377133148141246 v2y = −0.459577663854508
v3x = 0.588406317185329 v3y = 0.507208447976862

(47)

Use the function reb output orbit (in C) or the information given in the object sim.particles
(Python) to get a typical period time scale tp of the problem. Evolve the system for 100 tp
and plot the orbits. You should get a picture like Fig. 1. There are an infinite number of
planar N-Body choreographies. See Robert Vanderbei’s homepage for more.

4.3 Stability of Saturn’s rings

The idea for this exercise is based on the paper by Vanderbei & Kolemen (2007)3. They give a
self-contained modern linear stability analysis of a system of n equal mass bodies in circular
orbit around a single more massive body. We will investigate their analytical findings with
simulations.

3https://arxiv.org/abs/astro-ph/0606510
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Figure 1: Hénon choreography.

Consider following scenario: one high mass body with mass M is orbited by n − 1 lower
mass bodies with equal masses m at distance r = 1. The initial angular velocity ω of the
lower mass bodies is

ω =

√
GM
r3 +

GmIn

r3 , (48)

where In is given by

In =
n−1

∑
k=1

1
4

1
sin(πk/n)

.

The result of Vanderbei & Kolemen is that the system is linear stable as long as

m ≤ γM
n3 , (49)

with the values for γ given in table 1.

Can you reproduce their result with your simulations? Use Saturn’s mass for the central
object (M = 2.857 166 56× 10−4M�), set the initial distance of n− 1 lower mass bodies to
r = 1 and the velocity according to eq. (48). Vary both n and the mass m of the n− 1 smaller
objects, check if you expect a stable system according to eq. (49) and integrate the system for
100 tp. Try different systems using values from table 1.

16
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n linear stability analysis γ numerical simulation analysis γ
8 2.412 2.4121
10 2.375 2.3753
36 2.306 2.3066
100 2.300 2.2999

Table 1: Values for the parameter γ found by Vanderbei & Kolemen.

4.4 Jupiter and Kirkwood gaps

In this problem we want to address the influence of Jupiter on the asteroid belt. A Kirkwood
gap is a gap in the distribution of the semi-major axes of the asteroids. They correspond to
the locations of orbital resonances with Jupiter. We will use inactive particles to model the as-
teroids and consider only the Sun, Jupiter and Mars as gravitating objects (r->N active=3).
Hence, the asteroids have no feedback on Sun, Jupiter and Mars and are just tracer particles.
Set up the Sun-Mars-Jupiter system with the help of the NASA Horizons web-interface to
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Figure 2: Kirkwood gaps in the asteroid belt (Chamberlin 2007).

get initial conditions for Mars and Jupiter (Ephemeris Type VECTORS) and add randomly
10 000 inactive particles between 2 and 4 au in the midplane.
Let the system evolve for several thousands of years (at least 10 000 years) and look for the
Kirkwood gaps (cf. Figure 2).
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Note: This will probably require to run the code over night (depending on your hard-
ware).

4.4.1 Solution with C

The following code snippet can be used to generate testparticles moving on a Keplerian orbit
around the sun

#define TWOPI 6.283185307179586

double au = 1.496 e11;

while (r->N < 10003) {

// here we need to randomly generate points between 2 and 4 au

// random radius

double radius = 4*(( double)rand()/RAND_MAX);

double phi = TWOPI *( double)rand()/RAND_MAX;

double x = radius * cos(phi);

double y = radius * sin(phi);

double a = sqrt(x*x+y*y);

if (a<2) continue;

if (a>4) continue;

a *= au;

// star is our sun

double vkep = sqrt(r->G*star.m/a);

struct reb_particle testparticle = {0};

testparticle.x = x*au;

testparticle.y = y*au;

testparticle.z = 0.0;

testparticle.vx = -vkep*sin(phi);

testparticle.vy = vkep*cos(phi);

reb_add(r, testparticle);

}

4.4.2 Solution with Python

The following code snippet can be used to generate testparticles moving on a Keplerian orbit
around the sun

solarmass = 1.989 e30

au = 1.496 e11

gravitationalconstant = 6.67408e-11

# create a sim object

sim = rebound.Simulation ()

# use SI units

sim.G = gravitationalconstant

# add 10000 inactive tracerparticles between 2 and 4 au

N_testparticle = 10000

a_ini = np.linspace (2*au , 4*au , N_testparticle)

for a in a_ini:

sim.add(a=a, f=np.random.rand()*2.*np.pi , e=np.random.rand()) # mass is

set to 0 by default , random true anomaly , random eccentricity

# set a reasonable time step

# we use 1e-2 of an orbit at 2 au
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orbit = 2*np.pi*np.sqrt (8*au*au*au/( gravitationalconstant*solarmass));

sim.dt = orbit*1e-2

Generate meaningful plots (eccentricity over semi-major axis, histogram plot of number of
asteroids over semi-major axis) at different times (e.g., every thousand years) to show the
formation of the dips.

Happy Coding! 1
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